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ABSTRACT

Visual scene recognition or modeling predominantly uses
visual textures representing an object’s material properties.
However, the single material texture varies in scale and illu-
mination angles due to mapping an object’s shape. We present
a comparative study of thirteen possible texture quality crite-
ria and show the superior performance of two multispectral
measures derived from the Markovian descriptive model.

Index Terms— Texture quality criteria, Spearman corre-
lation, Human quality ranking, Texture quality benchmark.

1. INTRODUCTION

A human observer recognizes a visual scene using shape
and material attributes. Unfortunately, the surface mate-
rial’s appearance vastly changes under variable observation
conditions, negatively affecting its automatic and reliable
recognition in numerous artificial intelligence applications.
Consequently, most material modeling or recognition at-
tempts apply unnaturally restricted observation conditions
[1]. Image quality criteria can use three types of knowledge
[2] - knowledge about the reference image (full/reduced-
reference FR/RR), knowledge about the degradation proce-
dure, and knowledge about the human visual system (HVS).
However, our understanding of the human visual system, and
thus the computational HVS modeling used in image qual-
ity assessment (IQA) criteria, needs to be more sketchy and
complete [3]. The quality assessment criteria can be catego-
rized into full-reference (FR), reduced-reference (RR), and
no-reference (NR) groups. The other main categorization is
based on the human evaluator’s involvement in a perceptual
(subjective) and no human evaluator (objective).

Evaluation of how well various texture models Y differ
from actual texture measurement X and thus conform with
human visual perception is essential for assessing the similar-
ities between model output and the original measured texture
and for optimal settings of model parameters, for fair compar-
ison of distinct models, etc. Currently, the only reliable but
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extraordinarily impractical and expensive option is to exploit
the methods of visual psychophysics. Perceptual assessment
is naturally preferable and accurate because the human visual
system is the ultimate receiver of visual information in most
visual applications. However, the psycho-physical methods
[4] require carefully designed experiments on human subjects
using highly controlled visual stimuli and viewing conditions.
Thus it is a lengthy process of experiment design, tightly con-
trolled laboratory conditions, and a representative panel of hu-
man testing subjects. Such testing cannot be directly embed-
ded into a practical daily performed system. Nevertheless, the
perceptual assessment is necessary for the verification quality
criteria development because the performance of any auto-
matic visual quality assessment criterion can be confirmed by
measuring its correlation with human perception.

An automatic texture fidelity verification is needed as
the only practical solution to evaluate the quality of texture-
generating algorithms, database texture retrieval, enhance-
ment, compression, denoising, coding, transmission, and
many others in practical applications and algorithm devel-
opment. Texture quality modeling belongs mainly to the
full-reference image quality criteria category because the
target or measured material is available. However, the pri-
mary difference from most FR image quality criteria is that
those texture quality subset criteria cannot require pixelwise
correspondence between tested and target images. Several
survey papers were published [5, 6, 7, 3, 8, 2, 9, 10, 11].
However, they are mostly restricted to images where the pix-
elwise correspondence with an optimal pattern exists. [5] list
several reduced/no-references quality assessment methods.
[6] reviews perceptual visual quality metrics, just-noticeable
distortion, visual attention, quality assessment databases, and
common feature and artifact detection. Few studies target
texture quality assessment [12, 13, 14, 15, 16, 17, 18].

This paper’s contribution and novelty is a joint test of tex-
ture quality assessment criteria for textural models to simulate
realistic visual scene recognition conditions. Moreover, we
present a comparative analysis with thirteen alternative textu-
ral quality criteria. For this analysis, we use the unique UTIA
Texture Fidelity Benchmark [12].
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2. IMAGE AND TEXTURE QUALITY MEASURES

The significant difference between image quality and texture
quality measures is in the non-existing pixelwise correspon-
dence for textures. Thus simple measures like the L mea-
sures cannot be used directly on identically indexed pixels.
X,Y denotes the original (measured) and compared (e.g.,
synthetic) multispectral texture, yr3 , xr3 r3−th monospec-
tral texture component (x•,•,i = xi), µX , µY mean values,
and σxr3

, σyr3
standard deviations, σxr3yr3

is the sample
cross-correlation of xr3 and yr3 after removing their means,
• are all corresponding indices, r = {r1, r2, r3} is a multi-
index with the row, column, and spectral indices. Most of
the quality measures consider only gray-scale images. In this
case, we generalize them to multispectral images using their
average overall spectra (denoted in (1)-(3) but further avoided
to simplify notation). Although the signal fidelity measures
(SNR1, MSE, PSNR) have clear physical meaning; they do
not correlate well with human visual perception [19, 20] and
violate the non-pixelwise requirement. The signal-to-noise-
ratio (SNR) is defined

SNR1(X,Y) =
1

d

d∑
i=1

E{xi}
E{|xi − yi|}

, (1)

SNR2(X,Y) =
1

d

d∑
i=1

E

{
E{xi}
|yi|

}
. (2)

The mean-squared error (MSE) [20] multispectral criterion is

MSE(X,Y) =
1

MNd

M∑
r1=1

N∑
r2=1

d∑
r3=1

(Xr −Yr)
2 , (3)

where M number of rows, N number of columns, d number
of spectra. The peak signal-to-noise ratio (PSNR) [21] is the
ratio between the maximum possible power of an image and
the power of corrupting noise.

PSNR = 10 log10

(
max{y•,•,•, x•,•,•}2

MSE

)
. (4)

PSNR is measured in decibels (dB).
The structural similarity indices (SSIM, MSSIM, STSIM)

are based on the assumption that structural information about
an image can be described by a function (usually a simple
multiplication) of three terms: luminance l, contrast c and
structure s. The structural similarity (SSIM) index [22] is:

SSIM(xi,yi) = l(xi,yi)c(xi,yi)s(xi,yi) = (5)(
2µxi

µyi
+ C1

µ2
xi

+ µ2
yi

+ C1

)(
2σxi

σyi
+ C2

σ2
xi

+ σ2
yi

+ C2

)(
σxiyi

+ C3

σxi
σyi

+ C3

)
,

where C1, C2, C3 are small positive constants that stabilize
each term. Single terms rightwards in (5) measure image
luminance, contrast, and structure similarity, respectively.

SSIM considers different distortions to have the same impor-
tance as visual perception, which is only a rough approxima-
tion of their different importance in reality.

MSSIM (xi, yi) =
1

n

n∑
j=1

SSIM
(
jxi,

jyi
)
, (6)

where n is the number of subblocks in images where SSIM
is locally evaluated. The STSIM criteria [23] (STSIM-1,
STSIM-2, and STSIM-M) are based on statistics computed
for each texture subband factor. STSIM-1 is created from
CW-SSIM [24] by replacing the ’structural’ term with terms
that compare first-order auto-correlations of corresponding
subband coefficients ρmX(0, 1) in the horizontal and ρmX(1, 0)
in the vertical direction. xr,i is a pixel at location r ∈ I ,
where I is discrete two dimensional rectangular lattice, the
multiindex r = [r1, r2] is composed of r1 row and r2 col-
umn index, respectively. In the equations for a single subband
m, the p is typically set to 1,

STSIM-1m(xi, yi) =
(
lmxi,yi

) 1
4
(
cmxi,yi

) 1
4
(
cmxi,yi

(0, 1)
) 1

4(
cmxi,yi

(1, 0)
) 1

4 , (7)

cmxi,yi
(0, 1) = 1− 0.5

∣∣ρmxi
(0, 1)− ρmyi

(0, 1)
∣∣p ,

ρmxi
(0, 1) =

E
{[

xm
r,i − µm

xi

] [
xm
r−1,r2+1,i − µm

xi

]∗}
(σm

xi
)2

,

where lmxi,yi
, cmxi,yi

are defined in (5). STSIM-2 adds cross-
band correlation coefficient ρm,n

|X| (0, 0) between subbands
m,n

STSIM-2(X,Y ) =

∑Nb

m=1 STSIM-1m(X,Y ) +
∑Nc

i=1 c
mi,ni

X,Y

Nb +Nc
,

cm,n
X, Y = 1− 0.5

∣∣∣ρm,n
|X| (0, 0)− ρm,n

|Y | (0, 0)
∣∣∣p ,

ρm,n
|X| (0, 0) =

E
{[

Xm
r − µm

|X|

] [
Xn

r − µn
|X|

]}
σm
|X|σ

n
|X|

, (8)

where Nb is the number of subbands and Nc is the number of
possible crossband correlations.

Visual information fidelity (VIF) method [25] is defined
as the ratio of the summed mutual information

VIF =
I(C;F |x)
I(C;E|x)

=

∑N
i=1 I(ci; fi|xi)∑N
i=1 I(ci; ei|xi)

, (9)

I(ci; ei|xi) =
1

2
log

|x2
iCU + σ2

nI|
|σ2

nI|
=

1

2

M∑
j=1

log

(
1 +

x2
iλj

σ2
n

)
,

I(ci; fi|xi) =
1

2
log

|g2i x2
iCU + (σ2

v + σ2
n)I|

|(σ2
v + σ2

n)I|

=
1

2

M∑
j=1

log

(
1 +

g2i x
2
iλj

σ2
vσ

2
n

)
,
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where E and F are models in a wavelet domain for what hu-
man visual system (HVS) captures from original and test im-
ages, respectively, N is the number of subbands, CU is a co-
variance matrix (without considering noise and scale factors)
of E, λj is the j-th eigenvalue of CU , x is a realization of
an original image, and g is an attenuation factor.

Assuming Gaussianity of the wavelet decomposition
X̃, Ỹ of textures X,Y , IFC is the mutual information be-
tween the source and the distorted images [26]:

IFC(X,Y ) =
1

2

∑
∀d

∑
∀r∈I

log2

(
1 +

g2r,ds
2
r,dσ

2
U

σ2
V

)
(10)

where d is a subband of the wavelet decomposition X̃, Ỹ , gi
is the attenuation factors that capture the loss of signal energy
in a i−th subband to the blur distortion, σ2

U is the variance of
a Gaussian scalar RF with mean zero, σ2

V is white Gaussian
RF variance. σ2

U = 1 is assumed to be unity, s2r,d is estimated
from localized sample variance estimation.

Deep image structure and texture similarity index (DISTS)
[18] combines the quality measurements from different con-
volution layers using a weighted sum:

DISTS(X,Y, α, β) = 1−
m∑
i=0

ni∑
j=1

(
αij l(X̃

(i)
j , Ỹ

(i)
j )

+ βijs(X̃
(i)
j , Ỹ

(i)
j )
)

, (11)

l(X̃
(i)
j , Ỹ

(i)
j ) =

2µ
(i)

X̃j
µ
(i)

Ỹj
+ c1(

µ
(i)

X̃j

)2
+
(
µ
(i)

Ỹj

)2
+ c1

, (12)

s(X̃
(i)
j , Ỹ

(i)
j ) =

2σ
(i)

X̃j Ỹj
+ c2(

σ
(i)

X̃j

)2
+
(
σ
(i)

Ỹj

)2
+ c2

, (13)

where αij , βij are positive learnable weights, satisfying∑m
i=0

∑ni

j=1 (αij + βij) = 1. DISTS is insensitive to mild
local and global geometric distortions, an advantageous prop-
erty for textures.

The visual signal-to-noise ratio (VSNR) [21] is a two-
stage approach. In the first stage, contrast thresholds for the
detection of distortions are computed in order to determine
whether the distortions in the distorted image is visible. The
threshold contrast is used in the second step to compute con-
trast detection thresholds.

V SNR = 20 log10

 C (X)

αdpc + (1− α)
dgp√

2

 (14)

where C(X)denotes the RMS contrast of the original image
X given by C(X) = σL(X)/µL(X).

Markovian texture fidelity criteria (ζ(X,Y ), CPM) were
proposed in [13, 14]. The criterion ζ measures cross-
prediction error when using data from the original texture

texture no. ζ CPM STSIM-1 STSIM-2
1 0.866 0.765 0,598 0,539
2 0.797 0.706 0,301 0,512
3 0.801 0.723 -0,179 -0,130
4 0.363 0.797 -0,808 -0,725
5 0.721 0.782 -0,620 -0,626
6 0.600 0.859 -0,846 -0,793
7 0.670 0.534 -0,436 -0,514
8 0.566 0.711 0,475 0,414

10 0.909 0.797 -0,069 -0,007
12 0.794 0.745 -0,802 -0,802
14 0.456 0.560 -0,704 -0,646

median{ρ} 0.721 0.745 -0,436 -0,514
σρ 0,17 0,09 0,52 0,51

Table 1. Spearman’s rank correlation between the human
rank and the single criteria results. Textures 1–7 are color
images, the remaining are gray-scale.

X and estimated parameters γ̃ from the 3-dimensional causal
auto-regressive (3DCAR) texture model Y :

ζ(X,Y ) =
1

|I|
∑
∀r∈I

|Xr − γ̃r−1Zr| , (15)

where γ̃r−1 = [A1,r−1, . . . , Aη,r−1] is the d×d η estimated
parameter matrix with square sub-matrices As,r−1 and Zr is
the dη×1 data vector with multiindices r, s, see [27] for de-
tails. CPM measure [14] uses twice downsampled textures
by a factor of two, which are subsequently upsampled back
to the original size and combined these images with the orig-
inal one together, essentially creating a 9-spectral (d = 9)
image. The CPM measures the difference between prediction
and cross-prediction:

CPM(X,Y ) = max
{
β(X, γ, γ̃), β̃(Y, γ, γ̃)

}
, (16)

β(X, γ, γ̃) =
1

2ld

d∑
i=1

∑
∀r∈I{s}

(γ̃r−1 Zr − γr−1 Zr)

|I{s}|
,

β̃(Y, γ, γ̃) =
1

2ld

d∑
i=1

∑
∀r∈I{s}

(
γr−1 Z̃r − γ̃r−1 Z̃r

)
|I{s}|

,

where l is the number of bits per spectral band, I{s} ⊂ I is
some window identical on both textures, γ are parameters
from the original texture X , while Ỹ , Z̃r, γ̃ are data and pa-
rameters from the synthetic (or compared) i−th texture. Due
to the pixel range normalization CPM(X,Y ) ∈ ⟨0; 1⟩ with
0 being the best value.

A universal objective image quality index (IQI) [28] mod-
els an image distortion as a combination of loss of correlation,
luminance distortion, and contrast distortion:

IQI(X,Y ) =
4σXY µXµY

(σ2
X + σ2

Y )(µ
2
Xµ2

Y )
. (17)
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Pearson MSE PSNR SSIM MSSIM SNR1 SNR2 IQI VIF VSNR IFC NQM STSIM1 STSIM2 Spearman σ
correlation correlation
PSNR -0,193 0,058 0,32
SSIM -0,819 0,064 -0,125 0,35
MSSIM -0,767 -0,026 0,861 -0,127 0,29
SNR1 -0,918 -0,021 0,849 0,852 -0,228 0,31
SNR2 -0,322 -0,015 0,373 0,324 0,643 -0,301 0,26
IQI -0,848 0,061 0,577 0,608 0,583 0,242 -0,203 0,38
VIF -0,368 0,050 0,227 0,390 0,257 0,199 0,349 -0,176 0,17
VSNR -0,013 -0,392 0,201 0,415 0,231 0,193 0,422 0,140 0,069 0,40
IFC -0,404 0,019 0,321 0,483 0,319 0,206 0,378 0,997 0,201 -0,164 0,20
NQM -0,861 0,027 0,707 0,815 0,811 0,313 0,930 0,478 0,635 0,481 -0,037 0,42
STSIM1 -0,397 0,026 0,308 0,121 0,475 0,114 0,050 0,155 0,016 0,140 0,194 -0,436 0,52
STSIM2 -0,363 0,019 0,287 0,120 0,423 -0,078 -0,064 0,155 0,070 0,144 0,036 0,968 -0,514 0,51
DISTS 0,298 -0,075 -0,463 -0,163 -0,269 0,001 -0,248 -0,356 0,101 -0,278 -0,072 -0,586 -0,652 0,551 0,28
MSE 0,067 0,30

Table 2. The quality criteria Pearson’s correlation over all fourteen material series between measured and modeled texture (un-
correlated criteria on the significance level 0,05) and Spearman’s correlation with the human ranking and its standard deviation.

The noise quality measure (NQM) [29] takes into account
the variation, in contrast, sensitivity with distance, image di-
mensions, and spatial frequency, variation in the local lumi-
nance mean, contrast interaction between spatial frequencies,
and contrast masking effects:

NQM(X,Y ) = 10 log10

( ∑
∀r X

2
r∑

∀r(Xr − Yr)2

)
. (18)

3. RESULTS

We used the texture fidelity benchmark [12] for the vali-
dation of texture quality criteria. The benchmark uses six
natural and one synthetic color texture together with their
grayscale versions. Textures were mathematically synthe-
sized using various mathematical models and variable quality
constraints. The benchmark contains quality-ranked tex-
ture series by human observers, so ground truth is available.
Spearman’s rank correlation measures the prediction mono-
tonicity, while Pearson correlation measures linearity and
consistency. Tab. 1 shows the Spearman rank correlation
for a single benchmark textures series, the median correla-
tion, and the standard deviation for two Markovian and two
STSIM criteria, respectively. The Markovian criteria better
agree with the human quality ranking and minor standard
deviation. Tab. 2 illustrates alternative tested criteria Pear-
son correlation and their Spearman correlation. The table
shows a strong linear relation between (MSE, SSIM, SNR1,
IQI, NQM), (SSIM, MSSIM, SNR1), (MSSIM, NQM), (IQI,
NQM), (VIF, IFC), and (STSIM1, STSIM2) groups of crite-
ria. The Spearman correlation between human and criteria
ranking (Tab. 2) shows only STSIM2 and DISTS to be corre-
lated with human ranking on the 5% significance level.

4. CONCLUSION

The results indicate that both Markovian criteria, based on
the Markovian descriptive model, are the most robust textu-
ral criteria for texture quality evaluation ζ and CPM criteria
are both correlated with human ranking on the 1% signifi-
cance level and can be efficiently, recursively, and adaptively
learned. The significant advantage of Markovian criteria is
their multispectral nature, contrary to the majority of possi-
ble alternative quality measures. Only the alternative criteria
STSIM2 and DISTS are correlated but only on the 5% signifi-
cance level. The other advantage of Markovian criteria is their
more minor standard deviation than STSIM2 and DISTS.
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