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Abstract. In this paper, we consider two-layer Bayesian networks. The
first layer consists of hidden (unobservable) variables and the second layer
consists of observed variables. All variables are assumed to be binary. The
variables in the second layer depend on the variables in the first layer.
The dependence is characterised by conditional probability tables rep-
resenting Noisy-AND or simple Noisy-AND. We will refer to this class
of models as BN2A models. We found that the models known in the
Bayesian network community as Noisy-AND and simple Noisy-AND are
also used in the cognitive diagnostic modelling known in the psychome-
tric community under the names of RRUM and DINA, respectively. In
this domain, the hidden variables of BN2A models correspond to skills
and the observed variables to students’ responses to test questions. In
this paper we analyse the identifiability of these models. Identifiability is
an important concept because without it we cannot hope to learn correct
models. We present necessary conditions for the identifiability of BN2As
with Noisy-AND models. We also propose and test a numerical approach
for testing identifiability.

Keywords: Bayesian networks · BN2A networks · Cognitive
Diagnostic Modeling · Psychometrics · Model Identifiability

1 Introduction

Bayesian networks [10,12,13] are a popular framework for modelling probabilistic
relationships between random variables. The topic of this paper is the learning of
a special class of Bayesian Networks (BNs) - two-layer BNs, where the first layer
consists of hidden (unobservable) variables, which are assumed to be mutually
independent, and the second layer consists of observed variables. All variables
are assumed to be binary. The variables in the second layer depend only on
the variables in the first layer. The dependence is characterised by conditional
probability tables (CPTs), which represent either Noisy-AND or simple Noisy-
AND. In case the CPTs are represented by Noisy-OR models, the corresponding
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BN is traditionally called BN2O [1], in case the CPTs are represented by Noisy-
AND models, the corresponding BN will be called BN2A as a parallel to the
BN2O models. In Fig. 1 we give an example of a directed bipartite graph that
can define the structure of a BN2O or a BN2A model.

Y7 Y6 Y5 Y4 Y3 Y2 Y1

X5 X4 X3 X2 X1

Fig. 1. An example of a directed bipartite graph.

Noisy-AND and simple Noisy-AND models are examples from the family
of canonical models of CPTs [3,9]. The study of these models is motivated by
practical applications. BN2O models are well suited for medical applications,
where the hidden variables of the first layer correspond to diseases and the
observed variables of the second layer correspond to observed symptoms. In this
application, it is natural to assume that a symptom will occur if the patient has
a disease that causes that symptom, unless its influence is inhibited with some
probability. Therefore the CPTs are modelled using Noisy-OR models. BN2A
models are used in psychometrics for cognitive diagnostic modelling of students.
In this case, the hidden variables correspond to the student’s skills and the
observed variables correspond to the student’s responses to test questions. A
typical test question requires all related skills to be present, unless a missing
skill is compensated by another knowledge or skill. This relationship is well
represented by Noisy-AND models.

The work most closely related to ours is [5], but the main difference is that it
assumes all hidden variables can be mutually dependent, whereas we assume that
all hidden variables are mutually independent. The legitimacy of this assumption
depends on the context of the application. Our motivation for the independence
of the hidden variables is the ability to clearly distinguish between them and their
effect on the observed variables. The assumption of hidden node independence
has a significant impact on the identifiability of the model. In addition, BN2A
with leaky Noisy-AND, corresponding to RRUM in CDM, has not been analysed
in [5].

This paper is structured as follows. In Sect. 2 we formally introduce the BN2A
models. First, we discuss both options for CPTs, leaky Noisy-AND and simple
Noisy-AND models, but in the rest of the paper we restrict our analysis to
leaky Noisy-AND. In Sect. 3, we analyse the identifiability of BN2A models,
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since identifiability is an important issue for models with hidden variables. Sev-
eral conditions for the identifiability of these models are given in this section.
Testing the identifiability condition based on the rank of the Jacobian matrix is
practically non-trivial, so we propose and test a numerical approach in Sect. 4.
Finally, we summarise the contribution of this paper in Sect. 5.

2 BN2A Models

Let X denote the vector (X1, . . . , XK) of K hidden variables, and similarly let
Y denote the vector (Y1, . . . , YL) of L observed dependent variables. The hidden
variables are also called attributes or skills in the context of cognitive diagnostic
models (CDMs), or diseases in the context of medical diagnostic models (MDMs).
The observed dependent variables are also called items in CDMs or symptoms
in MDMs. All variables are assumed to be binary, taking states from {0, 1}. The
state space of the multidimensional variable X is denoted X and is equal to the
Cartesian product of the state spaces of Xk, k = 1, . . . ,K:

X = ×K
k=1Xk = {0, 1}K . (1)

Similarly, the state space of multidimensional variable Y is denoted Y and is
equal to the Cartesian product of state spaces of Y�, � = 1, . . . , L:

Y = ×L
�=1Y� = {0, 1}L . (2)

The basic building blocks of a BN2A model are conditional probability tables
(CPTs) specified in the form of a Noisy-AND model. Let Y� be an observed
dependent variable and pa(Y�) be the subset of indexes of related variables from
X. They are referred to as the parents of Y�.

Definition 1 (Noisy-AND model).
A conditional probability table P (Y�|Xpa(Y�)) represents a Noisy-AND model if

P (Y� = y�|Xpa(Y�) = xpa(Y�)) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

q�,0 ·
∏

i∈pa(Y�)

(q�,i)(1−xi) if y� = 1

1 − q�,0 ·
∏

i∈pa(Y�)

(q�,i)(1−xi) if y� = 0.
(3)

Note that if xi = 1 then (q�,i)(1−xi) = 1 and if xi = 0 then (q�,i)(1−xi) = q�,i.
The interpretation is that if Xi = 1, then this variable definitely enters the AND
relation with the value 1. If Xi = 0, then there is still a probability q�,i that
it enters the AND relation with value 1. The model also contains an auxiliary
parent X0 which is always 0 and thus enters the AND relation with probability
q�,0 for the value 1. This probability is traditionally called leak probability and
allows non-zero probability of Y� = 0 even if all parents of Y� have value 1 (Y� = 1
if and only if all parents enter the AND relation with value 1). In CDM, this
model is known as the Reduced Reparametrized Unified Model (RRUM) [7] and
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it is a special case of the Generalized Noisy Inputs, Deterministic AND (GNIDA)
gate model [2].

It is convenient to extend the vector x with the value 0 as its first element,
i.e., we redefine x = (0, x1, . . . , xK) so that we can write the formula (3) as

P (Y� = y�|Xpa(Y�) = xpa(Y�)) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∏

i∈{0}∪pa(Y�)

(q�,i)(1−xi) if y� = 1

1 −
∏

i∈{0}∪pa(Y�)

(q�,i)(1−xi) if y� = 0.
(4)

The prior probability of the hidden attribute for k = 1, . . . ,K is defined as

P (Xk = xk) = (pk)xk(1 − pk)(1−xk) , (5)

which means that if xk = 1 then it is pk and if xk = 0 then it equals 1 − pk.
Another model of a CPT commonly known in the area of CDM as Determin-

istic Input Noisy AND (DINA) gate [11], corresponds to a CPT model called
Simple Noisy-AND model in the context of canonical models of BNs [3].

Definition 2 (Simple Noisy-AND model). A conditional probability table
P (Y�|Xpa(Y�)) represents a Simple Noisy-AND model if

P (Y� = y�|Xpa(Y�) = xpa(Y�))

=

{
(1 − s�)π(x,Y�) · (g�)1−π(x,Y�) if y� = 1

1 − (1 − s�)π(x,Y�) · (g�)1−π(x,Y�) if y� = 0 ,
(6)

where

π(x, Y�) =
∏

i∈pa(Y�)

xi . (7)

In the context of CDMs, the parameter s� represents the so-called slip probabil-
ity, i.e. the probability of giving incorrect answer despite all required skills were
present. The parameter g� represents guessing probability, i.e. the probability of
guessing the correct answer despite the absence of a required skill. Due to space
constraints, we will not analyze the simple noisy-AND model in this paper. We
present its definition to show how it differs from leaky noisy-AND and link it to
the existing literature in the CDM and BN communities.

Now we are ready to define a special class of Bayesian network models with
hidden variables, called BN2A models.

Definition 3 (BN2A model). A BN2A model is a pair (G,P ), where G is
a directed bipartite graph with its nodes divided into two layers. The nodes of
the first layer correspond to the hidden variables X1, . . . , XK and the nodes of
the second layer correspond to the observed variables Y1, . . . , YL. All edges are
directed from a node of the first layer to a node of the second layer. The symbol P
refers to the joint probability distribution over the variables corresponding to the
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nodes of the graph G. The probability distribution is parameterized by a vector
of model parameters r:

r = (p,q) =
(
(pk)k∈{1,...,K}, (q�,k)�∈{1,...,L},k∈{0}∪pa(Y�)

)
. (8)

We will use E(G) to denote the set of edges of a bipartite graph G and
V1(G) and V2(G) as the sets of nodes of the first layer and the second layer
of G, respectively. The bipartite graph G can also be specified by an incidence
matrix and in the context of CDM is traditionally denoted by Q. A Q-matrix is
an L × K binary matrix, with entries Ql,k ∈ {0, 1} that indicate whether or not
the �th observed dependent variable is linked to the kth hidden variable.

Definition 4 (The joint probability distribution of a BN2A model).
The joint probability distribution of a BN2A model is defined for all (x,y),x ∈
X,y ∈ Y as1

P (X = x,Y = y) =
L∏

�=1

P (Y� = y�|Xpa(Y�) = xpa(Y�)) ·
K∏

k=1

P (Xk = xk). (9)

Conditional probabilities P (Y� = y�|Xpa(Y�) = xpa(Y�)) for � = 1, . . . , L are leaky
Noisy-AND models and P (Xk) for k = 1, . . . , K are independent prior probabil-
ities of hidden variables.

The joint probability distribution over the observed variables of a BN2A
model for all y ∈ Y is computed as

P (Y = y) =
∑

x∈X

(
L∏

�=1

P (Y� = y�|Xpa(Y�) = xpa(Y�)) ·
K∏

k=1

P (Xk = xk)

)

.(10)

3 Identifiability of BN2A

The models we call BN2A have recently gained great interest in many
areas, including psychological and educational measurement, where sub-
jects/individuals need to be classified according to hidden variables based on
their observed responses (to test items, questionnaires, etc.). For these mod-
els, identifiability affects the classification of subjects according to their hid-
den variables, which depends on the precision of the parameter estimates. With
non-identifiable models we can lead to erroneous conclusions about subjects’
classification.

A parametric statistical model is a mapping from a finite-dimensional param-
eter space Θ ⊆ R

d to a space of probability distributions, i.e.

p : Θ → PΘ, θ �→ pθ . (11)

1 Symbol xpa(�) denotes the subvector of x whose values corresponds to variables
Xi, i ∈ pa(Y�).
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The model is the image of the map p, and it is called identifiable if the parameters
of the model can be recovered from the probability distributions, that is, if the
mapping p is one-to-one.

Following [5] we define the joint strict identifiability of the BN2A model,
which is the identifiability of the model structure (represented by a bipartite
graph or equivalently by a Q-matrix) as well as the model parameters.

Definition 5 (Joint Strict Identifiability). A BN2A model (G,P ) is strictly
identifiable if there is no BN2A model (G′, P ′) with G′ �= G or P �= P ′ or both,
except for a permutation of hidden variables, such that for all y ∈ Y

P (Y = y) = P ′(Y = y) . (12)

Joint identifiability may be too restrictive, for example, in cases where it consid-
ers as unidentifiable models where only very few model parameter values cause
models to be unidentifiable. Therefore a weaker concept seems more practical.

Definition 6 (Joint Generic Identifiability). A BN2A model (G,P ) is
generically identifiable if the set of P ′ of BN2A models (G′, P ′) violating condi-
tion (12) has Lebesgue measure zero.

Table 1. Results of the first three questions from the Mathematics Matura Exam

Y2 = 0 Y2 = 1

Y3 = 0 Y3 = 1 Y3 = 0 Y3 = 1

Y1 = 0 1517 2403 203 1121

Y1 = 1 875 4482 241 3614

To illustrate the importance of the concept of identifiability, consider the data
in Table 1 representing the results of the first three questions of the Mathemat-
ics Matura Exam - a national secondary school exit exam in Czechia. The table
represents the results of n = 14456 subjects who took the exam in the spring of
2021. The values 0 and 1 correspond to a wrong and a correct answer, respec-
tively. Next, we analyze two examples of BN2A models which are graphically
represented in Fig. 2.

Example 1 (Identifiability). In this example we consider model (a) from Fig. 2.
This model will be referred as model 1-3-1 in Table 2 where it corresponds to its
third column. We can see the Table 1 as a 2×2×2 tensor, this tensor has rank 2,
then we can decompose it using Algorithm 1 from [6]. From this decomposition,
we can recover the parameters of the 1-3-1 model from the system of seven
equations for y ∈ {0, 1}3\(1, 1, 1):

P (y) = p1

3∏

i=1

qyi

i0 (1 − qi0)1−yi + (1 − p1)
3∏

i=1

(qi0qi1)yi(1 − qi0qi1)1−yi , (13)
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Fig. 2. BN2A models from Example 1 and Example 2

where P (y) for y ∈ {0, 1}3\(1, 1, 1) are computed as relative frequencies from
Table 1. By solving this system of equations we get:

r = (p1, q10, q20, q30, q11, q21, q31) ≈ (0.317, 0.522, 0.903, 0.679, 0.086, 0.576, 0.318).

Since the solution is unique, then this model is identifiable, i.e., the vector r is
uniquely determined from the data presented in Table 1.

Example 2 (Non-Identifiability). Now we will consider model (b) from Fig. 2.
This model will be referred as model 2-1-2 in Table 2 where it corresponds to
its fourth column. Again, we use the data presented in Table 1 to compute the
probability distribution of Y1 as its relative frequency. In this way we get P (Y1 =
1) ≈ 0.637, which enters the left hand side of equation

P (Y1 = 1) =
∑

x∈X1×X2

⎛

⎝(pk)xk(1 − pk)(1−xk)
∏

i∈{0}∪pa(Y�)

(q�,i)(1−xi)

⎞

⎠ . (14)

The five parameters of this model must satisfy just this equation, therefore
we can fix some parameters and find different solution vectors r1 and r2. For
example, both of the following vectors satisfy (14)

r1 = (p1, p2, q10, q11, q12) ≈ (0.716,0.9, 0.8, 0.4, 0.6)
r2 = (p1, p2, q10, q11, q12) ≈ (0.842,0.7, 0.8, 0.4, 0.6) .

In this model, X1 and X2 represent two skills needed to correctly answer question
Y1. Both parameter vectors, r1 and r2, satisfy the model, but while in r1 the
prior probability of X1 is smaller than the prior probability of X2, in r2 the
opposite is true. In this case, the model is non-identifiable.

Remark 1. The fact that the number of hidden variables is greater than the
number of observed variables, as in Example 2, is not a condition for a model
to be non-identifiable. For this we can consider the 6-5-2 model, following the
pattern of Table 2 we can see that the number of parameters (R = 15) is less
than the number of free parameters of the joint probability distribution over the
observed variables (S = 31), then, according to Theorem 1, this model could be
identifiable.
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Various methods have been proposed to check the identifiability – one com-
mon approach is to estimate the dimension of the image of the mapping p. This
is usually done by computing the rank of the Jacobian matrix of p [14].

Now, we will specify the Jacobian matrix of a BN2A network representing
a probability distribution P (y),y ∈ Y. Each row of the Jacobian matrix corre-
sponds to one configuration y ∈ Y of the multivariable Y. Let S = |Y| denote
the number of configuration of Y. Each column of the Jacobian matrix corre-
sponds to an element of the parameter vector r whose number of entries is given
by

R = K + L +
L∑

�=1

M� where M� = |pa(Y�)| . (15)

For k = 1, . . . , K

∂P (y)
∂pk

=
∑

x∈X

P (X = x,Y = y)
(pk)xk(1 − pk)1−xk

(16)

and for � = 1, . . . , L and k ∈ {0} ∪ pa(Y�)

∂P (y)
∂q�,k

=
∑

x∈X

(1 − xk)
P (X = x,Y = y)

(q�,k)y�(1 − q�,k)(1−y�)
. (17)

Note that the terms presented in the denominators of all the fractions in for-
mulas (16) and (17) are also present in the corresponding numerators of these
fractions. That is, they only serve to cancel the corresponding term from the
numerator of the fraction. Thus, the Jacobian matrix is

J =

⎛

⎜
⎜
⎜
⎜
⎝

∂P (y1)
∂r1

. . .
∂P (y1)

∂rR

. . . . . . . . .
∂P (yS)

∂r1
. . .

∂P (yS)
∂rR

⎞

⎟
⎟
⎟
⎟
⎠

. (18)

Since the mapping from the parameter space to the probability space over
the observable variables is a polynomial, we get the following lemma as a special
case of Theorem 1 from [4].

Lemma 1. The rank of the Jacobian matrix J of a BN2A model is equal to an
integer constant r almost everywhere.2

The rank condition is intuitively clear but practically non-trivial to apply. As
the number of variables increases, the dimension of the Jacobian matrix grows
rapidly. For the second smallest model from Table 2 that could be identifiable, the
dimension of J matrix is 15×14, and each entry contains a degree 13 polynomial.
However, simple checks can be performed to quickly rule out identifiability can
be performed. Next, we give a necessary condition for the identifiability of a
BN2A model.
2 The set of exceptions has Lebesgue measure zero.
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Theorem 1. Let K be the number of hidden variables in the first layer of a
BN2A model with CPTs represented by Noisy-AND models, L the number of
observed variables in the second layer, and M� = |pa(Y�)| for � = 1, . . . , L. If

R = K + L +
L∑

�=1

M� > 2L − 1 = S (19)

then the BN2A model is NOT identifiable.

Proof. For the rank of any matrix, it holds that it is lower or equal to the
minimum of the number of columns and the number of rows. Recall that S is
the number of rows of the Jacobian matrix J and R is the number of model
parameters and also the number of columns of J . If R > S then the rank of the
Jacobian matrix J is lower than the number of model parameters and the BN2A
model is not identifiable. 	


In Fig. 3 we visualize the necessary condition for the identifiability of BN2A
models from Theorem 1 for K = L − 1, L, L + 1. The minimal S corresponds to
models with the minimum number of parents pa(Y�) (which is greater than or
equal to one) and the maximal S to models with the maximum number of parents
pa(Y�) which is K. This means that the actual value of R is always between the
blue and red lines. There is a threshold value of L for model identifiability so that
no model with a lower L is identifiable (in Fig. 3 it is 3, 4, and 5, respectively).
On the other hand, if L is greater than another threshold value (in Fig. 3 this
threshold is 5, 6, and 6, respectively) then Theorem 1 does not rule out any
BN2A models as unidentifiable.
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Fig. 3. Minimal S, maximal S, and R for BN2A models with K = L − 1, L, L + 1

In Table 2 we give examples of BN2A models, all of which have the same num-
ber of parents |pa(Y�)| = M� = M for all � ∈ {1, . . . , L}. Note that |pa(Y�)| ≤ K
and if it holds with equality then the BN2A model is fully connected. This table
indicates the identifiability according to Theorem 1, i.e., if the number of free
BN2A parameters R is greater than the number of free parameters of the joint
probability distribution over the observed variables S, then BN2A is not iden-
tifiable. The columns corresponding to BN2A models that satisfy the necessary
identifiability condition of Theorem 1 are printed with a gray background.
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Table 2. Examples of different BN2A models. Columns printed with a gray background
correspond to models for which Theorem 1 does not exclude their identifiability.

K 1 1 1 2 2 2 2 3 3 3 3 3 3 3 3

L 1 2 3 1 2 3 4 1 2 3 4 5 3 4 5

M 1 1 1 2 2 2 2 3 3 3 3 3 2 2 2

|p| = K 1 1 1 2 2 2 2 3 3 3 3 3 3 3 3

|q| = L · (M + 1) 2 4 6 3 6 9 12 4 8 12 16 20 9 12 15

R = |p| + |q| 3 5 7 5 8 11 14 7 11 15 19 23 12 15 18

S = 2L − 1 1 3 7 1 3 7 15 1 3 7 15 31 7 15 31

Using algebraic manipulations on the smallest BN2A model from Table 2
that satisfies the necessary condition of Theorem 1 (K = 1, L = 3, M = 1),
we observe that the corresponding Jacobian matrix has the full rank almost
everywhere. This model is identifiable if its parameters satisfy the conditions of
Theorem 2.

Theorem 2. The Jacobian matrix of the BN2A model with K = 1, L = 3, and
M = |pa(Y�)| = 1 for � = 1, 2, 3 has the full rank if and only if

0 < p1 < 1 (20)
0 < q�,0 ≤ 1 for � = 1, 2, 3 (21)
0 ≤ q�,1 < 1 for � = 1, 2, 3. (22)

Proof. We will compute the determinant of the Jacobian matrix with seven rows
corresponding to seven configurations y from {0, 1}3\(1, 1, 1) and seven columns
corresponding to seven model parameters of vector r. The BN2A model with
K = 1, L = 3, and M = 1 is identifiable iff rank(J) = 7. Using algebraic
manipulations we get the determinant of the Jacobian matrix

det J = −p31 · (1 − p1)3 ·
L∏

�=1

q3�,0 · (1 − q�,1)2 . (23)

From this formula, it follows that the determinant is non-zero and, consequently,
rank(J) = 7 if and only if the assumptions of Theorem 2 are satisfied. 	


The following lemma indicates that adding an edge from Xk to Y� with
q�,k = 1 cannot make the model identifiable.

Lemma 2. If the rank of the Jacobian matrix J of a BN2A model (G,P ) is less
than the number of its model parameters R, then the rank of the Jacobian matrix
J ′ of a BN2A model (G′, P ′) with E(G)′ = E(G)∪{Xk → Y�} and with q�,k = 1
is also less than the number of its model parameters.
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Proof. Note that if q�,k = 1 then (q�,k)(1−xi) = 1 for both xi = 1 and xi = 0. This
means that the first R columns of the new Jacobian matrix J ′ are equivalent
to the columns of J . Only one new column is added to J , so the rank of J ′

is at most the rank of J plus one. The rank of J is less than the number of
parameters of the BN2A model (G,P ), so the rank of J ′ is also less than the
number of parameters of the BN2A model (G′, P ′). 	


4 Computational Experiments

Lemma 1 ensures that the rank of J is a constant almost everywhere. There-
fore, we can use the idea proposed in [8] to compute the rank of the Jacobian
matrix numerically. We choose one hundred random points in the parameter
space and compute the determinant of the Jacobian matrix (and its submatrices
if necessary) at these points. In this way, one can almost certainly determine the
maximum rank of the Jacobian matrix.

In the next three examples, we apply this approach to the analysis of the
simplest BN2A models from Table 2 that were not ruled out as identifiable. We
use computations in rational arithmetic using Mathematica software to avoid
rounding errors. This arithmetic is of infinite precision, which is important when
deciding whether the determinant is exactly zero.

Example 3. Let us take a closer look at the BN2A model for K = 2, L = 4,
and M = 2. Theorem 1 does not rule out identifiability of this model. Using
computations with the rational arithmetic we derive that the determinant of the
Jacobian matrix is zero, which implies that the model is not identifiable, if any
of the following conditions holds3:

• ∃k ∈ {1, 2} such that pk ∈ {0, 1}.
• ∃� ∈ {1, 2, 3, 4} such that q�,0 = 0.
• ∃� ∈ {1, 2, 3, 4} such that q�,1 = 1.
• ∃{�1, �2} ⊆ {1, 2, 3, 4}, �1 �= �2 such that q�1,j = q�2,j for all j ∈ {0, 1, 2}.
• ∃{�1, �2} ⊆ {1, 2, 3, 4}, �1 �= �2 and {�3, �4} = {1, 2, 3, 4}\{�1, �2} such that

q�1,0 = q�2,0, q�3,0 = q�4,0, q�1,2 = q�2,1, q�2,2 = q�1,2, q�3,2 = q�4,1, and
q�4,2 = q�3,2.

Note that the last but one condition means that the leaky Noisy-AND models of
Y�1and Y�2 are identical. This effectively reduces this model to the BN2A model
for K = 2, L = 3, and M = 2, for which Theorem 1 rules out identifiability.
All of the above possibilities are exceptions that form a set of Lebesgue measure
zero. We compute the determinant for 100 random points from the parameter
space which implies that we can be almost sure that the rank of the Jacobian
matrix is 14 and the model could be identified.

3 We do not claim that this list is exclusive.
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Example 4. Using computations with the rational arithmetic4, we derive that
for 100 randomly selected points from the parameter space of the BN2A model
for K = 3, L = 5, and M = 3 from Table 2 the rank of the Jacobian matrix is
23, suggesting that the model can be generically identifiable.

Example 5. Using rational arithmetic computations, we observed that for all
100 randomly selected points from the parameter space of the BN2A model for
K = 3, L = 4, and M = 2 from Table 2, the determinant of the Jacobian matrix
was zero. We decided to perform symbolic computations that revealed that the
determinant is zero regardless of the parameter values. This implies the model
is not identifiable.

The presented examples illustrate different roles that the proposed numerical
computations can play in deciding the identifiability of a BN2A model. The
source code used in the examples is available as Mathematica notebooks and
PDF files at: https://www.vomlel.cz/publications#h.w2xm776ugu54.

5 Discussion

In this paper, we analyzed the identifiability of BN2A networks, i.e., Bayesian
networks where CPTs are represented by Noisy-AND models having the struc-
ture of a bipartite graph where all nodes from the first layer are hidden. Corre-
sponding results also hold for BN2O networks, where CPTs are represented by
Noisy-OR models, since it is easy to transform one class into the other by simply
relabeling the states of the observed variables (state 0 to 1 and vice versa). Due
to space limitations, we only present results for BN2A networks. The reason for
our preference of BN2A over BN2O is that BN2A models have not been widely
studied in the BN community, although models similar to BN2A are widely used
as cognitive diagnostic models in psychometrics.

Perhaps the most important practical observation is that many small-sized
BN2A models are unidentifiable, but as their size increases, the proportion of
models ruled out as unidentifiable decreases. It should also be noted that the
BN2A and BN2O models require a number of parameters proportional to K ·L.
This is significantly less than the number of parameters of bipartite Bayesian
networks with general CPTs, which can be exponential in K. This implies, espe-
cially for models with a higher number of parents, that the class of identifiable
BN structures is substantially larger for the BN2A and BN2O networks.

The study of the identifiability of statistical models has a long history, but it
is still a topic of current research. For example, the so-called Jacobian conjecture,
which relates identifiability to the determinant of the Jacobian matrix, is still
considered an open problem. In this paper, we have not presented any new deep
theoretical results, but rather we have shown how the question of identifiability
of a popular class of BN models can be addressed practically.
4 We emphasize that there is no hope of getting correct results with finite-precision real

arithmetic since, e.g., in one run, the absolute values of the computed determinants
were in the interval [10−37, 10−72] for this model.

https://www.vomlel.cz/publications#h.w2xm776ugu54


148 I. Pérez and J. Vomlel

References

1. D’Ambrosio, B.: Symbolic probabilistic inference in large BN2O networks. In: de
Mantaras, R.L., Poole, D. (eds.) Uncertainty in Artificial Intelligence (UAI’94)
Proceedings, pp. 128–135. Morgan Kaufmann, San Francisco (CA) (1994). https://
doi.org/10.1016/B978-1-55860-332-5.50022-5

2. de la Torre, J.: The generalized DINA model framework. Psychometrika 76, 179–
199 (2011)

3. Dı́ez, F.J., Druzdzel, M.J.: Canonical probabilistic models for knowledge engineer-
ing. Technical report CISIAD-06-01, UNED, Madrid, Spain (2006)

4. Geiger, D., Heckerman, D., Meek, C.: Asymptotic model selection for directed
networks with hidden variables. In: Proceedings of the Twelfth Conference on
Uncertainty in Artificial Intelligence (UAI-96). pp. 283–290 (1996)

5. Gu, Y., Xu, G.: Sufficient and necessary conditions for the identifiability of the
Q-matrix. Stat. Sin. 31, 449–472 (2021). https://doi.org/10.5705/ss.202018.0410

6. Halpern, Y., Sontag, D.: Unsupervised learning of noisy-or Bayesian networks. In:
Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial Intelli-
gence, pp. 272–281. UAI 2013, AUAI Press, Arlington, Virginia, USA (2013)

7. Hartz, S.M.: A Bayesian framework for the unified model for assessing cognitive
abilities: Blending theory with practicality. Ph.D. thesis, University of Illinois at
Urbana-Champaign (1996)

8. Heller, J.: Identifiability in probabilistic knowledge structures. J. Math. Psychol.
77, 46–57 (2017). https://doi.org/10.1016/j.jmp.2016.07.008

9. Henrion, M.: Some practical issues in constructing belief networks. In: Proceedings
of the Third Conference on Uncertainty in Artificial Intelligence (UAI-87), pp.
161–173. Elsevier Science Publishers B.V. (North Holland) (1987)

10. Jensen, F.V., Nielsen, T.D.: Bayesian Networks and Decision Graphs. Information
Science and Statistics, 2nd edn. Springer, New York (2007). https://doi.org/10.
1007/978-0-387-68282-2

11. Junker, B.W., Sijtsma, K.: Cognitive assessment models with few assumptions,
and connections with nonparametric item response theory. Appl. Psychol. Meas.
25, 258–272 (2001)

12. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Tech-
niques. The MIT Press, Cambridge (2009)

13. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann Publishers Inc., San Francisco (1988)

14. Sullivant, S.: Algebraic Statistics. American Mathematical Society, Providence
(2018)

https://doi.org/10.1016/B978-1-55860-332-5.50022-5
https://doi.org/10.1016/B978-1-55860-332-5.50022-5
https://doi.org/10.5705/ss.202018.0410
https://doi.org/10.1016/j.jmp.2016.07.008
https://doi.org/10.1007/978-0-387-68282-2
https://doi.org/10.1007/978-0-387-68282-2

