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Abstract
Anomaly Detection can be viewed as an open problem despite the growing plethora of known anomaly detection tech-

niques. The applicability of various anomaly detectors can vary depending on the application area and problem settings.

Especially in the Big Data industrial setting, an important problem is inference speed, which may render even a highly

accurate anomaly detector useless. In this paper, we propose to address this problem by training a surrogate neural network

based on an auxiliary training set approximating the source anomaly detector output. We show that existing anomaly

detectors can be approximated with high accuracy and with application-enabling inference speed. We compare our

approach to a number of state-of-the-art algorithms: one class k-nearest-neighbors (kNN), local outlier factor, isolation

forest, auto-encoder and two types of generative adversarial networks. We perform this comparison in the context of an

important problem in cyber-security—the discovery of outlying (and thus suspicious) events in large-scale computer

network traffic. Our results show that the proposed approach can successfully replace the most accurate but prohibitively

slow kNN. Moreover, we observe that the surrogate neural network may even improve the kNN accuracy. Finally, we

discuss various implications that the proposed approach can have while reducing the complexity of applied anomaly

detection systems.
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1 Introduction

Anomaly detection (AD) is gaining on importance with the

massive increase of data we can observe in every domain

of human activity. In many applications, the goal is to

recognize objects or events of classes with unclear defini-

tions and missing prior ground truth, while the only

assumed certainty is that these entities should be different

from what we know well. The problem can thus be seen as

the problem of modeling what is common and then iden-

tifying outliers. Anomaly detection is a crucial technique in

cyber-security, industrial quality control, banking, credit

card fraud detection, medical diagnostics and many other

fields [13].

Although AD as a general problem has been widely

studied (cf. Sect. 2), progress is arguably slower than in

supervised learning. Particularly, the recent rapid advances

in neural networks for classification (see, e.g., [16, 24])

seem harder to replicate in AD. The primary neural models

used in AD are unsupervised generative models, typically

auto-encoders (AE) or generative adversarial networks

(GAN) [12]. Although there is great promise in GAN

models [1], they can be more difficult to successfully apply

[52] than traditional techniques. Traditional techniques

thus often remain the straightforward choice, especially in

industrial applications. Among traditional AD principles,

density-based techniques like k-nearest neighbor (kNN)

[7, 28], isolation forest [36] or local outlier factor [9] quite

often achieve surprisingly good accuracy. At the same

time, many such models can become computationally

expensive or even prohibitive in an industrial setting.
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To overcome this problem, we would need either to

reduce the complexity of an existing AD without com-

promising its accuracy, or to approximate it by a different,

cheaper, but comparably accurate model. Although indi-

rectly related ideas exist (e.g., [23]), there seems to be a

lack of solutions addressing this problem in the AD con-

text. For that reason, we proposed to address the problem

using neural networks due to their efficient inference speed

and their mature support in an industrial setting [39]. In

[20], we have shown that for an existing kNN anomaly

detector a surrogate density-approximating neural network

model can be indeed constructed with comparable accuracy

and higher inference speed. The basic idea is simple: First,

a set of generated auxiliary samples is constructed with

each sample labeled by its anomaly score as inferred by

kNN. Second, a multilayer perceptron (MLP) neural net-

work is trained from such auxiliary data. (For visual

illustration on a two-dimensional projection of benchmark

data set Abalone [18] with k ¼ 5, see Figs. 1, 2 and 4.)

In this paper, we extend the idea and apply it to a large-

scale problem in cyber-security. We investigate a richer set

of parametrization options and evaluate the impact of

parameters in all stages of model construction. Also, we

provide a comparison of surrogate models to multiple state-

of-the-art anomaly detectors. We show that surrogate

models can effectively approximate a well-performing AD

in the industrial setting and thus provide a model with

higher inference speed and/or lower memory footprint. The

success of a surrogate model is, however, data and source

AD dependent.

The paper is structured as follows: In Sect. 2, we review

existing AD methodology, in Sect. 3 we introduce the

concept of surrogate neural networks, in Sect. 4 we cover

the experimental evaluation of the proposed methodology,

in Sect. 4.4 we discuss its robustness, in Sect. 5 we discuss

additional application options, and in Sect. 6, we provide a

summary and conclusion.

2 Prior art

There are a number of methods for anomaly detection the

survey of which is given, e.g., in [13] or [12].

Nearest neighbor techniques [5] are popular due to their

simplicity, reliable accuracy (which is often unsurpassed,Fig. 1 Heat map illustration of anomaly scores induced by kNN

anomaly detector on benchmark Abalone data set

(a)

(b)

(c)

Fig. 2 Following the example in Fig. 1 we construct auxiliary

set(s) to be eventually used to train a neural anomaly detector.

Auxiliary samples need to cover all areas of notable kNN anomaly

score variance. See a input data (gray dots), b uniform auxiliary set

(blue dots overlaid over input data), c adaptive auxiliary set (blue dots

overlaid over input data). Labeling of auxiliary samples is illustrated

in Fig. 4
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cf. [52]) and adaptability to various data types. Their

computational complexity, however, grows rapidly with

both the dimensionality and size of the training data.

Supporting structures thus have been proposed. The k-d

tree [6, 8, 22] is a binary search tree that uses hyperplanes

to divide the space to accelerate the search. The ball tree

[8, 56] uses hyperspheres to cover the space recursively.

Despite these advances, the problem of kNN computational

complexity cannot be considered as resolved.

Local outlier factor (LOF) [9] and subsequent ideas like

probabilistic LOF [35] can be useful with unevenly dis-

tributed data sets. The key idea here is to deem a sample

anomalous if it is significantly farther from its neighbors

than they are from each other.

Isolation forest (IF) [36] and subsequent ideas like ex-

tended [29], functional [53] or kernel isolation [55] proved

to be practical for high-dimensional problems. The key

idea is to build projection trees and evaluate at which depth

a sample becomes isolated. It is expected that more

anomalous samples are easier to isolate, thus appearing

closer to the tree root.

AD can be naturally performed using statistical

approximation models. Gaussian mixture models have

been shown useful in mammography [27]. A simple option

is to utilize Parzen models [60].

The standard anomaly detection knowledge base also

includes kernel PCA methods [38], kernel density estima-

tion (KDE) including robust KDE [32] and one-class

support vector machines (SVM) [49] that all have been

compared to and partly outperformed by neural models,

see, e.g., [62].

The simplest form of a neural network traditionally used

for unsupervised AD is auto-encoder [2], where recon-

struction error typically serves as a proxy to measure the

anomality. Many extensions of the idea exist, e.g.,

[4, 15, 46, 58, 59, 62]. Auto-encoders can be viewed as the

primary unsupervised neural AD technique. They do not

model the distribution of anomalies, but optimize a proxy

criterion like the reconstruction error. This can limit the

success of AEs.

Other types of neural network AD models depend on

additional knowledge about possible outliers or other

indirect information about the anomaly (see, e.g.,

[11, 40, 45, 47]).

More recently, various types of generative neural

models have been applied to anomaly detection in fields

including clinical imaging, industrial time series and

intrusion detection [31, 48, 61]. A particularly successful

semi-supervised GANomaly model has been applied in

X-ray screening [1]. The model jointly learns the genera-

tion of high-dimensional image space and the inference of

latent space. For a wider overview of generative AD

techniques, see [12].

Other types of neural networks have been used to

estimate and simulate the nature of the anomalies in the

training phase. In other words, auxiliary data is used

(explicitly or implicitly) when training the neural model.

An intuitive auxiliary set with binary labels was utilized

in [25] to represent the manifold. However, the method

is limited by the assumption that the non-anomalous data

lie on a well-sampled, locally linear low-dimensional

manifold. The auxiliary set consists of the training set

and potentially anomalous samples that are generated

with the Euclidean radius around the training data. The

authors claim that the collision probability of the gen-

erated anomalous samples and training set is low due to

the assumptions.

Supervised AD is performed in [30] where outlier

exposure is used to train the model with an auxiliary set

skimmed from other sources (i.e., pictures skimmed from

the web) in addition to the training set. The auxiliary set is

purified not to contain similar samples to the training class,

thus, the detector is effectively trained with two different

classes. The authors also consider the difficulty of creating

the artificial auxiliary set (i.e., with Gaussian noise) that

teaches the network to generalize the unseen anomaly

distributions in the unsupervised scenario in contrast to the

supervised.

The ideas investigated in this paper follow an alternative

approach to unsupervised AD consisting of neural network-

based approximation of an existing anomaly detector’s

score function. Initially introduced in our previous works

[20, 21], this class of methods depends on auxiliary sam-

ples with a non-binary label, which cover both the area of

the training set (non-anomalous) and its close and more

distant neighborhood, i.e., the area potentially significant to

detect anomalies.

In many applications, it has been shown that ensembles

of anomaly detectors perform better than a single detector

[14, 50, 54, 64]. This is common, particularly in cyber-

security [26, 57].

In the rest of this paper, we will focus on training sur-

rogate models mainly for nearest neighbor anomaly

detectors. We will then provide a comparison to various

state-of-the-art anomaly detectors listed above, including

the density-based and generative neural model-based

detectors.

Neural Computing and Applications (2022) 34:20491–20505 20493

123



3 Surrogate neural networks for anomaly
detection

The methodology we propose aims at approximating an

existing anomaly detector’s score function using a surro-

gate neural network. Let us refer to the detector to be

approximated as the source anomaly detector.

First, we create an auxiliary data set covering the source

detector’s input space. For each sample in the auxiliary

data set, the source detector’s anomaly score is computed

and assigned to the sample as its label. Then, the auxiliary

data set is used to train a standard multilayer perceptron

(MLP) with a single output.

Having the training set X ¼ fx1; x2; . . .; xng where

xi 2 Rd; 8i 2 f1; . . .; ng, and Rd is a d-dimensional vector

space. Let us denote A the auxiliary data set of m samples

where

A ¼ fa1; a2; . . .; amg, ai 2 Rd, 8i 2 f1; . . .;mg

and Y be the vector of respective anomaly scores computed

using the source anomaly detector, where

Y ¼ fy1; y2; . . .; ymg, yi 2 R, 8i 2 f1; . . .;mg.

For simplicity, we assume that the size of MLP hidden

layers and their number can be viewed as hyper-parameters

p and q, respectively, and that both parameters can be

determined through hyper-parameter search. In Sect. 4.2.2,

we discuss details of the search for our specific cyber-

security problem.

3.1 Auxiliary data sets

At first, the auxiliary set A needs to be computed from the

training set X. The actual auxiliary set construction can be

done in many ways. In the following, we discuss two

options: the trivial coverage of the input space by a hyper-

block and efficient construction, which employs the dis-

tribution of the input data. Figure 2 illustrates the two

options.

3.1.1 Uniform auxiliary data set

The idea of the uniform auxiliary set construction from

[20] is naı̈ve as it attempts to cover the space uniformly on

a rectangular subspace defined as the smallest enclosing

hyper-block that contains all points in the input data space.

More specifically:

1. A bounding hyper-block of X is determined as the

smallest enclosure of the input data, defined by the

vector of lower bounds hl and upper bounds hu such

that h
ðjÞ
l 6 x

ðjÞ
i 6 hðjÞu 8i 2 f1; . . .; ng 8j 2

f1; . . .; dg where x
ðjÞ
i represents jth element of ith

vector from X

2. The hyper-block is filled with randomly generated and

uniformly distributed samples fa1; a2; . . .; amg. By

default we consider uniform random sampling. Note

that the choice of m for concrete problem may depend

on n and d (see also Sect. 4.2.2).

3. The anomaly score vector Y is constructed so that for

each auxiliary sample ai; i 2 f1; . . .;mg the respective

yi 2 Y is computed as the source anomaly detector’s

score on ai.

Remark: in case of kNN the yi is computed as mean dis-

tance Gð�Þ:

yi ¼ GðaiÞ ¼
1

k

Xk

j¼1

DjðaiÞ ð1Þ

where DjðaiÞ represents the jth smallest distance of ai to

samples from X. Note that the number of neighbors k is a

parameter [37, 63].

3.1.2 Adaptive auxiliary data set

The uniform auxiliary set as defined above is sub-optimal

due to multiple reasons. Clearly, the distribution of points

in the uniform auxiliary set does not reflect the varying

importance of various regions in the auxiliary space; the

uniform auxiliary set can easily waste sampled points in

regions of no importance while lacking coverage in dense

and complicated manifolds.

This problem gets worse with increasing dimension-

ality. This ‘‘curse of dimensionality effect’’ can be

illustrated by the simple example of data distributed

within a hyper-sphere of unit radius. Assuming we have

the hyper-sphere enclosed in an auxiliary hypercube, the

ratio of hyper-sphere volume over hypercube volume

decreases with increasing dimensionality (see Fig. 3).

Only a negligible fraction of auxiliary samples would be

relevant in problems with more than low single-digit

dimensionality.

Another problem with hyper-block is the possible loss of

information. Auxiliary data generated strictly within a

hyper-block cannot approximate the continuity of anomaly

scores with growing distance from the input samples. The

Fig. 3 Inefficiency of covering input space by uniform auxiliary data

sets: d-dimensional hyper-sphere to hypercube volume ratio
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sharp auxiliary set boundary thus can distort the eventual

surrogate model.

To resolve both of the problems above, we propose to

construct the auxiliary data set adaptively to reflect the

distribution in input data. This is achieved by generating

auxiliary samples according to a modified Parzen esti-

mate of the input density. No bounding hyper-block is

thus needed, while the auxiliary samples now become

more frequent in areas of more detail.

Such auxiliary data set should provide more detailed

coverage of anomaly score distribution than the uniform

auxiliary data set with the same number of auxiliary sam-

ples. The adaptive auxiliary data set is constructed as

follows:

1. Optimal variance h for Parzen window approximation

of X is determined (by default we use cross-validation

and random search on training data).

2. The auxiliary set A ¼ fa1; a2; . . .; amg is generated as

realization of the Parzen distribution as follows: iterate

over samples of X and create ai ¼ xi þN ð0; h � kvarÞ
where kvar (variance multiplicative coefficient) is a

parameter:

8i 2 f1; . . .;mg : ai ¼ xðimod nÞ þN ð0; h � kvarÞ

Note that if m[ n, multiple auxiliary samples get

generated based on a single input sample. The choice

of m and kvar for the concrete problem is discussed in

Sect. 4.2.2.

3. The anomaly score vector Y is constructed in the same

way as for uniform auxiliary set (see Sect. 3.1.1, step

3).

See Fig. 2 for the difference between uniform and

adaptive auxiliary sample distributions. See Fig. 4 for the

same auxiliary sample distributions enriched by anomaly

score labels. The impact of the improved adaptive aux-

iliary set efficiency is also shown in Fig. 11.

3.2 Training the surrogate neural model

We can now train a multilayer perceptron (MLP) on the

auxiliary training set A to predict anomaly scores Y .

We parametrize the size of hidden layers p and the

number of hidden layers q (see Fig. 5). We minimize

the mean squared error (MSE) between the predicted

scores and ground truth scores using the Adam opti-

mizer [33]. For further details of our experimental

setup, see Sect. 4.2.2.

4 Experimental evaluation

We evaluate the proposed approach on a real problem in

cyber-security—the discovery of outlying (and thus sus-

picious) events in large-scale computer networks. For this

purpose, we use network traffic telemetry data.

To obtain a baseline, we evaluate a number of state-of-

the-art algorithms: one class kNN [5], LOF [9], IF [36],

auto-encoder, and generative adversarial networks [1, 12]

as well as a simple Parzen detector [60]

Subsequently, we construct a surrogate anomaly detec-

tor from the best performing (but slow) baseline source

detector. We then include the surrogate detector in the

overall comparison. We primarily verify the achieved

improvement of inference speed. Secondarily, we verify

Fig. 4 Following the example in Figs. 1 and 2, we finalize the

construction of training set(s) to be eventually used to train a neural

anomaly detector. We use the auxiliary set(s) that cover the space of

notable kNN anomaly score variance as shown in Fig. 2. Each

auxiliary sample gets labeled by its respective anomaly score

(illustrated here by colors on a heat scale) computed using kNN

from input data (overlaid gray dots). Compare the distribution of

auxiliary anomaly scores to the heat map in Fig. 1
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whether the surrogate detector can match the accuracy of

the baseline source detector.

Additionally, we test the robustness of the proposed

surrogate approach to variations in auxiliary data set

parametrization and to modifications of the auxiliary set

construction procedure.

4.1 Cyber-security data set

We perform the evaluation on a data set provided by Cisco

Systems, described in detail in [34]. The data represents

persistent connections observed in computer network traf-

fic using the NetFlow protocol. A connection between each

device–server pair is logged as a series of flow records.

Because a single flow record contains only minimal usable

information (transferred data sizes, timing and source–

destination identifiers), it is needed to build models from at

least sequences of flows. We follow the methodology from

[34] where a series of flows is transformed into a vector

through feature extraction. The features are expert-de-

signed with the aim to maximally preserve connection

characteristics. They are:

• Average flow duration

• Flows inter-arrival times mean

• Flows inter-arrival times variance

• Target autonomous system uniqueness

• Target autonomous system per-service uniqueness

• Unique local ports count

• Byte count weighted by target autonomous system

uniqueness

• Device overall daily activity deviation from normal

• Remote service entropy

• Remote service ratio

In our data set, each sample vector represents a 5-minute

traffic window, which is the standard in industrial detection

systems. The number of samples is 222 455. The data is

multi-class, with classes distinguishing various types of

benign and malicious connections.

4.1.1 Anomaly detection levels of difficulty

In order to evaluate anomaly detectors on the available

data, we adopt the experimental protocol of Emmott [19].

The protocol defines the transformation of multi-class input

data into AD benchmark data. To give a varied view of the

evaluated anomaly detectors, we have used the Emmott

protocol to produce four AD benchmark data sets of

increasing difficulty. Emmott’s procedure categorizes

malicious classes into four groups based on the evaluation

of the anomalousness level of the respective malicious

samples. Then, for each of the four groups, a new data set

is constructed, taking all benign samples together with

samples from the single respective group. In the following

we will thus refer to easy, medium, hard and very hard

problems.

4.2 Evaluation setup

To construct the training and testing sets, random resam-

pling (8�) is adopted such that for each sampling iteration,

75% of normal (non-anomalous) samples are utilized for

training while the remaining 25% are utilized for testing.

The anomalous samples are used only in the testing phase.

Anomaly detectors’ inference speed is measured in seconds

on a single Intel Core i7 vPro 8th Generation. Detection

accuracy is measured with AUC of ROC [10] as is com-

mon in the literature. Remark: we choose random resam-

pling over cross-validation consistently with the literature

[17, 42, 51] to mitigate the data imbalance problem in AD

testing.

4.2.1 Setup of baseline detectors

For the evaluation, we set the parameters and use the

baseline anomaly detectors as follows.

To evaluate kNN accuracy, we compute AUC according

to the anomaly score obtained as mean distance Gð�Þ
introduced in Eq. (1). The optimal choice of the parameter

k which is essential for kNN is not addressed in this paper.

However, we observed k ¼ 5 as the best performing across

our experiments. To evaluate kNN inference speed, we

need to take into account the important kNN variants

optimized for speed. Therefore, we evaluate the basic kNN

which is implemented as a brute tree, k-d tree and ball tree

Fig. 5 Default structure of the surrogate neural network. The size of

hidden layers p and the number of hidden layers q are problem-

dependent parameters subject to optimization
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which both implement supporting structures for faster

nearest neighbor search (see Sect. 2). The usage of sup-

porting structures does not affect accuracy. However, the

inference speed may differ significantly.

For isolation forest, we performed a grid search to

choose the best number of trees from {100, 200, 400} and

the number of samples from {256, 512}. We select the best

performing parameters (on validation data) for each prob-

lem difficulty.

For local outlier factor, we set the parameter k ¼ 5.

For auto-encoder evaluation, we opt for the de-noising

three-layer AE according to [15, 58]. When computing

AUC, the anomaly score is proxied by reconstruction error.

AEs are subject to parametrization. We performed a meta-

optimization procedure to choose the type and magnitude

of noise and the number of neurons per hidden layer. We

observed that Gaussian noise worked better than salt and

pepper noise. Four different magnitudes of noise have been

tried with deviations between 0.01 and 0.2 while the

samples were scaled to [0, 1] for each dimension. The

number of hidden neurons was selected with a full-grid

search in f1; . . .; 10g. We observed only negligible

improvement from repeated random initialization. All

models were trained in 300 000 iterations; varying the

number of iterations also proved to have only negligible

impact. The eventual meta-optimization procedure consists

of building the 40 models (4 noise parameters, 10 hidden

layer size parameters) and choosing the one with the best

achieved AUC on validation data for each problem

difficulty.

We include two forms of generative adversarial net-

works in the evaluation. First, we include the GAN-based

AD by Zenati et al. [61]. Specifically, we used the imple-

mentation from [51] and optimized the respective param-

eters on the following ranges: dim(z) on f2; 4; . . .; 256g,

number of dense layers on {2, 3, 4}, and a on

f10�3; 10�2; . . .; 103g. See [51] for details of the parame-

ters and their recommended ranges.

To evaluate the GANomaly AD [1], we also used the

implementation and from [51]. We optimized the respec-

tive parameters on the following ranges: decay on

f0; 0:1; . . .; 0:5g, wadv, wcon, wenc on f1; 10; 20; . . .; 100g, k
on f0:1; 0:2; . . .; 0:9g, R(x) and L(X) on {MAE, MSE},

number of convolution layers on f1; 2; 3; 4g and number of

channels f8; 16; . . .; 128g. See [51] for details of the

parametrization.

For the Parzen-based AD, we use the same setup as

described in Sect. 4.4.2. The Gaussian kernel is optimized

with cross-validation on the training data. The parameter

kvar is selected from f1; 2; 3; . . .; 10g for best performance

on validation data.

4.2.2 Surrogate neural network setup

Based on the observation that kNN achieves outstanding

accuracy but poor inference speed on our cyber-security

problem, we chose it as the source anomaly detector for

building the surrogate neural network. We parametrize the

surrogate model as follows.

We fixed k ¼ 5 in kNN used for auxiliary data set

construction to get results comparable to the standalone

kNN baseline anomaly detector. The auxiliary data set is

constructed as described in Sect. 3.1 with the total number

of auxiliary samples set to m ¼ n � d. (We discuss the

impact of auxiliary set parametrization further in

Sect. 4.4.)

ReLU activation function is used for all neurons (except

for the input ones). The size of the batch is set always to

80. We use MSE as the loss function and train the network

with Adam optimizer.

We opted for a simple meta-optimization of neural

model parameters. For each problem difficulty (see

Sect. 4.1.1) we train multiple models, to eventually

retain the one with the best loss on validation data. The

variation across training runs consists in: the number of

hidden layers q varies between values {1, 2, 3}, hidden

layer size p varies between values {1d, 3d, 5d, 7d, 9d},

random weight initialization is repeated 4�, the number

of iterations is thresholded by six values between 15000

and 700000.

Figure 6 illustrates the impact of parameters q and p on

the achieved accuracy.

4.3 Results

While addressing the cyber-security problem, our primary

concern is the ability of surrogate models to improve the

inference speed of the best performing baseline anomaly

detector. Our secondary concern is the ability of a surro-

gate model to match the accuracy of its source anomaly

detector.

4.3.1 Inference speed

We evaluated the inference speed of all baseline anomaly

detectors and compare it to the speed of the surrogate

detectors. Inference speed can notably depend on the

problem dimensionality. The speed of some detectors—

especially the nearest neighbor-based ones—also strongly

depends on training data size. We illustrate this observation

in Fig. 7. All measurements have been done on medium

problem difficulty. Graphs show the time needed to process

all samples in the test set, i.e., 25% of all available data.
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Note that the graphs depict inference speed only, the

training overhead is not included. The top plots show

inference speed with respect to the size of the training set,

the bottom plots show inference speed with respect to the

dimensionality. The left plots are shown in linear scale, the

right plots are shown in logarithmic scale.

As shown in Fig. 7, the inference speed of the neural

network-based detectors is the least dependent on the size

of training data. Dependence on the size of training data is

most notable with nearest neighbor-based detectors,

although the supporting structures in ball trees and k-d

trees reduce this problem notably. Remark: in computer

network analytics the number of samples to be processed

online is several orders of magnitude higher than illustrated

here.

The neural models including the proposed surrogate

model in this test perform faster than the fastest nearest

neighbor anomaly detector by at least an order of magni-

tude. Graphs suggest that this advantage will continue to

grow with increasing dimensionality of the problem and

even more so with growing training data set size.

Remark: Missing values in Fig. 7 are due to the limi-

tation of the GAN implementation from [61].

4.3.2 Accuracy

The best baseline accuracy on our cyber-security problem

has been obtained from kNN anomaly detectors on all

problem difficulties with k ¼ 5, reaching the average AUC

of 0.945. Accordingly, we focused on constructing and

evaluating surrogate neural network detectors with 5NN as

the source anomaly detector. In Fig. 8, we compare the

source and surrogate detectors visually using a 2D pro-

jection with anomaly score heat map (projection to the first

two PCA principal components).

When evaluating the accuracy of surrogate anomaly

detector models we primarily aim at verifying whether the

surrogate model succeeds in matching the accuracy of its

source anomaly detector. Improvement of accuracy is not

expected although it can happen.

In Table 1, we primarily focus on comparing the sur-

rogate neural network detectors (built from 5NN source

detector with either uniform or adaptive auxiliary set) to

the baseline 5NN detector. We then compare these to all

the other baseline anomaly detectors. Each column in the

table covers one problem difficulty, with the last column

covering the average. Best achieved results are set in bold.

Fig. 6 Illustrating the impact of surrogate neural network architecture to detection accuracy for the four different problem difficulties: easy ,

medium , hard and very hard (the 5th diagram shows the average). Brighter color depicts higher achieved AUC of ROC
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Assessing the accuracy of results over multiple data sets

(difficulties) can be done in multiple ways [17]. We pro-

vide more detailed results in the form of confidence

intervals [3] at the level of 95% in Fig. 9 to demonstrate

the statistical significance of the results.

On the cyber-security problem, we observe an unex-

pectedly good performance of the surrogate neural net-

work model with the adaptive auxiliary set. In all but

very hard problem difficulty, the proposed method beats

all other tested anomaly detectors including the source

5NN. 5NN remains notably best of all in the very hard

problem difficulty. Here, the surrogate model still is the

second best. Overall the surrogate model succeeds in

retaining the average AUC of 0.941, which equals a drop

of only 0.004 when compared to the average AUC 0.945

of 5NN detector (the average was computed over all

problem difficulties).

The success of the surrogate model with the adaptive

auxiliary set is significant (cf. Fig. 9). The reasoning about

why a surrogate model can surpass the accuracy of a source

AD may relate to the more general question of why and

when parametric models can surpass nonparametric ones.

Our results on easy and medium problems appear consistent

with the known observation that parametric models tend to

generalize better, especially on simpler problems (cf., e.g.,

[44]).

In the other cases, we observed, as expected, an accu-

racy slightly below or on par with the source anomaly

detectors. To illustrate this we have performed one addi-

tional experiment. We constructed a surrogate neural net-

work with IF as the source detector and compared the two.

The results are included in Table 1. In this case, the AUC

of the surrogate model is on average 0.014 lower than the

AUC of IF, with no observed improvement in any of the

problem difficulties.

4.4 Robustness of surrogate detectors

Surrogate neural network-based detectors depend on a

number of parameters. The neural model itself depends on

all the standard parametrization common in neural net-

works, the analysis of which is not the subject of this paper

(see Sect. 4.2.2 for details of how parameters are set in this

paper).

The surrogate neural detector additionally depends on

the properties of the auxiliary data set used in its training.

In the following, we discuss their impact.

4.4.1 Auxiliary set size

An important question concerns the required size of the

auxiliary data set.

Fig. 7 Dependence of anomaly detectors’ inference speed on training
data size (top) and dimensionality (bottom) in application phase. Note

the speed-up achieved through the surrogate neural network with the

auxiliary set (dashed line) over its source anomaly detector 5NN.

Graphs in linear scale (left) and logarithmic scale (right)
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Clearly, the auxiliary set needs to be sufficiently large to

replicate the space of anomaly scores induced by the source

detectors. We cannot give a universal answer due to the

variety of scenarios where surrogate neural network

detectors can be applicable. Instead, we show the depen-

dence of surrogate detector accuracy on the auxiliary set

size in the case of our cyber-security problem. In Fig. 10,

the x-axis shows the ratio of the auxiliary set size to the

input training data size and the y-axis shows the achieved

AUC. It can be seen that already a surprisingly small

number of auxiliary samples (equal to 5% of the input data

set size) proved sufficient to enable very good eventual

accuracy on the network security data set (cf. Sect. 4.1).

To complement the picture, we include Fig. 11 to

show the growth of surrogate model accuracy depending

on the growing auxiliary set size on the benchmark

Abalone data set (cf. Sect. 1). Even in this case, it can

be seen that only a fractional auxiliary set size when

compared to the size of the input data is sufficient to

achieve very good accuracy. Figure 11 also illustrates the

efficiency of adaptive auxiliary sets (cf. Sect. 3.1.2) in

contrast to uniform auxiliary sets (cf. Sect. 3.1.1).

4.4.2 Adaptive auxiliary set parametrization

The adaptive auxiliary set construction procedure uses

parameter kvar (variance multiplicative coefficient, see

Sect. 3.1.2) which is essential to achieve optimal surrogate

anomaly detector accuracy. The variance estimated from

input data for the purpose of Parzen window sizing does

not necessarily lead to the best possible auxiliary set.

Therefore, for the auxiliary data set generation purpose, we

multiply the estimated variance by the kvar coefficient,

which needs to be optimized for each problem separately.

The impact of various coefficient values is illustrated in

Fig. 12 on the network security problem. Note that dif-

ferent levels of problem difficulty (cf. Sect. 4.1.1) may

require different kvar values. In the experimental evaluation

(cf. Sect. 4.3), however, we fixed one parameter only for

all levels of difficulty.

4.4.3 Adaptive auxiliary set efficiency

The auxiliary set construction procedure as described in

Sect. 3.1.2 has been experimentally shown to provide

results competitive with benchmark anomaly detectors (see

Fig. 8 Heat map illustration of anomaly scores induced on computer

network security data set by (top to bottom): 5NN anomaly detector,

surrogate neural network (with 5NN source detector) using the

uniform auxiliary set, surrogate neural network (with 5NN source

detector) using the adaptive auxiliary set. 2D projection to the first

two principal components. Warmer color depicts a higher anomaly

Table 1 Comparison of best achieved accuracy (AUC of ROC, scaled

to [0,100], averaged over 8 runs) by each anomaly detector on net-

work security data set

Easy Med Hard VHard Avg

5NN 96.0 94.9 96.2 90.8 94.5

Surrogate-5NN-U 94.0 90.3 79.4 65.9 82.4

Surrogate-5NN-A 98.7 97.9 96.7 83.2 94.1

AE 94.5 92.9 92.2 80.3 90.0

LOF 97.1 92.8 90.1 75.2 88.8

IF 95.9 94.1 90.4 79.3 89.9

Surrogate-IF-A 94.4 92.4 89.9 77.4 88.5

GAN (Zenati) 87.0 85.2 87.4 71.7 82.8

GANomaly 96.1 93.7 93.7 73.2 89.2

Parzen 95.3 94.8 94.1 79.9 91.0

Results grouped by problem difficulty. Suffix U marks surrogate

model with uniform auxiliary set, A marks adaptive auxiliary set

Best overall result per difficulty is emphasised in bold
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Sect. 4.3.2). Let us discuss the question of whether there is

still space for its improvement.

Arguably, for the purpose of AD, the most important

regions in the modeled space may be those with a lower

density of input samples. It appears that such regions

would benefit from a higher density of generated auxil-

iary samples than regions where the mass of input

samples lies. The adaptive auxiliary set generating pro-

cedure, however, tends to produce the opposite. It

generates more auxiliary samples and thus captures more

details of the input distribution for areas of high input

data density while areas of low density and singular

samples get covered by fewer auxiliary samples.

Based on this observation, we implemented two

modifications of the generation algorithm: 1. the relative

number of auxiliary samples generated per Parzen win-

dow is made inversely proportional to the baseline

anomaly score of the Parzen window center point (this

Fig. 9 Comparing the accuracy achieved by the baseline and

surrogate anomaly detectors on the network security problem.

Confidence intervals for mean AUC of ROC at 95% level. Four

problem difficulties (top left to bottom right): easy, medium, hard,

very hard. Compare particularly the 5NN anomaly detector to the

respective surrogate neural network with adaptive auxiliary set

Surrogate-5NN-A

Fig. 10 Accuracy of surrogate neural network detector depending on

the adaptive auxiliary set size. Network security data set. Note that

very small auxiliary set (about 5% of the input data size) can suffice

to achieve best effect

Fig. 11 Accuracy of surrogate neural network detector depending on

the auxiliary set size. Abalone data set, accuracy averaged over all

levels of difficulty. Note the higher efficiency of the adaptive over the

uniform auxiliary set
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effect is controlled through multiplication by constant r
where r ¼ 1 is equivalent to the original algorithm),

2. we also made the Parzen window width inversely

proportional to the baseline anomaly score (this effect is

controlled through multiplication by constant d where

d ¼ 1 is equivalent to the original algorithm).

We performed a large number of tests for a grid of

values r 2 f1; . . .; 50g and d 2 f0:1; . . .; 10g. In Fig. 13,

we show the effect on four illustrative examples (compare

to the baseline adaptive method result in Fig. 2). We do not

include more details on the results because in all cases the

resulting surrogate neural network detector accuracy

dropped below the baseline adaptive method defined in

Sect. 3.1.2.

We also tested the impact on auxiliary data set size

efficiency (compare to Sect. 4.4.1). Again, no improve-

ment has been reached. Therefore, the default adaptive

auxiliary set generation procedure (cf. Sect. 3.1.2) remains

the recommended option.

5 Discussion

The idea of constructing a surrogate neural network

detector to replicate a source anomaly detector (which uses

a non-neural model) has been motivated by the intention to

improve inference speed in a large-scale industrial setting.

We have shown the usefulness of the idea on a real cyber-

security problem.

We have observed that the effect of introducing a sur-

rogate neural network can have a positive impact also on

accuracy, although such an effect cannot be guaranteed.

We have also observed that the size of the adaptive aux-

iliary set can be considerably smaller than the size of the

input data set, without negative impact. In general, it

should be expected though that surrogate models achieve

comparable or slightly worse accuracy than the source

anomaly detector.

The surprising result that a shallow surrogate neural

network could over-perform deep neural models (see

Table 1) is a direct consequence of the fact that its source

AD the kNN performed better than deep models on our

cyber-security problem. Arguably, the high expressivity of

deep models can be a disadvantage in a setting where

generalization is very difficult (see particularly VHard in

Table 1).

Note that for other problem areas the idea of surrogate

anomaly detectors can be decoupled to two separate parts:

construction of auxiliary training set and training a model

on top of it.

Once an auxiliary training set is constructed from a

source anomaly detector, it is imaginable to train a non-

neural model on top of it. We have not investigated such an

option further.

Another interesting option is to utilize auxiliary sets for

collecting information from multiple source anomaly

detectors. We discuss this option in more detail in the

following.

5.1 Fusion of multiple anomaly detectors

Many different types of anomaly detector ensembles

have been proposed in the literature [14, 42, 54, 50, 64]

to mitigate limitations of individual detectors. Specifi-

cally in the area of our practical interest—in network

security—ensembles of predictors are commonly applied

[57].

The flexibility of the auxiliary set construction proce-

dure trivially enables fusing outputs from multiple baseline

detectors into a single auxiliary set. We envisage multiple

implications as follows.

Fig. 12 Surrogate neural network detector accuracy (AUC of ROC)

depends on a parameter variance multiplicative coefficient kvar if the

adaptive auxiliary set is used

Fig. 13 Modified adaptive auxiliary set generation procedure redis-

tributes auxiliary samples from more dense to less dense regions of

the input space. Images illustrate modified auxiliary set variants from

a) those with reduced window size in anomalous regions d � 1 to d)

those with enlarged window size and weight in anomalous regions

r[ 1 and d � 1
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5.1.1 Mitigating the problem of incorrect parametrization

Fusing outputs from different instances of the same type of

detector can help smooth out the impact of potentially

incorrect parametrization. This may become useful if there

is uncertainty about which parameters to choose. In Tab. 2,

we illustrate this effect by fusing a number of kNN

detectors for multiple different values of k. Fusion in this

case does not lead to the overall best accuracy but provides

better accuracy than is the average of individual accuracies

of the fused detectors (note the last two pairs of rows in the

table).

5.1.2 Fusing detectors to reduce ensemble complexity

A practical use of detector fusion can expectably be the

option to train a single surrogate neural network detector to

replace an ensemble of detectors. Especially in the case of

large ensembles or ensembles of detectors of mixed types,

the advantage can be not just the expected inference speed-

up, but also the simplification of the overall deployed

anomaly detection system.

The problem is that various source detectors may pro-

vide anomaly scores at different intervals or even

unbounded. The prerequisite to their fusion therefore

would be the normalization of the individual detectors’

output. Normalization is possible in multiple ways. Platt

scaling [43] can be considered. As a simpler option (in-

spired by the discussion in [41]) we propose the following.

Assuming we have a training set X ¼ fx1; x2; . . .; xng
where xi 2 Rd, 8i 2 f1; . . .; ng and the corresponding

anomaly scores obtained from a generic anomaly detector

Y ¼ fy1; y2; . . .; yng where yi 2 R, 8i 2 f1; . . .; ng, the

normalized anomaly score vector �Y is obtained as

�yi ¼
LðyiÞ
n

; 8i 2 f1; . . .; ng

where

LðyÞ ¼
Xn

i¼1

1, if yi\y

0, otherwise

�

Assuming a finite size of X, the normalized anomaly score

for sample xi equals to the proportion of samples in X with

lower anomaly scores than is the anomaly score of xi. The

normalized scores are then from [0, 1).

5.1.3 Fusing detectors to optimize response

The most complex fusion that we envisage should enable

optimization of anomaly detection accuracy locally

across the input sample space. It is based on the

observation that principally different detection models

are likely to have different strengths and weaknesses,

presumably in different parts of the input space. Let us

assume that for each detector in a collection of various

detectors it is possible to estimate the confidence of its

output for a specific sample. Then, using the normal-

ization (see Sect. 5.1.2) an auxiliary set can be con-

structed from outputs of all the detectors, where the

contribution of each detector to a single auxiliary sample

is conditioned by the detector’s sufficient confidence. In

this way, various detectors from the collection would

cover various parts of the auxiliary space, presumably

leading to a more robust surrogate anomaly detector. The

prerequisite here would be the ability to evaluate the

confidence of each considered source detector. We refer

to [41] for a solution to this problem.

6 Conclusion

Motivated by the needs of large-scale cyber-security sys-

tems we addressed the problem of anomaly detection

inference speed. We proposed to construct surrogate neural

network anomaly detectors to replace existing slow

anomaly detectors or detector ensembles. We have shown

that simple neural network formalism can be used to solve

this problem. We have shown that it is possible to construct

fast surrogate anomaly detectors without notable loss of

accuracy. We have shown that the idea of surrogate

anomaly detectors can also enable simplification of

deployed anomaly detection systems, especially in the case

of ensembles. We have observed that at least in network

security the use of surrogate neural network detectors can

occasionally improve the accuracy of the best baseline

anomaly detectors.

Table 2 Accuracy of fused anomaly detectors compared to individual

detectors (AUC of ROC, scaled to [0,100])

Note that fusing various kNN detectors into a single surrogate anomaly

detector can lead to better accuracy than is the average accuracy over the

various standalone detectors. When comparing averaged versus the

respective fused accuracy, the better result is emphasised in bold
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20. Flusser M, Pevný T, Somol P (2018) Density-approximating

neural network models for anomaly detection. In: ACM SIGKDD

workshop on outlier detection de-constructed. London, United

Kingdom

21. Flusser M, Somol P (2021) Adaptive approach for density-ap-

proximating neural network models for anomaly detection. In:
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