
Citation: Csirmaz, E.P.; Csirmaz, L.

Synchronizing Many Filesystems in

Near Linear Time. Future Internet

2023, 15, 198. https://doi.org/

10.3390/fi15060198

Academic Editor: Davide Tosi

Received: 26 March 2023

Revised: 17 May 2023

Accepted: 24 May 2023

Published: 30 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

Synchronizing Many Filesystems in Near Linear Time
Elod P. Csirmaz 1,∗ and Laszlo Csirmaz 1,2

1 Alfréd Rényi Institute of Mathematics, 1053 Budapest, Hungary; csirmaz@renyi.hu
2 Institute of Information Theory and Automation, CZ-182 00 Prague, Czech Republic
* Correspondence: elod@epcsirmaz.com

Abstract: Finding a provably correct subquadratic synchronization algorithm for many filesystem
replicas is one of the main theoretical problems in operational transformation (OT) and conflict-free
replicated data types (CRDT) frameworks. Based on the algebraic theory of filesystems, which incor-
porates non-commutative filesystem commands natively, we developed and built a proof-of-concept
implementation of an algorithm suite which synchronizes an arbitrary number of replicas. The result
is provably correct, and the synchronized system is created in linear space and time after an initial sort-
ing phase. It works by identifying conflicting command pairs and requesting one of the commands to
be removed. The method can be guided to reach any of the theoretically possible synchronized states.
The algorithm also allows asynchronous usage. After the client sends a synchronization request,
the local replica remains available for further modifications. When the synchronization instructions
arrive, they can be merged with the changes made since the synchronization request. The suite also
works on filesystems with a directed acyclic graph-based path structure in place of the traditional
tree-like arrangement. Consequently, our algorithms apply to filesystems with hard or soft links as
long as the links create no loops.

Keywords: file synchronization; algebraic model; optimistic synchronization; linear complexity

MSC: 08A02; 08A70; 68M07; 68P05

1. Introduction and Related Works

Synchronizing diverged copies of some data stored on a variety of devices and/or at
different locations is an ubiquitous task. The last two decades saw a proliferation of practical
and theoretical works addressing this problem. According to [1], “file synchronization is a
feature usually included with backup software in order to make is easier to manage and
recover data as and when required”. File synchronization is usually delivered through
cloud services. Dedicated file synchronizing solutions frequently come with additional
tools not just for managing the saved data but also to allow for file sharing and collaboration
with stored files and documents.

These cloud storage services are easily accessible for the end user because the service
front ends are very well integrated into web clients as well as desktop and mobile envi-
ronments. Simple user interfaces hide the complex and sophisticated service back ends [2].
Collaboration services are frequently integrated into the “cloud storage” environment. For
example, Google Docs is an application layer integrated into Google Drive storage, Office
365 is integrated with One Drive storage and Dropbox Paper service is an extension of
Dropbox storage.

To address the emerging challenges in the more specific fields of distributed data
storage and collaborative editors, two competing theoretical frameworks emerged: opera-
tional transformation (OT) and conflict-free (or commutative) replicated data types (CRDT).
OT appeared in the seminal work of [3] and was refined later, among others, in [4–6].
The main applications are collaborative editors, the most notable example being Google
Docs [7]. CRDT emerged as an alternative with a stronger theoretical background, see [8,9].
Both OT and CRDT have been applied successfully in a variety of synchronization tasks,

Future Internet 2023, 15, 198. https://doi.org/10.3390/fi15060198 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi15060198
https://doi.org/10.3390/fi15060198
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0003-2449-7923
https://orcid.org/0000-0001-7530-8307
https://doi.org/10.3390/fi15060198
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi15060198?type=check_update&version=1

Future Internet 2023, 15, 198 2 of 26

including file synchronizers [6,10,11]. Finding a provably correct, subquadratic synchro-
nization algorithm, however, has remained one of the main open problems both in OT and
CRDT [12].

The algebraic theory of filesystems [13,14] introduced algebraic manipulations of
filesystem commands, and provided the foundations for automated checking of certain
filesystem properties. It is reminiscent of both OT [6] and CRDT inasmuch as, instead
of pure traditional filesystem commands, it uses operations enriched with contextual in-
formation. While these operations are not fully commutative—as would be requested by
CRDT [15]—the non-commutative parts can be isolated systematically and handled sepa-
rately. In [14], this framework is used successfully to create a provably correct theoretical
filesystem synchronizer for two replicas together with a complete analysis of all possible
synchronized states. The present work extends [14] significantly by the following:

– Providing the theoretical foundation for synchronizing an arbitrary number of replicas;
– Developing, for the first time, a provably correct synchronization algorithm which

works in linear time after an initial sort, and thus in subquadratic total running time;
– Allowing asynchronous usage, namely, after requesting synchronization, the local

replicas need not be locked;
– Allowing for late comers when a replica can be upgraded to the synchronized state

without providing the local changes;
– Generalizing the traditional tree-like filesystem skeleton to arbitrary acyclic graphs,

thus extending the applicability of the synchronization algorithm.

In this paper, we will use the term near linear to mean “linear up to a logarithmic
factor”. Thus, sorting requires near linear time [16], and the total time required by the
above synchronization algorithm is also near linear.

This paper follows the traditional paradigm of filesystem synchronization described
in, for example, [17] and illustrated in Figure 1. The starting point is a set of identical copies
of the same filesystem, possibly stored at different locations, on different hardware and
architectures (cloud servers, mobile devices, laptop and desktop computers with various
operating systems) or using different software implementations (e.g., ext4, btrfs, ZFS, NTFS,
APFS, or database file systems). Each of these replicas is edited (modified) locally. At
a certain time, the diverged copies call for synchronization by sending a description of
the diverged state to a central server. After receiving the requests, the server computes
filesystem commands, which transform each replica into a common synchronized state,
and send them back to the replicas. The replicas execute the received commands on their
local copy, transforming all diverged copies into a new identical synchronized state. At
that point, the synchronization cycle can start again.

Φ Φ1 Ψ Ψ1

Φ Φ2 Ψ Ψ2

Φ Φ3 Ψ Ψ3

copy1

copy2

copy3

synchronized synchronizedlocal changes
diverged

algorithm
requests commands

algorithm

Figure 1. The synchronization cycle. Identical copies of the same filesystem are edited independently.
Each replica sends the locally created update information to the synchronizer, which returns the
commands to be executed on the local copy to update it to a common synchronized state.

Synchronizers typically require locking the replicas during the whole synchronization
process, meaning that no modifications are allowed after the synchronization request is
sent (the locked time period is indicated by the dotted lines on Figure 1). Asynchronous, or
optimistic synchronization allows additional local modifications after the synchronization
request is sent as depicted on the top of Figure 2. When the synchronization commands

Future Internet 2023, 15, 198 3 of 26

arrive from the server, those commands are modified to reflect the additional changes,
and then applied to the replica. The result should be the same as when performing syn-
chronization without the additional changes, and then applying them to the synchronized
filesystem afterwards—as indicated at the bottom of the figure.

Φ Φi Ψi

Φ Φi Ψi
delayed
syncing

immediate
syncing

Φ′i

Ψ

~

request sync commands

Figure 2. Asynchronous synchronization. Top line: after the synchronization request has been
sent, additional local modifications are made to the filesystem. When receiving the synchronization
commands, they are modified using the current state of the local filesystem. Bottom line: the end
result should be the same as applying the synchronization commands immediately and then making
the local modifications afterwards.

The main focus of this paper is filesystem synchronization, or the synchronization of
data stored in the nodes of a tree or directed acyclic graph. The stored data are considered
to be an indivisible unit, and the task of consolidating different versions of the same data is
not considered. It should be solved by other methods specifically tailored to this task.

Some practical aspects of data synchronization are not touched and are out of the scope
of this paper. Managing user access and permissions, when and how to allow file sharing
and collaboration are especially important due to security considerations [1]. Additionally,
file synchronization should use very strict security protocols to ensure that data are safely
protected and secured at all times and to make data leaks and malicious access less likely.

Synchronizers should also minimize network traffic. Unlike the popular Rsync utility [18]
available for comparing and synchronizing files, there is currently no such “middleware”
utility for general datasets [19]. Hopefully our work is a small step in that direction.

The rest of this paper is organized as follows. Section 2 recalls the building blocks
of the algebraic theory of filesystems, including the filesystem model, the augmented
filesystem commands and their basic properties. This section does not contain new results,
and its purpose is to give the reader a comprehensive summary of the topic, on which the
rest of the paper relies. For more intuition, explanation and examples, please consult [14].
Section 3 is a high-level overview of how filesystem synchronization can be handled in
the algebraic framework. This section defines what constitutes a synchronized state of
several diverged replicas, rather than providing a method of creating it. The definition
automatically guarantees many desired and required properties of the merged filesystem,
an indication of the strength and adequacy of the algebraic framework. It is discussed how
all synchronized states can be achieved by conflict resolution, paving the way towards
the near linear synchronization algorithm discussed in Sections 4 and 6. Asynchronous
(optimistic) synchronization is discussed at the end of Section 3.

The base algorithms of the synchronization suite are discussed in Section 4, including
the one which generates the command sequence (called merger), which produces the
merged state in subquadratic time. Supporting theoretical results are collected and proved
in Section 5. Section 6 discusses how all possible synchronized states can be generated by a
nondeterministic algorithm running in linear time. Section 7 presents some empirical results
justifying the claims about the running time of the algorithms. Finally, Section 8 concludes
the paper with some extensions and open problems. Most notably, our algorithms, with
some modification, work not only on the tree-like filesystem skeletons as stipulated by the
algebraic theory but also on filesystems based on directed acyclic graphs.

This work focuses mainly on algorithmic aspects, so many theoretical justifications
are deliberately phrased in general terms. Rigorous proofs would require substantially
more space and, in our opinion, would not provide additional insight. A proof-of-concept
implementation of the algorithms presented in this paper in Python can be found at
https://github.com/csirmaz/algebraic-reconciler (accessed on 10 May 2023).

https://github.com/csirmaz/algebraic-reconciler

Future Internet 2023, 15, 198 4 of 26

2. Definitions

This section recalls the notions and basic results of the algebraic theory of filesys-
tems [13], with some illustration of the concepts. The main component is a highly symmet-
ric set of filesystem commands, which are enriched with contextual information. Devising
such a command set which is amenable to algebraic manipulation was one of the main
contributions of [13]. For more intuition and explanation on this, see [14].

2.1. Filesystems

The filesystem model reflects the most important high-level aspects of real-world
filesystems. It is a mixture of identity- and path-based models [10,12]. The contents of
the filesystem are stored at nodes, which are identified, or labeled, by a set of fixed and
predetermined paths. The collection of all (virtually) available nodes is fixed in advance
(while in a real-world filesystem, only a restricted subset of those paths is present). No
path operations are considered; in particular, our model does not support the creation or
deletion of links. In the basic case, no links are allowed at all; thus, the namespace—the
set of available nodes or paths—forms a collection of rooted trees. An actual filesystem
populates this fixed namespace with values. If Φ is a filesystem, the value stored at node
n is denoted by Φ(n). Valid filesystems are required to have the tree property all the time,
meaning that along any branch starting from a root node, there must be zero or more
directories, zero or one file, followed by empty nodes only. If Φ does not have the tree
property, then we say that Φ is broken.

Formally, the paths form a forest-like namespace: a set N endowed with the partial
function � : N→ N returning the parent of every non-root node, while this function is not
defined on roots. If n = �m then n is the parent of m, and m is a child of n. For two nodes
n, m ∈ N, we say that n is above m, or n is an ancestor of m, and write n ≺ m, if n = �im for
some i ≥ 1. As usual, n 4 m denotes n ≺ m or n = m. As the parent function � induces a
tree-like structure on N, the relation 4 is a partial order. Two nodes n, m ∈ N are comparable
if either n 4 m or m 4 n, and they are incomparable or independent otherwise.

In practice, nodes of the filesystem are labeled by complete paths, where directory names
are separated by the slash character. Thus, the root has the label /; nodes /a, /xxx are on
the first level just under the root; and /a/b/cc/d is (the label of) a node on level four, whose
ancestors are /a/b/cc, /a/b, /a, and /. The implementation of the algorithms also follows
this convention.

As indicated above, the value stored by a filesystem at a node can be a directory, can
be empty or can be a file. The type of this value is denoted by D, O and F, respectively,
corresponding to these possibilities. Regarding notation, we also use D for the directory
value, and O for the empty value (where O means “no value”, not to be confused with a
file which has no content). When the node value is a file, then the node stores the complete
file content (including the possibility that this content is empty). While this filesystem
model allows only one directory value and only one empty value (see the discussion in
Section 8 on relaxing this limitation), there are many different possible file values of type F
representing different file contents. The value types are ordered, with O being the lowest,
and D being the highest, written as O < F < D. The type of the filesystem value x is
denoted by tp(x).

2.2. Filesystem Commands

Real-life filesystems are usually manipulated by commands such as creating or deleting
files and directories, modifying (editing, appending to) a file, or moving an existing file
or directory to another location. Our model contains similar commands but with some
modifications, the first of which is that we only consider commands which affect the
filesystem at a single node. Thus, a move command should be represented as a sequence of
delete and create.

Second, commands in our model include the complete new value to be stored in the
filesystem. Even if file contents are just partially modified or are appended to, the full new

Future Internet 2023, 15, 198 5 of 26

value must be supplied. This allows our model to use a unified representation of all single-
node commands, as they can be fully specified by the node (path), at which the command
acts, and the new value (including a directory and empty value) to be stored there.

Third, as was observed in [13], enriching filesystem commands with additional con-
textual information—in this case, the previous content at the affected node—makes them
amenable to algebraic manipulation.

Definition 1 (Filesystem commands). A filesystem command is a triplet σ = 〈n, x, y〉, where
n ∈ N is the node on which σ acts, x is the content at node n before σ is executed (the contextual
information, precondition), and y is the new content.

It is clear that every real-life filesystem command acting on a single node can be
easily (and automatically) transformed into this internal representation (Definition 1). For
example, rmdir(n) corresponds to 〈n,D,O〉, which replaces the directory value at n by the
empty value. The command 〈n,O,D〉 creates a directory at n but only if the node n has
no content, that is, there is no directory or file at n (a usual requirement when creating a
directory). This command reflects the usual behavior or mkdir. For files f1 and f2 ∈ F, the
command 〈n, f1, f2〉 replaces f1 stored at n by the new content f2. This latter command can
be considered an equivalent of edit(n, f2).

As an example, creating a copy of the file /home/user/text in the same directory under
the name “copy” and then deleting the original file is represented by the following sequence
of commands:

〈/home/user/copy,O, fo〉 and 〈/home/user/text, fo,O〉,

where fo is the file content at the “text” node.
Applying the command σ to a filesystem Φ is written as the left action σΦ. The

command σ = 〈n, x, y〉 is applicable to Φ if Φ contains x at node n, that is, Φ(n) = x (the
precondition holds), and after changing the content at n to y, the filesystem still has the tree
property. If σ is not applicable to Φ, then we say that σ breaks the filesystem. If σ does not
break Φ, then σ is applicable to Φ, and its execution changes Φ at node n only.

Command sequences are applied from left to right; thus, (σα)Φ = α(σΦ), where α is a
command sequence. The composition of sequences is written as the concatenation αβ, but
occasionally we write α ◦ β to emphasize that β is to be executed after α. A sequence breaks
a filesystem if one of its commands breaks the filesystem when it is to be applied. The
sequence α is non-breaking if there is at least one filesystem α that does not break; otherwise,
it is breaking.

Sequences α and β are semantically equivalent, written as α ≡ β, if they have the same
effect on all filesystems, that is, αΦ = βΦ for all Φ. We write α Ď β to denote that β
semantically extends α, that is, αΦ = βΦ for all filesystems such that α does not break.

For example, the sequence which creates a file at some node n and then changes this
file to a directory is equivalent to the single command which creates the directory directly:

〈n,O, f〉 ◦ 〈n, f,D〉 ≡ 〈n,O,D〉,

while creating the file and deleting it immediately is semantically strictly weaker than
applying the “null” command 〈n,O,O〉, and thus we only have

〈n,O, f〉 ◦ 〈n, f,O〉 Ď 〈n,O,O〉.

This is because the right-hand side is applicable when the parent of n contains a file, while
the left-hand side would break such a filesystem.

The inverse of σ = 〈n, x, y〉 is σ−1 = 〈n, y, x〉. For a sequence α, its inverse α−1 consists
of the inverses of the commands in α in reverse order. The inverse has the expected property:

Future Internet 2023, 15, 198 6 of 26

if α does not break Φ, then (α−1α)Φ = Φ, that is, α−1 rolls back the effects of α. Observe
that α is non-breaking if and only if it is α−1.

2.3. Command Types, Execution Order

The input and output values of σ = 〈n, x, y〉 are x and y, respectively, while the input
and output types are tp(x) and tp(y). Commands are classified by their input and output
types using patterns. The command 〈n, x, y〉matches the pattern 〈n,Px,Py〉 if tp(x) is listed
in Px, and tp(y) is listed in Py. In a pattern, the symbol • matches any value. As an
example, every command matches 〈•,OFD,DFO〉.

Commands with identical input and output values are null commands. Null commands
do not change the filesystem (but can break it if the precondition does not hold). Structural
commands change the type of stored data. Structural commands are further split into
constructors and destructors. A constructor increases the type of the stored value, while a
destructor decreases it. Thus, a constructor matches either 〈•,O,FD〉 or 〈•,F,D〉, and a
destructor matches either 〈•,DF,O〉 or 〈•,D,F〉. Observe that σ is a constructor if and only
if σ−1 is a destructor. Finally, non-null commands matching 〈•,F,F〉 are edits.

The binary relation σ � τ between commands on parent–child nodes captures the
notion that σ must precede τ in the execution order.

Definition 2 (� relation, �-chain). The relation σ � τ holds if the pair matches either
〈n,DF,O〉 � (�n,D,FO), or matches 〈�n,OF,D〉 � 〈n,O,FD〉. An�-chain is a sequence of
�-related commands connecting its first and last element.

The first case in Definition 2 corresponds to the requirement that before deleting a
directory, its descendants should be deleted. The second case says that a file or directory can
only be created under an existing directory. Observe that σ� τ if and only if τ−1 � σ−1,
and in this case, either σ and τ are both constructors, or both are destructors.

2.4. Canonical Sets and Sequences

Commutativity is a core concept in command-based synchronization [17], where,
in fact, the task is to determine in what order (and which) modifications made to other
replicas can be applied to a particular replica. If two modifications or commands commute,
that is, their result does not depend on the order in which they are applied, then they
do not represent conflicting updates to the data, as they can be seen as independent.
Unsurprisingly, then, commutativity plays a central role in CRDT (see [8,9]), where basic
data types with special operators are devised so that executing the operators in different
orders yields the same results.

While not all filesystem commands commute, non-commutative pairs can be isolated
systematically. If σ and τ are on different nodes which are not in parent–child relation, then
they commute (στ and τσ are semantically equivalent). An example of this is creating a file
in some directory and editing another existing file. The affected nodes where the changes
are made are independent. If σ and τ are non-null commands on parent–child nodes,
then either στ breaks every filesystem, or, necessarily, σ � τ. If a command σ on node
/a/b/c is followed immediately by another command τ on the node /a/b/c/d successfully,
then σ must create a directory at /a/b/c (whose location previously was either empty, or
contained a file); thus /a/b/c/d is empty, so τ must create either a file or a directory there.
Consequently, we have σ� τ by Definition 2. Consecutive commands on the same node
either break every filesystem (if the second command requires a different value than the
output of the first command), or can be replaced by a single command (while extending
the semantics). These easy facts imply some strong and intricate structural properties of
non-breaking command sequences. Exploring and using these properties made possible
the complete and thorough investigation of the synchronization process of two diverged
replicas in [14], as well as devising the first provably correct subquadratic synchronization
algorithm in this paper.

Future Internet 2023, 15, 198 7 of 26

Intuitively, a canonical sequence is just the “clean” version of a non-breaking com-
mand sequence. An important property of canonical sequences is that their semantics is
determined uniquely by the set of commands they contain, see Theorem 1. Command sets
that can be arranged into canonical sequences are also called canonical. For the formal
definitions, we need two more notions. A command sequence α honors�, if for any two
commands σ, τ ∈ α, σ precedes τ in the sequence whenever σ � τ. The command set A
is�-connected if for any two commands σ, τ ∈ A; if σ and τ are on different comparable
nodes, then they are connected by an�-chain (Definition 2) consisting of commands in A.
In particular, if A is�-connected and σ, τ ∈ A are on the comparable nodes n and m, then
A has commands on each node between n and m.

Definition 3 (Canonical sets and sequences). The command set A is canonical if the following
three conditions hold:

• A does not contain null commands;
• A contains at most one command on each node;
• A is�-connected.

The command sequence α is canonical if the commands in α form a canonical set and, additionally, α
honors�.

For example, the set consisting of the three commands 〈/a/b,D, f5〉, 〈/a/c, fo,O〉, and
〈/a/c, f5, f5〉 is not canonical for two reasons: the third command is a null command, and
the second and the third commands are on the same node. The following command set is
also not canonical:

{ 〈/a/b/c/d, fs,O〉, 〈/a,D, fs〉, 〈/a/b,D,O〉 }

as its first and last elements are not �-connected (the second and third elements are
�-connected). Adding the command 〈/a/b/c,D,O〉 to this set makes it canonical.

Theorem 1 (E.P. Csirmaz, [13]).
(a) If two canonical sequences share the same command set, then they are semantically equivalent.

Actually, they can be transformed into each other using commutativity rules.
(b) Canonical sequences are non-breaking.
(c) Every non-breaking sequence α can be transformed into a canonical sequence α∗ Ě α (that is,

α and α∗ have the same effect on filesystems that α does not break, but α∗ might work on more
filesystems).

(d) Canonical sets can be ordered to honor�, that is, to become canonical sequences.

As an example, the only order honoring the� relation of the canonical set

E =
{
〈/a/b/c/d, fs,O〉, 〈/a,D, fs〉, 〈/a/b,D,O〉, 〈/a/b/c,D,O〉

}
(1)

is the one which executes them “bottom up” starting with the command on /a/b/c/d and
ending with the command on node /a.

Using Algorithm 1 as an auxiliary tool, Algorithm 2 in Section 4 checks, in near linear
time, whether a command set A is canonical. Algorithm 3 arranges a canonical set into a
canonical sequence.

By virtue of Theorem 1 (a) and (d), the semantics of canonical sequences is determined
by the unordered set of their commands, even if their order cannot be recovered uniquely
(this happens when the set contains commands on incomparable nodes). Thus, when only
the semantics is concerned, a canonical sequence can, and will, be replaced by the set of
its commands. For example, when we write AΦ, where A is a canonical command set, we
mean that commands in the set A should be applied in some (or any)�-honoring order to
the filesystem Φ. Similarly, A ◦ B means that, first, the commands in A are applied in some
�-honoring order, followed by the commands in B, again in some�-honoring order.

Future Internet 2023, 15, 198 8 of 26

The property that commands in a canonical set can be executed in different orders
while preserving their semantics is a variant of the commutativity principle of CRDT [20].
Definition 4 below discusses a special case of the reordering when a subset of the commands
is to be moved to the beginning of the execution line.

Definition 4 (Initial segment). For a canonical set A, we write B b A and say that B is an initial
segment of A to indicate that B is not only a subset of A but can also be moved to the beginning of
an ordering of A while keeping the semantics. In other words, A ≡ B ◦ (A r B).

We remark that if B is an initial segment of A, then both B and A r B are canonical
(see Proposition 5 in [14]). For example, the canonical set E in Equation (1) has three proper
initial segments:

{〈/a/b/c/d, fs,O〉, 〈/a/b,D,O〉, 〈/a/b/c,D,O〉
}

,{
〈/a/b/c/d, fs,O〉, 〈/a/b/c,D,O〉

}
, and{

〈/a/b/c/d, fs,O〉
}

and, of course, all of them are canonical.

2.5. Refluent Sets

Following the terminology of [14], canonical sets A and B are called refluent if there is
at least one filesystem on which both of them work (neither of them breaks). In general, the
canonical sets A1, . . . , Ak are jointly refluent if there is a single filesystem on which all of them
work. It is clear that if k canonical sets are jointly refluent, then they are pairwise refluent as
well. The converse statement, that if the canonical sets Ai are pairwise refluent, then they
are also jointly refluent, is stated and proved as Proposition 1 in Section 5. The concept
of refluence arises naturally in file synchronization. Command sequences representing
changes to the replicas are refluent, as they are applied to identical copies of the same
filesystem.

3. Filesystem Synchronization

The synchronization paradigm used in this paper follows the traditional one described
in, for example, [17] and depicted in Figure 1. At the beginning of the synchronization cycle,
each replica stores an identical copy of the same filesystem Φ. Due to local modifications,
the replicas diverge, and after some time, the filesystem in the i-th replica changes to Φi. At
a certain moment, the replicas call for synchronization by sending information extracted by
the update detector (run locally) to a central server, which hosts the reconciliation algorithm.
After the server has received all update information, it determines what the common
synchronized filesystem Ψ will be. Then, it sends instructions to the replicas separately
telling them how to transform their local filesystem to the synchronized one. Finally,
each replica executes the received instructions, which transforms their local copy to the
synchronized state Ψ, optionally informing the user about some (or all) of the conflicts and
how they have been resolved.

3.1. Update Detector

Depending on the data communicated by the replicas, synchronizers are categorized
as either state-based or operation-based [9,12]. In state-based synchronization, replicas send
the current state of their filesystems, or merely the differences between their current state
and the last known synchronized state [21]. Frequently, the local copy does not have access
to the original synchronized state because of its limited resources, and transmitting the
whole current state is prohibitively expensive. It is an active research area to devise efficient
transmission algorithms which transmit the differences only [18,22–24]. Operation-based
synchronizers transmit the complete log (or trace) of all operations performed by the
user [25]. It has been observed that in practice these logs are poorly maintained and are not
always reliable [26,27].

Future Internet 2023, 15, 198 9 of 26

Theorem 1 suggests that the updated information that the replicas send to the central
server (or, rather, the data on which the synchronizer algorithm works) can be a canonical
command set which transforms the original synchronized filesystem to the current replica.
By Theorem 2 below, this set is not only a succinct representation of the differences but
can also be generated in time proportional to the size of the filesystems (by traversing the
original Φ and the modified filesystem Φi simultaneously).

Theorem 2 ((Theorem 19 in [14])). Let Φ and Ψ be two filesystems. The command set

AΦ�Ψ = {〈n, Φ(n), Ψ(n)〉 : n ∈ N and Φ(n) 6= Ψ(n) }

is canonical, and AΦ�ΨΦ = Ψ.

If the replica has a complete log of the commands executed by the user (as in an
operation-based update detector), that is, if the updates are collected in a command se-
quence αi which transforms Φ to Φi, then αi can be transformed into the requested canonical
set as claimed by Theorem 1 (c). As detailed in Algorithm 4 in Section 4, this transformation
can be performed in near linear time in the size of αi, which can be much faster than
traversing the whole filesystem.

3.2. Synchronization

The central server, having received the canonical sets from the replicas describing
the local changes, must resolve all conflicts between the updates and generate a common,
synchronized filesystem. Conflict resolution should be intuitively correct; thus, discarding
all changes made by the replicas is not a viable alternative. While the majority of practical
and theoretical synchronizers do not present any rationale to explain their specific conflict
resolution approach [12], two notable exceptions [6,10] describe high-level consistency
philosophies. In Ref. [10], the main principles are no lost update (preserve all updates
on all replicas because these updates are equally valid) and no side effects (do not allow
objects to unexpectedly disappear). While these principles make intuitive sense, neither
can possibly be upheld for every conflict. In Ref. [6], the relevant consistency requirements
are intention-confined effect (operations applied to the replicas by the synchronizer must be
based on operations generated by the end user), and aggressive effect preservation (the effect
of compatible operations should be preserved fully, and the effect of conflicting operations
should be preserved as much as possible). These requirements are, in fact, variations of
the OT consistency model [4]. Note that the other two OT principles—convergence and
causality preservation—do not apply to filesystem synchronizers.

In keeping with the prescriptive nature of the above principles, we proceed by defining
what a synchronized state is, rather than creating it by some ad hoc method. Suppose
that the original filesystem is Φ, and the modified filesystem at the ith replica is Φi = AiΦ,
where Ai is the canonical set submitted as input to the reconciler. The synchronized or
merged state Ψ is determined by the canonical set M called the merger such that Ψ = MΦ,
where M satisfies the following two conditions:

(1) Every command in M is submitted by one of the replicas;
(2) The canonical set M is maximal with respect to the first condition.

The first condition ensures that the synchronization satisfies the intention-confined effect:
there are no surprise changes in the merged filesystem. The aggressive effect preservation
is guaranteed by the second condition. As M is maximal, it preserves as much of the
intention of the users as possible. In general, there can be many different mergers satisfying
these conditions. The reconciler must choose one of them either automatically using some
heuristics, or manually as instructed by the user.

Observe that the canonical sets Ai describing the local changes are jointly refluent
(see Section 2.5), as all of them can be (and were) applied to the original filesystem Φ. The
formal definition of a merger is as follows.

Future Internet 2023, 15, 198 10 of 26

Definition 5 (Merger). The merger of the jointly refluent canonical sets A1, . . . , Ak is a maximal
canonical set M ⊆ ⋃i Ai. The corresponding synchronized state of the replicas A1Φ, . . . , AkΦ is MΦ.

This definition requires the absolute minimum. Due to its simplicity, it is clear, intu-
itively appealing, and captures the desired properties of a synchronized state. It remains
to be seen whether it is also sufficient or an oversimplification. Surprisingly, this def-
inition is indeed sufficient. Mergers provided by Definition 5 satisfy many additional
desirable properties without any further requirements. Some of these properties are dis-
cussed in the next subsections. For the rest of this section, we fix the canonical set Ai
and the original filesystem Φ so that the current state of replica i is the valid filesystem
Φi = AiΦ. Consequently, none of the sets Ai breaks Φ, and therefore the command sets Ai
are jointly refluent.

As an example, suppose that Φ contains directories at /a, /a/b, and single file at
/a/b/c. The first replica deletes the file and all directories above it. The second replica
creates a file below /a/b. The third replica creates the same file but with different content,
and also creates a copy of that file below /a. The canonical sequences describing these
changes are

A1 = {σ1, σ2, σ3}, where σ1 = 〈/a/b/c, fo,O〉, σ2 = 〈/a/b,D,O〉, σ3 = 〈/a,D,O〉;
A2 = {τ}, where τ = 〈/a/b/z,O, fz〉;
A3 = {ρ1, ρ2}, where ρ1 = 〈/a/z,O, fu〉, and ρ2 = 〈/a/b/z,O, fu〉.

It is clear that σ3 is in conflict with all commands in A2 and A3; σ2 is in conflict with
τ and ρ2. Commands τ and ρ2 are also in conflict; and a merger containing σ3 must also
contain σ2. σ1 is compatible with all other commands, and thus it will be in each possible
mergers. If σ3 is in the merger, then it can contain no commands from either A2 or A3. If σ2
is not present, then only the conflict τ vs. ρ2 remains. Thus, there are four mergers, namely

M1 = {σ1, σ2, σ3}, M2 = {σ1, σ2, ρ1}, M3 = {σ1, τ, ρ1}, and M4 = {σ1, ρ1, ρ2}.

Each merger describes a possible synchronized state, and each one can be the desired
one under the right circumstances.

3.3. Mergers Are Applicable to the Filesystem

While Definition 5 does not require M to work on the original filesystem Φ, it never
breaks it as proved in Proposition 3 in Section 5. Every merger creates a meaningful
synchronized state and never breaks the original filesystem.

3.4. Mergers Can Be Created in Near Linear Time

Mergers can be created by a simple greedy algorithm. Proposition 4 in Section 5 states
that a non-maximal canonical subset of

⋃
i Ai can always be extended by some command

from
⋃

i Ai so that it remains canonical. Consequently, starting from the empty set and
adding commands from

⋃
i Ai one by one while keeping the set canonical produces a

merger. In particular, any canonical subset of
⋃

i Ai can be extended to a merger. Since
checking whether a command set is canonical takes linear time (Algorithm 2), this naïve
approach requires cubic time. Algorithm 5 creates a merger in near linear time. To generate
all mergers in nondeterministic linear time, we need a more sophisticated algorithm as
discussed in Section 6.

3.5. Mergers Have an Operational Characterization

The synchronized state defined by the merger M as Ψ = MΦ has a clear operational
characterization. The local replica Φi can be transformed into the merged state by first
rolling back some of the local operations executed on that replica, then applying additional
commands executed on other replicas. By Proposition 3, M ∩ Ai is an initial segment of
both Ai and M, and thus,

Ai ≡ (M ∩ Ai) ◦ (Ai r M).

Future Internet 2023, 15, 198 11 of 26

Rolling back the commands in Ai r M, that is, executing the canonical set (Ai r M)−1 on
Φi, gives (M ∩ Ai)Φ. Then, applying the canonical set M r Ai yields the filesystem

(M ∩ Ai) ◦ (M r Ai)Φ = MΦ = Ψ.

In summary, the i-th replica should execute the command set

(Ai r M)−1 ◦ (M r Ai)

on its local copy Φi to transform it into the synchronized state Ψ. The rolled back commands
in Ai r M give a clear indication of the local changes that are discarded. This command set
could be presented to the user to decide whether some of them should be reintroduced.

Choosing the merger M3 = {σ1, τ, ρ1} in the example above, the first replica should
roll back σ2 and σ3 by executing {σ−1

2 , σ−1
3 }. These commands restore the directories at

/a and /a/b. They are followed by executing {τ, ρ1} which adds the two files. To reach
the same synchronized state, the second replica need not roll back any of its commands.
Executing {σ1, ρ1} directly deletes the file at /a/b/c and creates the new file at /a/z. Finally,
the third replica should roll back ρ2 (after this, the precondition in τ holds, so τ will not
break the filesystem when executed), and then execute the commands τ and σ1 in any order.

Observe that after synchronization, none of the rolled-back commands is applicable
anymore. σ2 and σ3 would delete directories which are not empty, while ρ2 would create
a file which already exists. This is true in general. The maximality of the merger set M
implies that none of the rolled-back commands can be executed directly on the synchronized
state Ψ. Either its input condition would fail (modification by some other replica on that
node took precedence), or the command would destroy the tree property (deleting a non-
empty directory, or creating a file under a non-existent directory). Therefore, the changes
represented by the rolled-back commands can only be reintroduced in a different form.

3.6. Mergers Can Be Created via Conflict Resolution

Synchronizers typically work by identifying and resolving conflicts until no conflicts
remain. While Definition 5 specifies the synchronized state directly, clearly two commands
are in conflict if they cannot occur together in the same canonical set. In our case, however,
a weaker notion of conflict also works.

Definition 6. The commands σ, τ ∈ ⋃i Ai are in conflict if either of the following is true:

(a) They are different commands on the same node.
(b) The node of σ is above the node of τ, σ creates a non-directory and τ creates non-empty content.

Commands τ = 〈/a/b/z,O, fz〉 and ρ2 = 〈/a/b/z,O, fu〉 from the example above are
in conflict, as they are different commands on the same node. Command σ3 = 〈/a,D,O〉
creates a non-directory; thus, it is in conflict with every command below it, which creates a
file—that is, all commands in A2 and A3—but it is not in conflict with σ1 = 〈/a/b/c, fo,O〉
and σ2 = 〈/a/b,D,O〉, which create empty content.

By Proposition 2, canonical sets (and thus mergers) do not have conflicts at all, while
Theorem 4 claims that a maximal command set of

⋃
i Ai without conflicts is a merger. The

synchronizer, having received the command sets Ai, can create a conflict graph, whose
vertices are the commands in

⋃
i Ai and edges connect conflicting commands. Mergers

correspond to the maximal independent vertex sets of this graph. Creating a merger via
conflict resolution can therefore be performed using the following procedure: pick an edge
of the graph representing a conflict between, say, σ and τ. Choose either σ or τ as the
winner, and delete all vertices connected to the winner (i.e., those vertices which cannot be
in the same merger as the winner). When there are no more edges, the remaining vertices
form a maximal independent set, a merger.

Using this conflict graph, the synchronizer can make smart decisions, a feature which
is painfully missing in commercial and other theoretical synchronizers. When choosing the

Future Internet 2023, 15, 198 12 of 26

conflict to be resolved and the winner of the conflict, the decision can take into account not
only local information (the conflicting command pair) but also the effect of the decision on
other conflicts.

Creating and manipulating the conflict graph can be done in quadratic time [28]. As
this graph has a very special structure and not too many edges, the actual running time
could be better. As our main interest in this paper was developing subquadratic algorithms,
we did not pursue this line of research further. Using the conflict resolution strategy,
Algorithm 5 in Section 4 creates a merger in near linear time. Unfortunately, this algorithm,
as explained later, cannot generate all mergers in nondeterministic linear time. For that
task, we need further ideas explored in Section 6.

3.7. Mergers Support Asynchronous and Offline Synchronization

As usual, let the filesystem at the i-th replica be Φi = AiΦ, with the replica sending
the canonical command set Ai to the server for synchronization. Section 3.5 discusses that
when the server returns the merger M, the replica should execute

(AirM)−1 ◦ (MrAi)

on the local copy to transform it to the synchronized state Ψ = MΦ. Optionally, the replica
could present the conflicting command set AirM to the user for inspection.

Suppose the replica Φi has not been locked, and by the time the reply M arrives from
the server, it has changed to Φ′i = A′iΦ, where A′i is a new canonical set describing the
differences between the current state Φ′i and the original common state Φ; see Figure 2.
In this case, the local machine should transform the replica to the synchronized state Ψ
and carry over those extra changes that are still executable. To this end, it invokes the
synchronization algorithm for the canonical sets A′i and M, making sure that the returned
merger M∗ contains M (this can be achieved, for example, by constructing the merger via
conflict resolution and making sure that each conflict is resolved in favor of a command in
M). By Claim 3, M will be an initial segment of M∗, and thus, M∗ = M ◦M′, where M′ is
the canonical set M′ = M∗ r M. Apply the commands

C′i = (A′irM∗)−1 ◦ (M∗rA′i)

to the filesystem Φ′i and return A′irM∗ as the conflicting command set. At this moment,
the local filesystem is

C′i Φ
′
i = C′i(A′iΦ) = M∗Φ = M′(MΦ) = M′Ψ,

which is exactly the synchronized filesystem Ψ, to which the command set M′ has been ap-
plied. The commands in M′ can be incorporated easily into the next round of synchronization.

In fact, the same method works, even if the replica does not take part in the process of
determining the merger M. Thus, latecomers or offline replicas, who did not participate in
determining the merged state, can still upgrade to it without losing their ability to take part
in subsequent synchronization rounds.

4. Algorithms

Let us begin with some of the properties, assumptions and decisions that the algo-
rithms rely on. In our model, a filesystem command has three components: the node it
operates on, and the input and output values. Each component is stored in some constant
space (using pointers, if necessary). Commands can be sorted using any lexicographic
order on the nodes, which is consistent with the “parent” function. In the standard example,
a node (path) name is a sequence of identifiers separated by the slash character. With the
assumption that comparing two path strings lexicographically takes constant time, sorting
n filesystem commands can be done deterministically in O(n log n) time [16]. We also
assume that other path-manipulating algorithms, such as returning the parent of a node,

Future Internet 2023, 15, 198 13 of 26

or deciding whether a node is above another one, also take constant time. Similarly, we
presuppose that operations on filesystem values (determining their type, checking their
equality or comparing them for sorting) can also be done in constant time.

Almost all algorithms assume that the input commands are in a doubly linked list
sorted lexicographically by the nodes of the commands. The time and space complex-
ity estimates of the algorithms typically exclude this sorting time. A proof-of-concept
implementation of the algorithms presented in this paper in Python can be found at
https://github.com/csirmaz/algebraic-reconciler (accessed on 10 May 2023).

4.1. The up Structure

Our first algorithm will be used many times, frequently tacitly, as an auxiliary tool. It
enhances a set of nodes by adding an extra up pointer between the nodes. This pointer at
node n is ⊥ if no other node in the set is above n; otherwise, it points to the node in the set,
which is its lowest ancestor. In particular, if the parent of n is also in the set, then up(n) is
the parent of n.

Algorithm 1 (Adding up pointers, Code 1). Sort the nodes lexicographically, and check them in
increasing order. Suppose we have finished processing node n, and the next node in the list is m.
Find the first node in the sequence n, up(n), up(up(n)), etc., which is above m. If found, set up(m)
to this node. If none of them is above m or m is the first node, then set up(m) to ⊥.

Code 1. Given a lexicographically sorted sequence of commands, add the up pointers.

1 for each command in sequence do
2 if this is the first command then
3 command.up← ⊥
4 else
5 upCommand← previousCommand
6 loop
7 if upCommand = ⊥ or

upCommand.node is an ancestor of command.node then
8 command.up← upCommand
9 exit loop

10 else
11 upCommand← upCommand.up
12 end
13 end
14 end
15 end

For correctness, observe that in the namespace, the sequence n, up(n), up(up(n)), etc.,
defines the right boundary of the nodes processed up to n. Since the next node m is to the
right of the earlier nodes, its ancestors in the given set must be in this list. After sorting, the
running time is linear, as each up link is compared and discarded at most once, and each up

link is filled exactly once. We are grateful to Gábor Tardos for devising this algorithm; it is
used here with his permission.

4.2. Checking and Ordering Canonical Sets

This algorithm checks whether the command set A is canonical, assuming that it is
sorted lexicographically according to the nodes of the commands. It checks the first two
conditions of Definition 3, directly. Instead of the third condition (A is�-connected), the
following clearly equivalent conditions are verified:

1. If A contains a command on the node n and also on an ancestor of n, then it contains
a command on the parent of n;

2. If σ, τ ∈ A are on parent–child nodes, then either σ� τ or τ � σ.

https://github.com/csirmaz/algebraic-reconciler

Future Internet 2023, 15, 198 14 of 26

Algorithm 2 (Determining if A is canonical, Code 2). Start with all commands in A arranged
in a doubly linked list according to a lexicographic order of the command nodes. Loop through
the commands and check that there is one command on each node, and none of the commands is a
null-command. Run Algorithm 1 to define the up pointers. Loop through the commands. If the up
pointer is not ⊥, then it must point to the parent node; moreover, the current command and the
command at the parent must be�-related.

Code 2. Check whether a set of commands is canonical.

1 – sort sequence lexicographically by the nodes of the commands
2 – add up pointers using Algorithm 1
3 for each command in sequence do
4 if previousCommand.node = command.node then
5 return false not canonical, as multiple commands are on the same node
6 end
7 if command.up 6= ⊥ and not (

〈command.up, command〉 is a constructor pair or
〈command, command.up〉 is a destructor pair) then

8 return false not canonical because the closest command on an ancestor is not on the
parent, or they do not form a valid pair

9 end
10 end
11 return true this is a canoncal set

A canonical set A can always be ordered to honor�. Perhaps the simplest way to
obtain such an ordering is to make two passes through the lexicographically sorted set A,
as done by Algorithm 3.

Algorithm 3 (Ordering a canonical set, Code 3). Sort commands in a canonical set lexicograph-
ically. First, scan the commands forward (top–down), extracting the constructor commands, and
place them at the beginning of the output sequence. Second, place the remaining commands on the
output sequence in reverse lexicographical order (bottom–up). This includes destructors and edit
commands matching 〈•,F,F〉. It is clear that this sequence order honors the� relation.

Code 3. Order a canonical command set and return a canonical sequence.

1 sequence← commandSet in some order
2 – sort sequence lexicographically by the nodes of the commands
3 for each command in sequence do
4 if command is a constructor then
5 push command on output
6 end
7 end
8 for each command in sequence backwards do
9 if command is not a constructor then

10 push command on output
11 end
12 end
13 return output

Both Algorithm 2 and Algorithm 3 of this section clearly run in near linear time.

4.3. Transforming a Sequence to a Canonical Set

Given a non-breaking command sequence α, Algorithm 4 creates a canonical set A,
which semantically extends α in near linear running time.

Future Internet 2023, 15, 198 15 of 26

Algorithm 4 (Command sequence to canonical set, Code 4). Sort the commands in α in a
lexicographic order by their nodes, retaining the original order where they are on the same node.
Process them from left to right. For any consecutive sequence of commands that are on the same
node (including one-element sequences), define a replacement command that has the input value
of the first command and the output value from the last. If the two values are different, add the
replacement command to the result set.

If α may be breaking, it is easy to check that the output and input values of neighboring
commands on the same node are equal, or if the resulting set is indeed canonical. The
failure of these checks implies that α is breaking, though the algorithm may also successfully
convert a breaking sequence to a non-breaking canonical set.

Code 4. Return the canonical command set that is the semantic extension of this sequence.

1 – sort sequence lexicographically by the nodes of the commands; in case of equality, keep the
original order

2 for each command in sequence do
3 if this is the first command then
4 input← command.inputValue
5 else
6 if command.node 6= prevCommand.node then
7 newCmd← 〈prevCommand.node, input, prevCommand.outputValue〉
8 if newCmd is not a null command then
9 output← output∪ {newCmd}

10 end
11 input← command.inputValue
12 end
13 end
14 end
15 if sequence was not empty then
16 newCmd← 〈lastCommand.node, input, lastCommand.outputValue〉
17 if newCmd is not a null command then
18 output← output∪ {newCmd}
19 end
20 end
21 return output

4.4. Generating a Merger in Near Linear Time

Theorem 4 characterizes a merger of the jointly refluent command sets Ai as a max-
imal subset of

⋃
i Ai without conflicts. This characterization can be turned into a greedy

algorithm which generates a merger in near linear time. Actually, the algorithm finds a
maximal independent vertex set of the conflict graph (discussed in Section 3.6) exploiting
some special properties of this graph.

According to Definition 6, commands σ and τ are in conflict if either they are acting
on the same node; or if their nodes are comparable, the upper command creates a non-
directory, and the lower command creates a non-empty value. Loop through the commands
in
⋃

i Ai in a top–down order. At command σ, if σ is marked as being in conflict with some
earlier command, then skip it. Otherwise, keep σ and mark commands which are in conflict
with σ as conflicting. It follows that if σ is not skipped, it is not in conflict with commands
preceding it, and so conflicting commands are either on the same node, or below the node of
σ. To achieve the desired speed, instead of scanning all subsequent commands immediately,
we use lazy bookkeeping. In essence, if σ is selected, we flag its node to remember to
delete conflicting commands on descendant nodes. At each subsequent node, we check
whether its parent has this flag. If yes, we flag that node as well and process any conflicts

Future Internet 2023, 15, 198 16 of 26

accordingly. By Theorem 3, the node set of jointly refluent canonical sets is connected; thus,
this flag percolates properly to the descendants.

Algorithm 5 (Generating a merger, Code 5). The inputs are the jointly refluent canonical sets Ai;
the output is a merger M. Sort the commands in

⋃
i Ai lexicographically and then use Algorithm 1 to

create the up pointers. Add a “delete conflicts down” flag to the node of each command, initially unset.
Loop through the commands of

⋃
i Ai in lexicographic order. At command σ at node n, check

if the node of the command up points to having the “delete conflicts down” flag set. If yes, then
set this flag at n as well. If, additionally, σ creates some non-empty content (it is in conflict with
a final command above it), then delete σ. If σ is not deleted, then mark it as “final” and delete all
subsequent commands on the same node n. If σ is marked “final” and it creates a non-directory
value, set the “delete conflicts down” flag at n.

Commands marked as “final” form a maximal command set without conflicts; thus, they form
a merger.

Code 5. Given a set of jointly refluent canonical command sets, generate a merger.

1 sequence← union of commands in the command sets
2 – sort sequence lexicographically by the nodes of the commands
3 – add up pointers using Algorithm 1
4 for each command in sequence do
5 if command.node = deleteOnNode then
6 continue skip this command
7 end
8 if command.up 6= ⊥ and command.up.node.delConflictsDown then
9 command.node.delConflictsDown← true

10 if command.output 6= O then creates a non-empty content
11 continue skip this command
12 end
13 end
14 merger←merger∪ {command}
15 deleteOnNode← command.node
16 if command.output 6= D then creates a non-directory content
17 command.node.delConflictsDown← true
18 end
19 end
20 return merger

Unfortunately, this algorithm cannot generate all possible mergers. The only non-
deterministic choice it can make is picking the winner among commands on the same node,
which are not in conflict with previous commands. (Algorithm 5 chooses the first such
command). Otherwise, when the algorithm encounters a command for the first time, it puts
it into the final list, even if there might be mergers which do not contain this command. The
more sophisticated Algorithm 7 generates all mergers in nondeterministic near linear time.

The second step in asynchronous synchronization discussed in Section 3.7 requires
not only a merger, but a merger which extends a given canonical subset C of

⋃
i Ai. With

some tweaks, Algorithm 5 can be used for this task as well. The idea is that commands in⋃
i Ai are scanned twice. First, all commands are deleted, which are in conflict with some

command in C. Second, use the remaining commands only and proceed as in Algorithm 5.
The first scan requires, however, not only a “conflicts down” flag, but also a “conflicts up”
flag. To ensure that the algorithm spends linear time handling the upward conflicts, it
should check whether this flag is set first, and if yes, quit the upward processing. Otherwise,
it should set the flag, process the node, and continue processing at the parent node. We
leave it to the interested reader to work out the details.

Future Internet 2023, 15, 198 17 of 26

5. Theory

This section contains supporting theoretical results from the algebraic theory of filesys-
tems. Some of the results were used to justify the correctness of algorithms presented in
Section 4. Algorithm 6, that checks whether some canonical sets are refluent is presented
in this section as it uses the specific characterization given in Theorem 3. First, we look at
conditions which guarantee that a canonical set is applicable to a filesystem. Then, these
conditions will be used to characterize refluent canonical sets.

Claim 1. The canonical set A is applicable to the filesystem Φ if and only if the following conditions
hold for every command σ = 〈n, x, y〉 ∈ A:

(a) Φ(n) = x;
(b) If σ is a destructor, then Φ(n′) = O at every node n′ below n not mentioned in A;
(c) If σ is a constructor, then Φ(n′) = D at every node n′ above n not mentioned in A.

Proof. The conditions are necessary. Condition (a) is clear. For (b) and (c), note that no
command in A changes the filesystem value at n′, and after executing σ, the value at n′ must
be empty (or directory in case c), respectively. To show that the conditions are sufficient, let
σ ∈ A, for which there is no τ ∈ A where τ � σ. Then σ can be executed on Φ as Φ(n) = x
by condition (a), and because if σ is a constructor, then no commands on nodes above n are
in A, and thus the values at those nodes are D; if σ is a destructor, no command below n is
in A, and thus all nodes there contain the empty value. Furthermore, conditions (a)–(c) are
clearly inherited in the filesystem αΦ and the command set Arα.

5.1. Characterizing Refluent Sets

Claim 2. The canonical sets A and B are refluent if and only if the following conditions hold:

(a) If σ ∈ A and τ ∈ B are on the same node, then their input values are the same.
(b) If σ, τ ∈ A ∪ B are on comparable nodes, then for each node n′ between them, there is a

command in A ∪ B on n′.
(c) Suppose σ, τ ∈ A ∪ B are on nodes �n and n, respectively. If one of the sets mentions n but not

�n, then the input of σ is D; if one of the sets mentions �n but not n, then the input of τ is O.

Proof. The conditions are necessary. It is clear for (a). For the other two conditions, suppose
A can be applied to Φ. Observe that according to Claim 1, if A has a command on node n
but not on nodes above n, then on nodes above n, the filesystem must contain directories; if
there are no commands in A below n, then all nodes below n must be empty.

For the other direction, we use Claim 1, too. Set the content at each node mentioned in
A ∪ B to the common input value. Additionally, set the content to directory at each node
above a non-empty node and set the content to empty below every non-directory node.
Furthermore, for each constructor command in A ∪ B on node n, set every node above n
not mentioned in A ∪ B to a directory. Similarly, for each destructor command in A ∪ B on
node m, set every node below m not mentioned in A ∪ B to empty. Observe that values
at nodes in A ∪ B do not change due to (b) and (c). These assignments produce a valid
filesystem which satisfies the conditions of Claim 1.

Proposition 1. If the canonical sets Ai : i ≤ k are pairwise refluent, then they are jointly refluent.

Proof. Mimicking the proof of Claim 2, construct the filesystem Φ as follows. Start with all
empty nodes. For each command in Ai, set the value at the node of the command to its
input value. Each node obtains the same value, as the sets Ai are pairwise refluent. For the
same reason, if a node obtains a non-empty value, then all nodes above it can be set to be a
directory. Next, if σ ∈ Ai is a destructor and n′ below n is not mentioned in Ai but n′ is not
empty, then it is set by some Aj, and then Ai and Aj are not refluent. Finally, if σ ∈ Ai is
a constructor, and n′ is above n, not mentioned in Ai, then n′ should be set to a directory.
If it cannot be done because either Φ(n′) has been set to a different value, or some node

Future Internet 2023, 15, 198 18 of 26

above n′ has been set to a non-directory, then again we obtain Aj such that Ai and Aj are
not refluent.

Claim 3. Suppose the canonical sets A and B are refluent. Then A ∩ B is an initial segment of A.
In particular, A ≡ (A ∩ B) ◦ (ArB).

Proof. Suppose A∩ B is not empty and let σ be one of the common commands. By Claim 2,
if τ ∈ A and τ � σ, then τ must be in B as well. Thus, A ∩ B contains a command, which
is an initial segment both in A and in B. Delete this command from A and B and apply this
claim recursively to the remaining commands.

Algorithm 6 below checks whether the collection {Ai : i ≤ k} of canonical sets is
jointly refluent using the characterization proved in Theorem 3. For stating the theorem,
define, for any node n ∈ N and for i ≤ k, the index set In as

In = {i : there is a command in Ai on node n}.

Assuming further that all commands in
⋃

i Ai on node n have the same input value,
this common value is denoted by x(n).

Theorem 3. The canonical sets Ai are jointly refluent if and only if the following conditions hold:

(a) All commands on node n have the same input value;
(b) If m is above n and neither In nor Im are empty, then I�n is non-empty as well;
(c) If x(�n) 6= D, then In ⊆ I�n;
(d) If x(n) 6= O, then I�n ⊆ In.

Proof. Let us remark that condition (b) is equivalent to requesting that if n and m are
comparable, neither Im nor In are empty, then In′ is not empty for nodes between n and m.

To check that the conditions are necessary, let Φ be a filesystem, on which all Ai work.
Then, Φ(n) = x(n) for all nodes mentioned in

⋃
i Ai, given condition (a). Condition (b)

follows from part (b) of Claim 2 applied to the refluent sets Ai and Aj, where i ∈ In and
j ∈ Im. To check (c), assume x(�n) 6= D. Then, Φ(n) = O, and so if Ai has a command
on n (that is, i ∈ In), then Ai changes Φ(n) to a non-empty value, and thus, at the end,
the filesystem must have a directory at �n. As Ai does not break Φ and Φ(�n) is not a
directory, it must contain a command on �n, and thus i ∈ I�n, as required by (c). Similarly,
if x(n) 6= O (in which case Φ(�n) = D) and Ai has a command on �n (that is, Ai sets Φ(�n)
to be a non-directory), then Ai must also set Φ(n) to be empty, and thus i ∈ In, as required
by (d).

For the reverse implication, it suffices to show that Claim 2 is true for every pair
Ai and Aj, and then apply Proposition 1. Condition (a) of Claim 2 is immediate from
(a). For the rest, we first remark that if m is the parent of n and none of Im and In are
empty, then tp x(m) ≥ tp x(n). Indeed, if x(m) 6= D, then In ⊆ Im by (c), and thus, there
is a canonical Ak, which has commands on both n and m, consequently, we must have
x(n) = O. Similarly, if x(n) 6= O then Im ⊆ In, which implies similarly that x(m) = D.

Returning to checking conditions in Claim 2 for sets Ai and Aj, suppose i ∈ Im and
j ∈ In and m is above n. Consider the path between m and n. By condition (b), there are
commands on every node between m and n, and by the previous paragraph, the input
types on these nodes are non-increasing. If the next node below m on the m — n path is
not O, then (d) gives that Ai also has a command on that node, too. Similarly, if the node
immediately above n is not D, then by (c), Aj has a command on that node. Consequently,
either there is a node between m and n on which both Ai and Aj have a command, or
otherwise there is a command from Ai and a command from Aj on parent–child nodes
such that the former has input value D (as it is not in Aj), and the latter has input value O
(as it is not in Ai). In all cases, conditions (b) and (c) of Claim 2 hold, as required.

Future Internet 2023, 15, 198 19 of 26

Based on this characterization, the following algorithm checks, in near linear time,
whether the canonical command sets Ai for i ≤ k are refluent. The algorithm assumes that
the sets Ai are canonical.

Algorithm 6 (Checking if canonical sets are refluent, Code 6). Create a lexicographically
sorted list of the commands in

⋃
i Ai. Using Algorithm 1, add up pointers both for the commands

and nodes, meaning that the up pointer of command σ ∈ Ai points to the command in Ai, which
is directly above σ (if there is such a command in Ai), while the up pointer at node n points to the
parent of n if there is any node above n in the node set of

⋃
i Ai. Fill in the bitmaps In stored at node

n, the sets of which the commands belong to.
All four conditions of Theorem 3 can be checked by looping through the commands in lexico-

graphic order. For condition (b), note that the precondition implies that the up pointer is filled in at
n, and it is enough to check that it points to �n. Condition (c) does not need to be checked where no
up pointer points to �n, as then, all index sets below it are empty.

The total processing time after sorting is clearly linear if bitmap operations can be
implemented in constant time. Otherwise, In ⊆ I�n can be checked in time proportional
to |In| (which still gives a linear total time) by following the command up links at node n.
Checking I�n ⊆ In can be performed by counting the number of command up links at node
n and comparing it to the total number of elements in I�n.

Code 6. Given a set of canonical command sets, determine if they are jointly refluent.

1 sequence← union of commands in the command sets
2 – sort sequence lexicographically by the nodes of the commands
3 – add up pointers using Algorithm 1
4 for i from 1 to number of sets do determine the sets In
5 for each command in sets[i] do
6 command.node.index← command.node.index ∪ { i }
7 end
8 end
9 for each command in sequence do

10 if not the first command and previousCommand.node = command.node
and previousCommand.input 6= command.input then

11 return false not refluent due to condition (a)
12 end
13 if command.up 6= ⊥ then
14 if command.up.node is not the parent of command.node then
15 return false not refluent due to condition (b)
16 end
17 if command.up.input 6= D then not a directory
18 if command.node.index is not a subset of command.up.node.index then
19 return false not refluent due to condition (c)
20 end
21 end
22 if command.input 6= O then not empty
23 if command.node.index is not a superset of command.up.node.index then
24 return false not refluent due to condition (d)
25 end
26 end
27 end
28 end
29 return true the command sets are refluent

Future Internet 2023, 15, 198 20 of 26

5.2. Mergers by Conflict Resolution

This section presents a proof of the claim that the mergers are exactly the maximal
conflict-free subsets. Recall from Definition 6 that two different commands in

⋃
i Ai are

in conflict if either (a) they are on the same node, or (b) they are on comparable nodes,
the node on the higher node creates a non-directory and the command on the lower node
creates a non-empty content.

Proposition 2. There are no conflicts in a canonical set.

Proof. A canonical set contains at most one command on each node, so assume σ and τ
are on comparable nodes. Then, there is an�-chain between them (see Definition 3); thus,
either σ� · · · � τ, or τ � · · · � σ. In both cases, either the command on the higher node
creates a directory, or the command on the lower node creates an empty content.

Theorem 4. Suppose the command sets Ai are jointly refluent. M ⊆ ⋃i Ai is a merger if and only
if M is maximal without conflicts.

Proof. By Proposition 2, a merger does not contain conflicts; thus, it suffices to show that a
maximal conflict-free set M is canonical. M contains, at most, one command on each node
by condition (a) of Definition 6. Let σ, τ ∈ M be on nodes n and m, respectively, such that
n is above m. Moreover, let σ ∈ Ai and τ ∈ Aj. We want to show that there is a�-chain in
M between σ and τ. We know that σ and τ are not in conflict.

Consider first the case when σ creates a directory, that is, it matches 〈n,OF,D〉. As Ai
and Aj are refluent, let Φ be any filesystem on which both Ai and Aj work. Since Φ(n) is
not a directory, all nodes in Φ below n are empty, in particular, τ matches 〈m,O,FD〉. As
the canonical Aj does not break Φ, Aj must contain commands on all nodes between n and
m, including m. If n is a parent of m, then τ � σ, and we are done. If n is strictly above m,
then we may assume that there are no commands in M on nodes between n and m, and
thus no command on �m either. However, Aj contains a command τ′ = 〈�m,O,D〉 (as Aj
does not break Φ), and M ∪ {τ′} is conflict-free, contradicting the maximality of M.

The second case is when τ creates an empty node, that is, it matches 〈m,DF,O〉.
Similarly to the above, σ matches 〈n,D,FO〉, and then either τ � σ, or otherwise, Ai
contains the command τ′ = 〈�m,D,O〉, which can be added to M.

Proposition 3. Let Ai be canonical sets and M ⊆ ⋃i Ai be a merger. If none of Ai breaks Φ, then
neither does M.

Proof. We use the conditions in Claim 1 to show that M does not break Φ. To this end,
let σ = 〈n, x, y〉 ∈ M so that σ ∈ Ai. Since Ai does not break Φ, condition (a) follows. To
check (b), suppose σ is a destructor command, n′ is below n, and it is not mentioned in M.
If n′ is not mentioned in Ai either, then condition (b) holds, as Ai is applicable to Φ. So
suppose τ′ ∈ Ai is on the node n′. As τ′ /∈ M, there must be a command τ ∈ M on node
m, which is in conflict with τ′. Since M has no command on n′ (but has a command above
n′), m must be above n′. By Definition 6, τ′ creates a non-empty content. Since σ and τ′ are
not in conflict (both are in the canonical set Ai), σ must create a directory. However, this
contradicts the assumption that σ is a destructor.

The case when σ is a constructor and n′ is above n is similar.

Proposition 4. Let Ai be refluent canonical sets, and C ⊆ ⋃i Ai be canonical. There is a merger
extending C.

Proof. As commands in C are not in conflict by Proposition 2, C can be extended to be a
maximal conflict-free subset of

⋃
i Ai. However, this set is a merger by Theorem 4.

Future Internet 2023, 15, 198 21 of 26

6. Generating All Mergers

Algorithm 5 in Section 4.4 cannot generate all possible mergers in nondeterministic
linear time. The modified algorithm, which creates a merger extending a given canonical
subset C, can, however, be used for this purpose as follows. Pick a random subset C of the
commands in

⋃
i Ai and check if C is canonical using Algorithm 2. If yes, use the modified

version of Algorithm 5 to create a merger extending C; otherwise, use the original version
to create a merger.

While this algorithm clearly generates all mergers in nondeterministic linear time, it is
not satisfactory, as it blindly guesses the final merger. In this section, we develop a more
appealing approach by further exploiting the structure of refluent canonical sets. Let us
fix the jointly refluent canonical sets {Ai : i ≤ k}, and consider all nodes mentioned in the
command set

⋃
i Ai. Since the Ai canonical sets are refluent, we know that the input values

of the commands on the same nodes are equal.
Observe that if there are any conflicts among the commands, then there is a conflict of

one or more of the following special types:

(1) Multiple different commands on the same node with a file input value;
(2) A pair of commands matching 〈�n,D,OF〉 and 〈n,O,FD〉;
(3) Multiple different commands with an empty input value on the same node;
(4) Multiple different commands with a directory input value on the same node.

We eliminate these conflicts in this order. First, we consider conflicts of type (1). They
are necessarily on incomparable nodes, as in any filesystem, file nodes are on such nodes.
Of the commands on the same node, we choose a winner. If the winner is a destructor or
an edit (matching 〈n,F,OF〉), we delete all commands below n which create non-empty
content. If the winner is a constructor or an edit (matching 〈n,F,FD〉), we delete all
destructor commands above n. Since these conflicts are on incomparable nodes, deletions
triggered by one do not affect the conflicts on another. Additionally, since all deleted
commands are in conflict with the winner, an element of the merger, we know that the
merger will be maximal.

Next, we consider conflicts of type (2). We mark all parent nodes with a directory
value that have a destructor command and which have a constructor on an empty node on
one of their children. We consider such parent nodes in bottom–up order, and either keep
the destructor command(s) on the parent, or all the constructor commands on the children,
without choosing a winner yet. If the destructors are kept, we delete all commands below
�n, which create non-empty content. If the constructors are kept, we delete all destructors
on and above �n. Since the empty child nodes in these conflicts are on incomparable
nodes, the deletions there are independent. The deletions of commands creating non-empty
content on other children can only affect commands matching 〈n,D,F〉, which may be part
of conflicts of this type that are already resolved. However, since there is a destructor on �n,
there must be a 〈n,D,O〉 command on such children, so the resolution of earlier conflicts
are not affected by these deletions.

The deletions of destructors upwards are not independent, but as we proceed in
bottom–up order, they may resolve yet unresolved conflicts of type (2) but will never inter-
fere with conflicts already processed. We note that the subsequent steps in the algorithm
always choose a destructor or a constructor command as the winner on a node if, at this
stage, it has at least one. This means that all commands deleted here are in conflict with a
command that will be part of the merger, ensuring its maximality.

Conflicts of type (3) are considered in a top–down order. We choose a single winner
command on each node. If the winner matches 〈n,O,F〉, then we delete all constructor
commands below n. As the deletions are downwards, and we proceed top–down, they
may resolve yet unresolved conflicts of type (3) but will not interfere with the winners
already chosen. Additionally, deleted commands are clearly in conflict with the winner.

Finally, conflicts of type (4) are processed in bottom–up order. We again choose a
single winner on each node. If it matches 〈n,D,F〉, then we delete all destructors above

Future Internet 2023, 15, 198 22 of 26

n. It is again true that the deletions do not affect winners already chosen, and that the
maximality of the merger is guaranteed.

Since we know that any conflict entails a conflict of one of the above types, and as we
removed all such conflicts, we also know that the merger constructed is not only maximal
but also conflict-free.

The algorithm sketched below realizes this idea, and thus generates all mergers in
randomized near linear time. It assumes that the input command sets Ai are canonical
and refluent.

Algorithm 7 (Generating all mergers). Arrange the commands in
⋃

i Ai lexicographically and
add the up pointers as in Algorithm 6. Make several passes over the commands dealing with conflicts
(1)–(4) as indicated above. Each pass handles commands either in top–down order of their nodes, or
in the reverse bottom–up order. Handling the command at node n (which is the parent of another
node in case (2)) may result in deleting those commands at node n which satisfy a certain property,
deleting all commands above n which satisfy some other property, and deleting all commands below
n satisfying a third property, or some combination of these possibilities. The algorithm assumes that
those deletions are performed before proceeding to the next node.

In summary, make four passes through the commands, alternating top–down and bottom–up
orders, and handle cases (1) to (4) in each pass. Return the set of the final, non-deleted commands
as the merger. The correctness and that the algorithm can actually create all mergers by making
appropriate choices that follow from the discussion above.

The running time is linear if each pass can finish processing in linear time. To ensure
this, we keep additional flags at each node noting either that required upward deletions
are performed at and above this node, or that downward deletions should be performed as
necessary. Upward deletions are performed immediately following the up pointers, but
they abort upon encountering a node, in which the relevant flag is already set. This ensures
that each node is visited at most once for this purpose, keeping the running time linear.

Flags for downward deletions are checked whenever visiting a node in a top–down
pass. If the flag is set on the parent, set the flag on the current node, and delete the necessary
commands there. This ensures that the latest deletions are applied just in time. During
bottom–up passes, downward deletions are not performed immediately, as descendant
nodes are not processed again, but rather they are delayed until the next top–down pass or
an additional pass is executed for this purpose. As each flag is set at most once, the running
time is guaranteed to be linear. An easily accessible implementation of this algorithm in
Python can be found at https://github.com/csirmaz/algebraic-reconciler (accessed on 10
May 2023).

7. Empirical Results

The performance of the algorithms was tested on several synthetic data sets. These
sets consist of the collection of the canonical command sequences the replicas executed on
a common filesystem. This initial filesystem is determined by two integer parameters S
and T. It has non-empty nodes on the topmost three levels only. These nodes are labeled by
the paths /i, /i/j and /i/j/k, where i, j and k are numbers between 0 and S− 1 such that (i, j)
and (j, k) are not farther from each other modulo S than T. The filesystem contains different
files at the non-empty nodes /i/j/k, and contains directories at all other non-empty nodes.
Typical parameter values are T = 2 and S = 10.

The set of command sequences to be synchronized also depends on the number of
users (replicas), which varies between 2 and S− 1. User u for 0 ≤ u ≤ S− 1 makes the
following extensive changes on the filesystem:

(1) Deletes all existing files at /i/u/k for all i and k;
(2) Removes (the now empty) directories at /i/u for all i;
(3) For each x in (u− 1, u, u+ 1) modulo S and for all i and for all j 6= u changes the file at

/i/j/x (if exists) to a directory;

https://github.com/csirmaz/algebraic-reconciler

Future Internet 2023, 15, 198 23 of 26

(4) Under each newly created directory creates S new files with unique content. These
files are placed at the nodes with paths /i/j/x/l, where 0 ≤ l < S.

Depending on the parameter values S and T, the number of necessary filesystem
commands achieving these changes varies between 100 and 8000 per user. The instructions
were chosen so that there are both a large number of conflicts and also a large number of non-
conflicting command pairs, forcing any conflict-based synchronizer to spend quadratic time,
even to check the existence of conflicts. The command sequences have many symmetries to
ensure that the order in which the commands or command pairs are processed has little or
no effect on the running time.

In the experiments, we tried 20 different filesystems with the parameter S running
from 5 to 14 (inclusive), T running from 1 to [(S− 1)/2], and the number of users running
from 2 to S− 1, inclusive. The general synchronization Algorithm 7 from Section 6 was
called on the resulting collection of sequences to generate the first and the first three possible
synchronized states. Each run was repeated 10 times to smooth out the effects of other
programs running on the same server. Figure 3 depicts the average time used to generate
a single synchronizing command set. The input size on the x axis is the total number of
different commands in the sequences to be synchronized. The average running time on
the y axis is in seconds. The non-optimized Python program was running on a desktop
machine with an Intel(R) Core(TM) i5-8250U CPU @ 1.60 GHz processor and 8 G memory.
The different colors represent the number of replicas. The results confirm that the running
time is subquadratic in the total input size and does not depend on the number of replicas.

1

2

3

0

ru
nn

in
g

ti
m

e
(s

ec
)

5k 10k 15k 20k 25k 30k

total number of commands to synchronize

Figure 3. Running time for generating the synchronized state on several synthetic data sets. The
running time depends only on the total number of filesystem commands (x axis), and not on the
number of replicas (color).

8. Conclusions

This paper presented a provably correct synchronization algorithm running in sub-
quadratic time, which can synchronize an arbitrary number of replicas. The existence
of such an algorithm was a long-standing open problem [12] in the fields of operation
transformation (OT) [5] and conflict-free replicated data types (CRDT) [9]. Our work is
based on the algebraic theory of filesystems (ATF) [14], which, in many respects, resembles
both OT and CRDT. Instead of traditional filesystem commands, ATF uses operations en-
riched with contextual information similarly to OT and CRDT. It also favors commutativity,
but instead of requesting all operations to be commutative, their non-commutative part
can be isolated systematically and handled separately. As a consequence, similarly to
OT and CRDT, ATF can deal with command sets instead of sequences, where the execu-
tion order is not specified, but the semantics of executing the commands in some order is
defined unambiguously.

The underlying filesystem model, while arguably simplistic, retains the most important
high-level and platform-independent properties of real-life filesystems; see Section 2.1 for a
more detailed discussion. The two most prominent omissions of this model are the lack
of directory attributes (the model handles all directories as equal), and links breaking the

Future Internet 2023, 15, 198 24 of 26

regular tree-like structure of filesystem paths. Both of these shortcomings, and how to
circumvent them, are discussed below.

Filesystem synchronization starts with update detection run locally, which extracts
information encoding the state of the modified replica as discussed in Section 3.1. In the
ATF framework, this information is a canonical command set describing how to construct the
replica from the original filesystem.

The task of the synchronizer is to create a common, merged filesystem after considering
what changes have been applied to the replicas. In the ATF framework, this task amounts
to creating another canonical command set, the merger, which transforms the original
filesystem into the merged filesystem. What this merger can be is described by two simple
and intuitively appealing principles: the intention-confined effect, where operations in the
merger should come from those supplied by the replicas, and aggressive effect preservation,
where the merger should contain as many of those commands as possible. Definition 5
formalizes this idea and defines what a synchronized state is. Sections 3.3 and 3.5 discuss
that this goal-driven definition automatically implies many operational properties such
that a merger command set always defines a valid synchronized state; synchronization can
be achieved from the local copy by rolling back some of the local commands and executing
additional ones originating from other replicas. Section 3.7 shows that with minimal effort
the synchronization paradigm can be extended to tolerate replicas which do not lock their
filesystem—allowing for asynchronous or optimistic synchronization [9]. Even replicas
missing a synchronization cycle can later upgrade to the synchronized state.

Algorithms described in Section 4 give a high-level description of a proof-of-concept
implementation at https://github.com/csirmaz/algebraic-reconciler (accessed on 10 May
2023). Algorithm 5 creates a merger in linear time after sorting the canonical sets sent by
the replicas. While this algorithm can make some nondeterministic decisions, it cannot
generate all possible mergers. Two nondeterministic algorithms which can do so are
sketched in Section 6; both of them run in near linear time. The first algorithm uses
the fact that Algorithm 5 can recognize mergers. It first creates a random subset of the
supplied commands blindly, and then checks if it is a merger. The second one, described
as Algorithm 7, is more elaborate. It exploits the structure of refluent command sets, and
can assist in the synchronization process by highlighting the consequences of different
conflict resolutions.

8.1. Node Attributes

The important task of consolidating different versions of the same document (file
value) was not considered, as processing the internal structure of file contents is outside
the scope of filesystem synchronization. Files different in content are considered to be
different, and the synchronization algorithm forces the choosing of one or the other. There
is, however, an easy way of incorporating third-party content-merging applications. This
can be done by pretending that there is only one possible file content, and using the ATF
framework to synchronize the structure of the filesystems. When it becomes clear which
nodes contain file values, check for the commands which modified the actual content there,
and use the external application to determine the final file content. A similar approach can
handle node attributes by considering the changes made by the replicas at some node and
consolidating them. This approach, however, should be followed carefully. To illustrate
the problem, consider a directory at node n, which originally had the “private” attribute.
Replica A changes this attribute to “public”, while replica B, under the impression that
the directory is private, creates a file under it. When merging the attributes, the change at
node n is carried over, making the directory publicly available. This, however, is clearly
unacceptable. It is an interesting open problem to incorporate node attributes into the ATF
synchronization paradigm.

https://github.com/csirmaz/algebraic-reconciler

Future Internet 2023, 15, 198 25 of 26

8.2. Filesystems on Directed Acyclic Graphs

From the user’s perspective, a (hard or soft) link between the nodes n and n′ is a
promise, or a commitment, that the filesystem at and below n is exactly the same at and
below n′. In other words, the filesystem acts as if the nodes n and n′ in the filesystem
skeleton are glued together.

If the filesystem has many links and the links do not form loops, then after this gluing,
the skeleton becomes a directed acyclic graph (DAG) with many sources (the roots in the
original skeleton). The gluing works in the other direction, too: given any DAG with one
or more sources, it can be “unfolded” into a forest. The paths of a tree-like filesystem can
be identified with the directed paths starting from a source, and two nodes are “linked”
if the directed paths in the DAG lead to the same vertex. A DAG vertex v represents the
collection of all nodes in the unfolded filesystem, which are determined by the directed
paths in the DAG, which lead to v. Two nodes of this unfolded filesystem are equivalent,
written as n1 ' n2 if the corresponding directed DAG paths lead to the same vertex. It is
clear that ' is an equivalence relation, and factoring the filesystem by ' yields the DAG. If
every vertex in the DAG has a finite indegree, then the equivalence classes are also finite.

Operations on a DAG-based filesystem can be mimicked on the unfolded filesystem by
simply requesting that an operation performed on the DAG vertex v be done on all nodes
represented by v. Similarly, a command set A on the unfolded filesystem corresponds
to the command set A/' on the DAG-based filesystem if with every command σ ∈ A
all commands '-equivalent to σ are also in A. We call these command sets '-invariant.
Requesting all command sets to be '-invariant, the claims, propositions and theorems in
this paper remain true (remark that in this case, the definition of a merger should require
M to be '-invariant). Similarly, all algorithms continue to work, but they must handle
not commands but sets of '-equivalent commands. Consequently, time estimates are no
longer valid. In summary, our results and algorithms remain valid on filesystems based on
arbitrary DAGs. It is an open question as to whether the algorithms can be implemented in
linear time in the general case.

Author Contributions: All authors contributed equally to this work. All authors have read and
agreed to the published version of the manuscript.

Funding: The work of the second author (L.Cs) was partially supported by the ERC Advanced Grant
ERMiD.

Data Availability Statement: The Python program generating the synthetic data sets our algo-
rithms were tested on is available at https://github.com/csirmaz/algebraic-reconciler (accessed on
25 May 2023).

Acknowledgments: Gábor Tardos’ contribution for devising Algorithm 1 is gratefully acknowledged.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Athow, D.; Turner, B. Best File Syncing Solutions of 2023, 2023. Available online: https://www.techradar.com/best/best-file-

syncing-solution (accessed on 10 May 2023).
2. Mościcki, J.T.; Mascetti, L. Cloud storage services for file synchronization and sharing in science, education and research. Future

Gener. Comput. Syst. 2018, 78, 1052–1054. [CrossRef]
3. Sun, C.; Jia, X.; Zhang, Y.; Yang, Y.; Chen, D. Achieving Convergence, Causality Preservation, and Intention Preservation in

Real-Time Cooperative Editing Systems. ACM Trans. Comput. Hum. Interact. 1998, 5, 63–108. [CrossRef]
4. Sun, C.; Ellis, C.A. Operational Transformation in Real-Time Group Editors: Issues, Algorithms, and Achievements. In

Proceedings of the ACM 1998 Conference on Computer Supported Cooperative Work, Seattle, WA, USA, 14–18 November 1998;
Poltrock, S.E., Grudin, J., Eds.; ACM: New York, NY, USA , 1998; pp. 59–68. [CrossRef]

5. Shao, B.; Li, D.; Lu, T.; Gu, N. An Operational Transformation Based Synchronization Protocol for Web 2.0 Applications. In
Proceedings of the ACM 2011 Conference on Computer Supported Cooperative Work, Hangzhou, China, 19–23 March 2011,
CSCW ’11; Association for Computing Machinery: New York, NY, USA, 2011; pp. 563–572. [CrossRef]

https://github.com/csirmaz/algebraic-reconciler
https://www.techradar.com/best/best-file-syncing-solution
https://www.techradar.com/best/best-file-syncing-solution
http://doi.org/10.1016/j.future.2017.09.019
http://dx.doi.org/10.1145/274444.274447
http://dx.doi.org/10.1145/289444.289469
http://dx.doi.org/10.1145/1958824.1958910

Future Internet 2023, 15, 198 26 of 26

6. Ng, A.; Sun, C. Operational Transformation for Real-time Synchronization of Shared Workspace in Cloud Storage . In Proceedings
of the 19th International Conference on Supporting Group Work, Sanibel Island, FL, USA, 13–16 November 2016; Lukosch, S.G.,
Sarcevic, A., Lewkowicz, M., Muller, M.J., Eds.; ACM: New York, NY, USA, 2016; pp. 61–70. [CrossRef]

7. Day-Richter, J. What’s Different about the New Google Docs: Making Collaboration Fast, 2010. Available online: https:
//drive.googleblog.com/2010/09/whats-different-about-new-google-docs.html (accessed on 12 January 2023).

8. Shapiro, M.; Preguiça, N.M.; Baquero, C.; Zawirski, M. Conflict-Free Replicated Data Types. In Proceedings of the Stabilization,
Safety, and Security of Distributed Systems-13th International Symposium, SSS 2011, Grenoble, France, 10–12 October 2011;
Défago, X., Petit, F., Villain, V., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; Volume 6976 , pp. 386–400. [CrossRef]

9. Preguiça, N.M. Conflict-free Replicated Data Types: An Overview. arXiv 2018, arXiv:1806.10254.
10. Tao, V.; Shapiro, M.; Rancurel, V. Merging semantics for conflict updates in geo-distributed file systems. In Proceedings of the 8th

ACM International Systems and Storage Conference, SYSTOR 2015, Haifa, Israel, 26–28 May 2015; Naor, D., Heiser, G., Keidar, I.,
Eds; ACM: New York, NY, USA, 2015; pp. 1–12. [CrossRef]

11. Liu, E. A CRDT-Based File Synchronization System. Master’s Thesis, Norwegian University of Science and Technology,
Trondheim, Norway , 2021.

12. Shekow, M. Syncpal: A Simple and Iterative Reconciliation Algorithm for File Synchronizers. Ph.D. Thesis, RWTH Aachen
University, Aachen, Germany, 2019.

13. Csirmaz, E.P. Algebraic File Synchronization: Adequacy and Completeness. arXiv 2016, arXiv:1601.01736.
14. Csirmaz, E.P.; Csirmaz, L. Data Synchronization: A Complete Theoretical Solution for Filesystems. Future Internet 2022, 14, 344.

[CrossRef]
15. Shapiro, M.; Preguiça, N.; Baquero, C.; Zawirski, M. A Comprehensive Study of Convergent and Commutative Replicated Data Types;

Technical Report 7506; INRIA, Inria-Centre Paris-Rocquencourt: Le Chesnay-Rocquencourt, France , 2011.
16. Knuth, D.E. The Art of Computer Programming, Vol. 1: Fundamental Algorithms, 3rd ed.; Addison-Wesley: Boston, MA, USA , 1997.
17. Balasubramaniam, S.; Pierce, B.C. What is a File Synchronizer? In Proceedings of the MOBICOM ’98, The Fourth Annual

ACM/IEEE International Conference on Mobile Computing and Networking, Dallas, TX, USA, 25–30 October 1998; Osborne,
W.P., Moghe, D.B., Eds.; ACM: New York, NY, USA, 1998; pp. 98–108. [CrossRef]

18. Tridgell, A.; Mackerras, P. The Rsync Algorithm; Australian National University: Canberra, Australia , 1996.
19. Boškov, N.; Trachtenberg, A.; Starobinski, D. Enabling Cost-Benefit Analysis of Data Sync Protocols. arXiv 2023, arXiv:2303.17530.
20. Preguiça, N.; Marques, J.M.; Shapiro, M.; Letia, M. A Commutative Replicated Data Type for Cooperative Editing. In Proceedings

of the 2009 29th IEEE International Conference on Distributed Computing Systems, Montreal, QC, Canada, 22–26 June 2009;
ICDCS ’09; IEEE Computer Society: Washington, DC, USA, 2009; pp. 395–403. [CrossRef]

21. Antkiewicz, M.; Czarnecki, K. Design Space of Heterogeneous Synchronization. In Proceedings of the Generative and Trans-
formational Techniques in Software Engineering II: International Summer School, GTTSE 2007, Braga, Portugal, 2–7 July 2007;
Revised Papers; Lämmel, R., Visser, J., Saraiva, J., Eds.; Springer: Berlin, Heidelberg, 2008; pp. 3–46. [CrossRef]

22. Li, Z.; Wilson, C.; Jiang, Z.; Liu, Y.; Zhao, B.Y.; Jin, C.; Zhang, Z.L.; Dai, Y. Efficient Batched Synchronization in Dropbox-Like
Cloud Storage Services. In Proceedings of the Middleware 2013, Beijing, China, 9–13 December 2013; Eyers, D., Schwan, K., Eds.;
Springer: Berlin, Heidelberg, 2013; pp. 307–327.

23. Petroni, A.; Cuomo, F.; Schepis, L.; Biagi, M.; Listanti, M.; Scarano, G. Adaptive Data Synchronization Algorithm for IoT-Oriented
Low-Power Wide-Area Networks. Sensors 2018, 18, 4053. [CrossRef] [PubMed]

24. Feng, J.; Qiao, X.; Li, Y. The research of synchronization and consistency of data in mobile environment. In Proceedings of
the 2012 IEEE 2nd International Conference on Cloud Computing and Intelligence Systems, Hangzhou, China, 30 October–1
November 2012; Volume 2, pp. 869–874. [CrossRef]

25. Klophaus, R. Riak Core: Building Distributed Applications without Shared State. In Proceedings of the ACM SIGPLAN
Commercial Users of Functional Programming, Baltimore, MD, USA, 1–2 October 2010, CUFP ’10; Association for Computing
Machinery: New York, NY, USA, 2010. [CrossRef]

26. Qian, Y. Data Synchronization and Browsing for Home Environments. Ph.D. Thesis, Technische Universiteit Eindhoven,
Eindhoven, The Netherlands , 2004. [CrossRef]

27. Zhang, Y.; Dragga, C.; Arpaci-Dusseau, A.; Arpaci-Dusseau, R. *-Box: Towards Reliability and Consistency in Dropbox-like File
Synchronization Services. In Proceedings of the 5th USENIX Conference on Hot Topics in Storage and File Systems, Renton, WA,
USA, 8–9 July 2019, HotStorage’13; USENIX Association: Berkeley, CA, USA, 2013; p. 2.

28. Even, S. Graph Algorithms, 2nd ed.; Cambridge University Press: Cambridge, UK , 2011. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1145/2957276.2957278
https://drive.googleblog.com/2010/09/whats-different-about-new-google-docs.html
https://drive.googleblog.com/2010/09/whats-different-about-new-google-docs.html
http://dx.doi.org/10.1007/978-3-642-24550-3_29
http://dx.doi.org/10.1145/2757667.2757683
http://dx.doi.org/10.3390/fi14110344
http://dx.doi.org/10.1145/288235.288261
http://dx.doi.org/10.1109/ICDCS.2009.20
http://dx.doi.org/10.1007/978-3-540-88643-3_1
http://dx.doi.org/10.3390/s18114053
http://www.ncbi.nlm.nih.gov/pubmed/30463377
http://dx.doi.org/10.1109/CCIS.2012.6664300
http://dx.doi.org/10.1145/1900160.1900176
http://dx.doi.org/10.6100/IR576805
http://dx.doi.org/10.1017/CBO9781139015165

	Introduction and Related Works
	Definitions
	Filesystems
	Filesystem Commands
	Command Types, Execution Order
	Canonical Sets and Sequences
	Refluent Sets

	Filesystem Synchronization
	Update Detector
	Synchronization
	Mergers Are Applicable to the Filesystem
	Mergers Can Be Created in Near Linear Time
	Mergers Have an Operational Characterization
	Mergers Can Be Created via Conflict Resolution
	Mergers Support Asynchronous and Offline Synchronization

	Algorithms
	The up Structure
	Checking and Ordering Canonical Sets
	Transforming a Sequence to a Canonical Set
	Generating a Merger in Near Linear Time

	Theory
	Characterizing Refluent Sets
	Mergers by Conflict Resolution

	Generating All Mergers
	Empirical Results
	Conclusions
	Node Attributes
	Filesystems on Directed Acyclic Graphs

	References

