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ABSTRACT
Criteria capable of texture spectral similarity evaluation are presented and compared. From the fifteen evaluated
criteria, only four criteria guarantee zero or minimal spectral ranking errors. Such criteria can support texture
modeling algorithms by comparing the modeled texture with corresponding synthetic simulations. Another possi-
ble application is the development of texture retrieval, classification, or texture acquisition system. These criteria
thoroughly test monotonicity and mutual correlation on specifically designed extensive monotonously degrading
experiments.
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1 INTRODUCTION

An automatic texture comparison represents a sig-
nificant but not completely solved complex problem
[Hai14]. Such a method would be advantageous to
support texture model development where a compari-
son of the original acquired and to be modeled texture
with synthesized or reconstructed ones would help
with the optimal model parameter set. There are other
possible applications, such as texture database retrieval
or texture classification or segmentation, etc. Although
there already exist approaches for these tasks, e.g.,
[Har73, Gal75, Law80, Wys82, Man96, Oja02, Hai06],
etc., they do not rank textures according to their visual
similarity. Moreover, most methods are limited to
mono-spectral textures, a notable disadvantage as color
is the most significant visual feature [Hav19].

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

The psycho-physical evaluations [Hai12], i.e., quality
assessments performed by humans, currently represent
the only reliable alternative. Methods of this type re-
quire both time-demanding experiment design setup
and performing, rigorously defined and controlled con-
ditions, and a representative collection of testers, i.e., a
sufficient number of individuals, ideally from the gen-
eral public, naive concerning the goal and design of the
experiment. Therefore such experiments are highly im-
practical and generally demanding, and they cannot be
performed on a daily base, on demand, or even in real-
time. These experiments are also impracticable in the
case of hyper-spectral textures, as not all spectra can
be visualized simultaneously due to the limited trichro-
matic nature of the human perception system.

The criteria mentioned and compared in this paper are
intended for the spectral texture composition compar-
ison, i.e., for a specific subset of the general texture
comparison problem. The textures are compared as in-
dependent sets of pixels where the pixel are treated as
vectors of real vector space while the positions of the
pixels in the textures are not considered. Texture spec-
tral composition comparison deals with the appearance
and amount of pixels that occur in only one of the com-
pared textures and also with the ratio of occurrences of
pixels appearing in both textures.
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The objectives of the study are as follows:

• To study the effectiveness of spectral similarity cri-
teria for textural applications.

• To analyze their mutual substitutability.

The rest of the paper is organized as follows. Section 2
briefly reviews existing methods relevant to the texture
spectral composition comparison. Section 3 outlines
experiments used to compare individual methods pre-
sented in section 2. Section 3 presents and comments
achieved results. Section 4 summarizes the paper with
a discussion.

2 TEXTURE SPECTRAL SIMILARITY
CRITERIA

In this section, we briefly survey existing texture spec-
tral composition comparison methods. The straightfor-
ward way is to use an n-dimensional (n-D) histogram
or local one [Yua15], approximating the spectral tex-
ture distribution.

Let A and B are the textures to be compared. We
denote by aρ and bρ the ρ-th bin of the n-D histogram
of the textures A and B, respectively. The range of
the histogram multi-index ρ = ρ1,ρ2, . . . ,ρn depends
on a space C, in which the texture is represented, e.g.,
in the case of the standard 24-bit red, green, and blue
(RGB) color space, the range of all three components
of the multi-index is an integer from 0 to 255.

The most intuitive way is to compute the n-D histogram
block distance, also known as the Manhattan distance or
the Minkowski distance:

∆qH(A,B) =

(
∑

ρ∈C
|aρ −bρ |q

)1/q

, (1)

with q = 1 (histogram difference), q = 2 (Euclidean
distance of histograms), 0 < q < 1 (fractional dissim-
ilarity of histograms) representing the most used vari-
ants. A special case is the maximum distance also
called Chebyshev distance or chessboard distance:

∆∞H(A,B) = (2)

∑
ρ∈C

max{|aρ1 −bρ1 |, . . . , |aρn −bρn |} .

Several other possibilities exist for n-D histogram com-
parison, such as the histogram intersection [Swa91]:

∩H(A,B) = 1−
∑ρ∈C min

{
aρ ,bρ

}
∑ρ∈C bρ

, (3)

the squared chord [Kok03]:

dsc(A,B) = ∑
ρ∈C

(√
aρ −

√
bρ

)2
, (4)

and the Canberra metric [Kok03]:

dcan(A,B) = ∑
C0

|aρ −bρ |
aρ +bρ

, (5)

where C0 =
{

ρ : aρ +bρ ̸= 0
}
⊂C.

The information-theoretic measures like the Kullback-
Leibler divergence [Kul51] can also be used:

KL(A,B) = ∑
C0

aρ log
aρ

bρ

, (6)

with C0 = {ρ : aρ bρ ̸= 0} ⊂ C, or the Jeffrey diver-
gence:

J(A,B) = ∑
CJ

aρ log
2aρ

aρ +bρ

+bρ log
2bρ

aρ +bρ

, (7)

can be also considerecan also be considered for n-D his-
togram comparison as well as a measure based on χ2

statistic [Zha03]:

χ
2(A,B) = ∑

C0

2
(

aρ −
aρ+bρ

2

)2

aρ +bρ

. (8)

The generalized color moments (GCM) [Min98] can
also be useful for texture spectral composition compar-
ison problems. The original definition of the GCM of
the (p+q)-th order and the (α +β + γ)-th degree is:

∆GCMαβγ
pq (A,B) = (9)∫ ∫

⟨A⟩
rp

1 rq
2 [Y

A
r1,r2,1]

α [Y A
r1,r2,2]

β [Y A
r1,r2,3]

γ dr1dr2

−
∫ ∫

⟨B⟩
rp

1 rq
2 [Y

B
r1,r2,1]

α [Y B
r1,r2,2]

β [Y B
r1,r2,3]

γ dr1dr2 ,

where [r1,r2] ∈ ⟨A⟩ represents planar coordinates of
the texture pixel Y A

r , Y A
r1,r2,i denotes a pixel intensity

in the i-th spectral channel of the texture A, similarly
Y B

r1,r2,i where [r1,r2] ∈ ⟨B⟩. GCM can be easily re-
defined for an arbitrary number of spectral channels.
The terms rp

1 and rq
2 are meaningless in the case

of texture spectral composition comparison, and there-
fore both are put equal to one, using GCMs for which
p = q = 0 holds. Moreover, it has been observed that
the best results are achieved if α = β = γ , specifically
using GCMs for α = β = γ < 4 [Hav19].

Another possibility for texture spectral composition
comparison represents cosine-function-based dissimi-
larity, which computes an angle between two vectors.
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Figure 1: Textures used for experiments.

Both A,B must have the same number of pixels, a
significant drawback of this criterion. This criterion is
the only one mentioned in this article suffering from
this. All intensity values of corresponding texture
spectral channels of all pixels of the textures are
arranged into vectors A⃗ and B⃗ and the difference is
computed as [Zha03]:

dcos(A,B) =
A⃗T B⃗

|⃗A| |B⃗|
. (10)

Various set-theoretic measures can be considered as cri-
teria as well. Let sets A and B denotes the set
of unique multi-dimensional vectors representing pix-
els occurring in the texture A and B , respectively.
Criteria can be based on methods developed for com-
paring the similarity and diversity of the sample sets,
such as the Jaccard index [Jac01]:

JI(A,B) =
|A ∩B|
|A ∪B|

, (11)

or the Sørensen-Dice index [Dic45]:

SDI(A,B) =
2 |A ∩B|
|A |+ |B|

. (12)

JI and SDI are equivalent in the sense that given a value
for SDI, one can calculate the respective JI value and
vice versa.

Alternative to the existing methods may be a modified
criterion developed for the texture comparison as the
spectral texture composition comparison is its excep-
tional case. It is possible to remove structure term from
the structural similarity metric (SSIM) [Wan04] and de-
fine reduced SSIM [Hav16]:

rSSIM(A,B) = (13)
1

♯{r3} ∑
∀r3

2µA,r3 µB,r3

µ2
A,r3

+µ2
B,r3

2σA,r3σB,r3

σ2
A,r3

+σ2
B,r3

,

where ♯{r3} is the spectral index cardinality, i.e., the
number of spectral channels, µA,r3 is the mean of r3-th
spectral plane of A and σA,r3 is the standard deviation
of r3-th spectral plane of A and similarly for µB,r3
and σB,r3 .

A very accurate method, the mean exhaustive minimum
distance (MEMD), was introduced in [Hav19]. MEMD
can be described as the following algorithm. For each
pixel from A, the most similar pixel from B is found.
This pixel from B can be identified as the most similar
to an arbitrary one from A only once. The evaluation
ends when all pixels from A have their counterparts in
B or all pixels from B are identified as the most similar
pixel for an arbitrary one from A. The similarity can
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Figure 2: Example of tested texture (top-left) and its the
most modified (final) versions obtained during fourteen
individual experiments with it.

be expressed by arbitrary metric ρ . The best results
were obtained using the maximum metric. The values
of metrics are summed and then divided by the number
of compared pixels which equals the minimum of the
number of pixels in A and the number of pixels in B
denoted as M, i.e.:

MEMD(A,B) = (14)
1
M ∑

(r1,r2)∈⟨A⟩
min

(s1,s2)∈⟨U⟩

{
ρ
(
Y A

r1,r2,•,Y
B
s1,s2,•

)}
,

where Y A
r1,r2,• denotes pixel at (r1,r2) ∈ ⟨A⟩, similarly

for Y B
s1,s2,• but (s1,s2) ∈ ⟨U⟩, where ⟨U⟩ represents

the set of the planar coordinates of the pixels from B
not identified as the most similar pixel for the pixels
from A evaluated before the pixel at (r1,r2).

This criterion was optimized by applying a quicksort
sorting algorithm on input data [Hav21]. It is also pos-
sible to decrease evaluating time by not including pix-
els with the exact location in both compared textures
if the intensity values are the same in both textures in
the corresponding spectral channels. This optimization
is meaningful when both textures have the same size,
and their difference is expected in the number of pixels,
which is significantly smaller than the texture size. It is
optional for the locations of such pixels to be known in
advance.

3 COMPARISON
All criteria mentioned in the previous section have been
extensively tested on precisely defined experiments.
The basic idea was to gradually modify the original
texture (Figure 1) to resemble the original texture
steadily less. The criterion should be able to track
these changes to rate the more modified versions of
the original texture as less similar to the original. The
evaluation error is the ratio of the number of such
violations of the assumed monotony to the number of

Figure 3: Example of tested texture (top-left) and its the
most modified (final) versions obtained during fourteen
individual experiments with it.

Criterion Error Rank
[%]

∆1H(·) 57.0 8
∆2H(·) 57.1 9
∆0.5H(·) 56.7 7
∩H(·) 57.0 8
dsc(·) 56.3 4
dcan(·) 56.6 6
KL(·) 73.1 11
J(·) 69.5 10
χ2(·) 56.4 5
∆GCM111

00 (·) 0.0 1
dcos(·) 1.1 2
JI(·) 48.8 3
SDI(·) 59.6 10
rSSIM(·) 0.0 1
MEMD(·) 0.0 1

Table 1: Average error over all experiments and all tex-
tures for individual criteria and corresponding ranks.

modified versions of the original texture. It should be
possible to create modifications that are detectable by
the criterion but imperceptible to the human observer.
Criteria that can detect even such changes are another
advantage over psychophysical experiments and also
have possible practical use in areas where maximum
accuracy higher than that achievable by a human
observer is welcome [Lac22]. Based on these require-
ments, adjustments were proposed to add or subtract
the minimum possible value to all intensity values in
selected spectral channels for all texture pixels at once,
e.g., Figures 2,3. So that in the case of RGB color
space, it is possible to modify data in a single channel,
in two channels at the same time, or in all channels
at the same time resulting in 14 experiments. In the
case of used RGB color space, the minimum possible
value that can be added or subtracted equals one, and
the adding or subtracting is stopped when maximum,
i.e., 255, or minimum, i.e., 0, respectively, is reached
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criterion ∆1H ∆2H ∆0.5H ∩H dsc dcan KL J χ2 ∆GCM111
00 dcos JI SDI rSSIM

∆1H
∆2H 0,99
∆0.5H 0,99 0,96
∩H 1,00 0,99 0,99
dsc 0,99 0,97 1,00 0,99
dcan -0,99 0,96 1,00 0,99 1,00
KL -0,56 -0,44 -0,68 -0,56 -0,64 -0,66
J 0,71 -0,61 -0,81 -0,71 -0,78 -0,79 0,97
χ2 1,00 0,98 0,99 1,00 1,00 1,00 -0,60 -0,75
∆GCM111

00 -0,66 -0,60 -0,72 -0,66 -0,69 -0,72 0,71 0,73 -0,68
dcos -0,72 -0,65 -0,78 -0,72 -0,75 -0,78 0,76 0,78 -0,73 0,99
JI -0,99 -1,00 -0,96 -0,99 -0,97 -0,96 0,44 0,61 -0,98 0,61 0,66
SDI -0,87 -0,82 -0,92 -0,87 -0,90 -0,92 0,78 0,85 -0,88 0,90 0,94 0,82
rSSIM -0,68 -0,61 -0,74 -0,68 -0,71 -0,74 0,74 0,76 -0,69 1,00 1,00 0,62 0,92
MEMD 0,76 0,70 0,81 0,76 0,79 0,81 -0,75 -0,79 0,77 -0,99 -1,00 -0,71 -0,95 -0,99

Table 2: The color criteria Pearson correlation over all 161 materials.

for any intensity value of any pixel. This additional
requirement is introduced as a prevention against data
overflow or underflow, which could lead to a distortion
of the results in the sense that increasing dissimilarity
from the original texture would no longer be guaran-
teed. The number of textures generated by gradually
modifying the original texture differs for each texture
and depends on the values of the pixel intensities in
the original texture. Examples of generated textures to
compare with the original can be seen in Figures 2,3.

One hundred sixty-one color textures with resolution
64×64 saved as 24-bit RGB portable network graphics
(PNG) files were used as the original textures covering
a wide range of natural and artificial materials. Textures
were obtained from accessible texture databases 1 2, and
they are shown in Figure 1.

4 RESULTS
Input data used in the experiments described in the pre-
vious section led to 78 647 texture-to-texture compar-
isons for each tested criterion. Achieved results are pre-
sented in Table 1. There is an average error over all ex-
periments, and all textures and corresponding ranks are
presented for all tested criteria. It is clear from these
results that although the tested criteria seem to be theo-
retically used for texture spectral composition compar-
ison, they rather fail in this task. All histogram-based
criteria and set-theoretic measure-based ones reach an
error rate of around 50.0% and an even significantly
higher error rate in the case of information-theoretic
measure-based criteria. One of the reasons might be
that our degradation experiments modify non-linearly

1 texturer.com
2 mayang.com

histograms, often in unpredictable manners, while in-
dividual pixels are distorted linearly. But many real-
ist image degradations can be approximated using lin-
ear pixel modifications. On the other hand, four cri-
teria meet the requirements for a credible method for
texture spectral composition comparison as their error
rate is 1.1% (dcos) or even 0.0% (∆GCM111

00 , rSSIM and
MEMD). The target of our paper is not to compare
textures. Thus we do not consider here any geometric
transformations.

Table 2 illustrates Pearson correlation be-
tween all pairs of criteria. The best crite-
ria (MEMD,rSSIM,∆GCM111

00 ,dcos) are mu-
tually highly correlated (rSSIM × ∆GCM111

00 ,
rSSIM × dcos, MEMD × ∆GCM111

00 , MEMD × dcos,
MEMD × rSSIM). Similarly, the histogram criteria
(∆1H(·),∆2H(·),∆0.5H(·),∩H(·)), the squared chord
dsc(·), and χ2 are also correlated.

The highly correlated criteria are thus mutually inter-
changeable.

5 CONCLUSIONS
We properly tested criteria potentially useful for texture
spectral composition comparison and demonstrated
their suitability in a specially designed experiment. The
texture spectral composition comparison represents
a partial solution for assessing the textures’ quality.
Although the criteria do not consider the location of
the pixels in the textures, they can help in numerous
texture analysis or synthesis applications. The best
three criteria - MEMD, generalized color moments,
and our reduced structural similarity metric perform
with zero spectral ranking errors, while the cosine
criterion has a tiny error only. These criteria can be
used mainly as a reliable, fully automatic alterna-
tive to psychophysical experiments, which are more
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impractical due to their cost and strict demands on
design setup, conditions control, human resources,
and time. Additionally, psychophysical experiments
are restricted to visualization of the maximum of 3-D
data due to the limited trichromatic nature of human
vision, while the MEMD criterion has no upper limit
for possible spectral bands.
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