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NUMERICAL APPROXIMATION OF PROBABILISTICALLY WEAK AND
STRONG SOLUTIONS OF THE STOCHASTIC TOTAL VARIATION FLOW

L’uboḿır Baňas1,* and Martin Ondreját2

Abstract. We propose a fully practical numerical scheme for the simulation of the stochastic total
variation flow (STVF). The approximation is based on a stable time-implicit finite element space-time
approximation of a regularized STVF equation. The approximation also involves a finite dimensional
discretization of the noise that makes the scheme fully implementable on physical hardware. We show
that the proposed numerical scheme converges in law to a solution that is defined in the sense of
stochastic variational inequalities (SVIs). Under strengthened assumptions the convergence can be show
to holds even in probability. As a by product of our convergence analysis we provide a generalization
of the concept of probabilistically weak solutions of stochastic partial differential equation (SPDEs) to
the setting of SVIs. We also prove convergence of the numerical scheme to a probabilistically strong
solution in probability if pathwise uniqueness holds. We perform numerical simulations to illustrate
the behavior of the proposed numerical scheme as well as its non-conforming variant in the context of
image denoising.
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1. Introduction

We study a numerical approximation of the stochastic total variation flow (STVF)

d𝑋 = div
(︂
∇𝑋

|∇𝑋|

)︂
d𝑡− 𝜆(𝑋 − 𝑔)d𝑡 + 𝐵(𝑋)d𝑊, in (0, 𝑇 )×𝒪,

𝑋 = 0 on (0, 𝑇 )× 𝜕𝒪, (1)
𝑋(0) = 𝑥0 in 𝒪,

where 𝒪 ⊂ R𝑑, 𝑑 ≥ 1 is a bounded polyhedral domain, 𝜆 ≥ 0, 𝑇 > 0 are fixed constants and 𝑥0, 𝑔 ∈ L2 are
given functions, using the notation L2 = 𝐿2(𝒪). We consider 𝑊 to be a cylindrical Wiener process on ℓ2 and
a continuous mapping 𝐵 : L2 → L2(ℓ2; L2) where ℓ2 denotes the Hilbert space of square summable sequences,
L2 stands for the space of Hilbert–Schmidt operators such that

(B1) ‖𝐵(ℎ)‖L2(ℓ2;L2) ≤ 𝐶(‖ℎ‖+ 1) for every ℎ ∈ L2,
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(B2) if 𝑑 ≥ 2, whenever {ℎ𝑛} is bounded in L2 and ℎ𝑛 → ℎ a.e. in 𝒪 then

‖𝐵(ℎ𝑛)−𝐵(ℎ)‖L2(ℓ2;L2) → 0.

For instance, an operator
[𝐵(ℎ)](𝛼) :=

∑︁
𝑗

𝛼𝑗𝑏𝑗(ℎ), 𝛼 ∈ ℓ2,

where 𝑏𝑗 : R → R are continuous and

|𝑏𝑗(𝑥)| ≤ 𝜆𝑗𝜚(𝑥), 𝑥 ∈ R,

holds for some 𝜆𝑗 ≥ 0 and 𝜚 : R → R such that∑︁
𝑗

𝜆2
𝑗 < ∞ and |𝜚(𝑥)| ≤ 𝐶(|𝑥|+ 1),

satisfies (B1). If, moreover,

lim
|𝑥|→∞

|𝜚(𝑥)|
|𝑥|

= 0,

then also (B2) holds for 𝐵.
We also consider the weakly lower semicontinuous energy functional 𝒥 : L2 → [0,∞]

𝒥 (𝑢) := ‖∇𝑢‖TV(𝒪) +
∫︁

𝜕𝒪
|𝑢|d𝑥 +

𝜆

2

∫︁
𝒪
|𝑢− 𝑔|2 d𝑥 𝑢 ∈ L2 ∩𝐵𝑉 (𝒪),

𝒥 (𝑢) := ∞ 𝑢 ∈ L2 ∖𝐵𝑉 (𝒪),

see Lemma B.1 for details.
Due to the singular character of total variation flow (1), it is convenient to perform numerical simulations

using a regularized problem

d𝑋 = div

(︃
∇𝑋√︀

|∇𝑋|2 + 𝜀2

)︃
d𝑡− 𝜆(𝑋 − 𝑔)d𝑡 + 𝐵(𝑋) d𝑊 in (0, 𝑇 )×𝒪,

𝑋 = 0 on (0, 𝑇 )× 𝜕𝒪, (2)
𝑋(0) = 𝑥0 in 𝒪,

with a regularization parameter 𝜀 > 0. In the deterministic setting (𝐵(𝑋) ≡ 0) the equation (2) corresponds to
the gradient flow of the regularized energy functional

𝒥𝜀(𝑢) :=
∫︁
𝒪

√︀
|∇𝑢|2 + 𝜀2 d𝑥 +

𝜆

2

∫︁
𝒪
|𝑢− 𝑔|2 d𝑥 𝑢 ∈ H1

0.

Convergent finite element approximation of the deterministic total variation flow (i.e., (1) and (2) with
𝐵(𝑋) ≡ 0) has been proposed in [14]. In the stochastic setting, numerical approximation of probabilistically
strong stochastic variational inequalities (SVI) solutions of (1) with 𝐵(𝑋) ≡ 𝑋 has been analyzed recently in
[5–7] by considering the regularized problem (2) within the framework of stochastic variational inequalities, cf.,
[2]. In the present work we propose a fully implementable numerical approximation of (1) via the regularized
problem (2): in addition to the discretization in space and time we also consider an implementable approximation
of the noise term. We show that, in the limit, the numerical solutions satisfy a stochastic variational inequality.
As a consequence, we obtain an extension of the concept of stochastic variational inequalities of [2].
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Let us compare the present work with [5] where (probabilistically) strong solutions of (1) are constructed
numerically in case the domain 𝒪 is bounded, convex and with a piecewise 𝐶2-smooth boundary, the equation
is driven by a one-dimensional noise 𝑊 , 𝐵(𝑋) = 𝑋 and the interpolants 𝑋

𝜀

𝜏,ℎ of the numerical approximations
converge to the unique solution 𝑋 with paths continuous in 𝐿2(𝒪) via the double limit

lim
𝜀→0

lim
(𝜏,ℎ)→(0,0)

⃦⃦⃦
𝑋

𝜀

𝜏,ℎ −𝑋
⃦⃦⃦

𝐿2(Ω×(0,𝑇 );𝐿2(𝒪))
= 0.

In the present work 𝒪 is an open convex polyhedral domain, 𝐵 is a fairly general non-linearity (hence uniqueness
is not expected to hold and we construct just (probabilistically weak) “martingale” solutions). Furthermore, the
considered noise is an infinite dimensional random walk generated by a sequence of random variables (suitable
for computer simulations) and 𝑋

𝜀

𝜏,ℎ converge to 𝑋 in the joint limit as (𝜀, 𝜏, ℎ) → (0, 0, 0). Our SVI solution
concept is more general than the one in [5] but paths of the obtained solutions are only weakly continuous in
𝐿2(𝒪) and we cover the case 𝐵(𝑋) = 𝑋 only in 𝑑 = 1. If, in addition, pathwise uniqueness holds then the
approximations converge to a probabilistically strong solution in probability. We also note that the technique
used for the construction of the probabilistically weak SVI solutions is straightforward, i.e., we avoid the use of
martingale and Skorokhod representation theorems as in [19]. We mention that the approach of [5] is restricted
to spatial dimension 𝑑 = 1, cf., [7]. The higher dimensional case (for probabilistically strong solutions) is treated
in [6] using a slightly different approach; so far the work [6] appears to be the only one to cover the case of
linear multiplicative noise 𝐵(𝑋) = 𝑋 for 𝑑 > 1.

The paper is organized as follows. In Section 2 we introduce the notation and the numerical approximation
of (2) and in Section 3 we state the main results of the paper (which are proven in Sects. 7 and 8). In Section 4
we show a priori estimate for the numerical solution. In Section 5 we present auxiliary results on compactness
properties of locally convex spaces which are used to deduce tightness properties and convergence of the numer-
ical approximation in Section 6. Numerical experiments for the conforming and non-conforming finite element
approximation schemes are presented in Section 9. The proofs of auxiliary results are collected in the appendix.

2. Numerical approximation

We denote the standard Lebesgue and Sobolev functions spaces on 𝒪 as L𝑝 := 𝐿𝑝(𝒪), L𝑝
𝑤 = (L𝑝, weak),

H1
0 := 𝐻1

0 (𝒪), W1,1 := 𝑊 1,1(𝒪); we use ‖ · ‖L𝑝 to denote the standard L𝑝-norm and ‖ · ‖ := ‖ · ‖L2 . The sets of
rational and irrational numbers are denoted as Q and Q{, respectively. For time dependent random variables
we often write 𝑆𝑡(·) instead of 𝑆(·, 𝑡) provided that it fits the context of presentation.

We consider the space of functions of bounded variation

𝐵𝑉 (𝒪) =
{︀
𝑢 ∈ L1; ∇𝑢 is a vector measure

}︀
,

equipped with the norm

‖𝑢‖𝐵𝑉 (𝒪) := ‖𝑢‖L1 + ‖∇𝑢‖TV(𝒪),

see, for instance, Section 3.1 of [1]. We recall that for 𝑢 ∈ 𝐵𝑉 (𝒪) the gradient ∇𝑢 is a vector measure whose
total variation satisfies

‖∇𝑢‖TV(𝒪) = sup
{︂
−
∫︁
𝒪

𝑢 div vd𝑥; v ∈ 𝐶∞0 (𝒪, R𝑑), ‖v‖L∞ ≤ 1
}︂

.

For 𝑁 ∈ N we consider an equidistant partition {𝑡𝑖 = 𝑖𝜏, 𝑖 = 0, . . . , 𝑁} of the time interval [0, 𝑇 ] with a
discrete time step 𝜏 = 𝑇/𝑁 . Consequently, we consider a discrete filtration ℱ𝜏 := {ℱ 𝑖

𝜏}𝑁
𝑖=0 on a probability

space (Ω𝜏 , F𝜏 , P𝜏 ) and sequence {𝜉𝑖,𝑗
𝜏 }𝑁

𝑖,𝑗=1 of independent random variables such that

a) E
[︀
𝜉𝑖,𝑗
𝜏

]︀
= 0,
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b) E
[︀
|𝜉𝑖,𝑗

𝜏 |2
]︀

= 𝜏 ,

c) E
[︀
|𝜉𝑖,𝑗

𝜏 |4
]︀
≤ 𝐶𝜏2,

d)
(︀
𝜉𝑖,1
𝜏 , . . . , 𝜉𝑖,𝑁

𝜏

)︀
is ℱ 𝑖

𝜏 -measurable and independent of ℱ 𝑖−1
𝜏 ,

for every 𝑖, 𝑗 ∈ {1, . . . , 𝑁} and some fixed constant 𝐶 > 0 independent of 𝑁 ∈ N. A simple and easily imple-
mentable construction of the noise that satisfies the above properties is, for instance, 𝜉𝑖,𝑗

𝜏 =
√

𝜏𝜒𝑖,𝑗 where
{𝜒𝑖,𝑗}𝑁

𝑖,𝑗=1 are independent with P [𝜒𝑖,𝑗 = ±1] = 1
2 ; as another choice, one can consider Brownian increments

𝜉𝑖,𝑗
𝜏 = ∆𝑖𝛽

𝑗 := 𝛽𝑗(𝑡𝑖)− 𝛽𝑗(𝑡𝑖−1) of independent Brownian motions 𝛽𝑗 .
Let {Vℎ}ℎ>0 be a family of standard H1

0-conforming finite element spaces of globally continuous functions
which are piecewise linear over the quasi-uniform partitions {𝒯ℎ}ℎ>0 of 𝒪 with corresponding mesh sizes ℎ > 0.
Further, let 𝑃ℎ : L2 → Vℎ denote the L2-orthogonal projection on Vℎ. We assume that the family {Vℎ}ℎ>0

satisfies the following properties.

Assumption 2.1. (1) Vℎ is a finite-dimensional subspace of H1
0,

(2) Vℎ2 ⊆ Vℎ1 if 0 < ℎ1 < ℎ2,
(3) ‖𝑃ℎ𝑣‖H1

0
≤ 𝜅‖𝑣‖H1

0
holds for every 𝑣 ∈ H1

0 and ℎ > 0, for some 𝜅 ∈ (0,∞) (see [10]),
(4)

⋃︀
ℎ>0 Vℎ is dense both in H1

0 and L2.

It is well known that the above assumption is satisfied for Vℎ, 𝑃ℎ see for instance [12]. We note that the
stability of the L2-projection, Assumption 2.1(3) and the density of {Vℎ}ℎ>0 in H1

0 implies that ‖∇𝑣−∇𝑃ℎ𝑣‖ → 0
as ℎ → 0 for every 𝑣 ∈ H1

0.
We consider the following fully-discrete approximation of (2): fix 𝑁 ∈ N, ℎ > 0 set 𝑋0 = 𝑃ℎ𝑥0 and determine

𝑋𝑖 ∈ Vℎ, 𝑖 = 1, . . . , 𝑁 as the solution of

(︀
𝑋𝑖 −𝑋𝑖−1, 𝑣ℎ

)︀
=− 𝜏

(︃
∇𝑋𝑖√︀

|∇𝑋𝑖|2 + 𝜀2
,∇𝑣ℎ

)︃
(3)

− 𝜏𝜆
(︀
𝑋𝑖 − 𝑔, 𝑣ℎ

)︀
+

𝑁∑︁
𝑗=1

(︀
𝐵𝑗(𝑋𝑖−1), 𝑣ℎ

)︀
𝜉𝑖,𝑗
𝜏 ∀𝑣ℎ ∈ Vℎ,

where 𝐵𝑗(𝑋) is defined as 𝐵(𝑋)𝑒𝑗 and {𝑒𝑗} denotes the canonical orthonormal basis in ℓ2. Existence of the
unique ℱ𝜏 -adapted Vℎ-valued solution {𝑋𝑖}𝑁

𝑖=0 can be proved analogously to Lemma 3 of [5] therefore we omit
the proof. The process 𝑋𝑖 ≡ 𝑋𝑖

𝜀,ℎ, 𝑖 = 0, . . . , 𝑁 depends on the parameters (𝜏, ℎ, 𝜀), to simplify the notation we
suppress this dependence unless it matters.

Remark 2.1. All result of the paper remain valid for a modification of (3) where the discrete noise term is
replaced by

∑︀𝑅
𝑗=1

(︀
𝐵𝑗(𝑋𝑖−1), 𝑣ℎ

)︀
𝜉𝑖,𝑗
𝜏 with an 𝑁 -independent truncation parameter 𝑅 ∈ N. In this case the

convergence of the scheme follows by considering the limit 𝑅 → ∞ along with (𝜏, ℎ, 𝜀) → 0, without further
modifications of the arguments. We further note that the explicit evaluation of the terms 𝐵𝑗(𝑋𝑖−1), 𝑗 = 1, . . . , 𝑁
at 𝑋𝑖−1 (and not at 𝑋𝑖) is related to the fact that the multiplicative noise in (1) is considered to be of Itô type.

3. Summary of the main results

In this section, we summarize the main results of the paper. We start with the definition of the SVI solution
of (1).

Definition 3.1. Let (Ω,ℱ , (ℱ𝑡), P) be a stochastic basis with independent (ℱ𝑡)-Wiener processes (𝑊 𝑘)𝑘∈N.
An adapted process 𝑋∈ 𝐿2([0, 𝑇 ]× Ω; L2) with weakly continuous paths in L2 is called an SVI solution of (1)
provided that

1
2

E
[︁
‖𝑋(𝑡)− 𝐼(𝑡)‖2

]︁
+ E

[︂∫︁ 𝑡

0

𝒥 (𝑋(𝑠)) d𝑠

]︂
≤ 1

2

⃦⃦
𝑥0 − 𝑢0

⃦⃦2
+ E

[︂∫︁ 𝑡

0

𝒥 (𝐼(𝑠)) d𝑠

]︂
+ E

[︂∫︁ 𝑡

0

(𝐺(𝑠), 𝑋(𝑠)− 𝐼(𝑠)) d𝑠

]︂
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+
1
2

E
[︂∫︁ 𝑡

0

‖𝐵(𝑋(𝑠))−𝐻(𝑠)‖2L2(ℓ2,L2) d𝑠

]︂
, (4)

holds for every 𝑡 ∈ [0, 𝑇 ] and for every test process

𝐼(𝑡) = 𝑢0−
∫︁ 𝑡

0

𝐺(𝑠) d𝑠 +
∞∑︁

𝑗=1

∫︁ 𝑡

0

𝐻𝑗(𝑠) d𝑊 𝑗 , 𝑡 ∈ [0, 𝑇 ], (5)

that satisfies P [𝐼(𝑡) ∈ H1
0] = 1 for almost every 𝑡 ∈ [0, 𝑇 ] and

E

[︃∫︁ 𝑇

0

‖𝐼(𝑡)‖H1
0

d𝑡

]︃
< ∞,

for some 𝑢0 ∈ L2 and (ℱ𝑡)-progressively measurable processes 𝐺 and 𝐻 in 𝐿2([0, 𝑇 ] × Ω; L2) and 𝐿2([0, 𝑇 ] ×
Ω; L2(ℓ2, L2)) respectively.

Remark 3.1. Inequality (4) implies

sup
𝑡∈[0,𝑇 ]

E
[︀
‖𝑋(𝑡)‖2

]︀
+ E

[︃∫︁ 𝑇

0

‖𝑋(𝑡)‖𝐵𝑉 (𝒪) d𝑡

]︃
< ∞.

Remark 3.2. The SVI solution in the sense of Definition 3.1 generalizes the definition of the SVI solution from
[2] since the inequality (4) holds for a much larger class of test processes introduced in (5) than in [2]. Formally,
inequality (4) can be derived by applying Itô’s formula to the L2-norm of the difference of (1) and (5) and using
the convexity of 𝒥 .

Definition 3.2. We say that pathwise uniqueness holds for SVI solutions of (1) satisfying (8) provided that any
such two SVI solutions 𝑋0 and 𝑋1 on a stochastic basis (Ω,ℱ , (ℱ𝑡), P) with respect to independent (ℱ𝑡)-Wiener
processes (𝑊 𝑘)𝑘∈N satisfy 𝑋0(𝑡) = 𝑋1(𝑡) a.s. for every 𝑡 ∈ [0, 𝑇 ].

Definition 3.3. We say that SVI solutions of (1) satisfying (8) are unique in law provided that any such
two SVI solutions 𝑋0 and 𝑋1 on stochastic bases (Ω0,ℱ0, (ℱ0

𝑡 ), P0) and (Ω1,ℱ1, (ℱ1
𝑡 ), P1) with respect to

independent (ℱ 𝑖
𝑡 )-Wiener processes (𝑊 𝑘

𝑖 )𝑘∈N, 𝑖 = 0, 1 have the same finite-dimensional distributions, i.e.,

P0
[︀
𝑋0(𝑟0) ∈ 𝐴0, . . . , 𝑋

0(𝑟𝑛) ∈ 𝐴𝑛

]︀
= P1

[︀
𝑋1(𝑟0) ∈ 𝐴0, . . . , 𝑋

1(𝑟𝑛) ∈ 𝐴𝑛

]︀
holds for every 0 ≤ 𝑟0 ≤ · · · ≤ 𝑟𝑛 ≤ 𝑇 , every Borel sets 𝐴0, . . . , 𝐴𝑛 in L2 and every 𝑛 ∈ N.

We define the piecewise linear interpolant of the solution of the scheme (3) as

𝑋𝜏 (𝑡) =
𝑡− 𝑡𝑖−1

𝜏
𝑋𝑖 +

𝑡𝑖 − 𝑡

𝜏
𝑋𝑖−1 for 𝑡 ∈ [𝑡𝑖−1, 𝑡𝑖], (6)

as well as the piecewise constant interpolants

𝑋𝜏 (𝑡) = 𝑋𝑖 for 𝑡 ∈ (𝑡𝑖−1, 𝑡𝑖), (7a)
𝑋𝜏 (𝑡) = 𝑋𝑖−1 for 𝑡 ∈ (𝑡𝑖−1, 𝑡𝑖), (7b)

where the dependence on 𝜀, ℎ is not displayed.
Let 𝒳 (1) denote the space of weakly càglàd functions 𝑓 : [0, 𝑇 ] → L2 such that∫︁ 𝑇

0

‖𝑓(𝑠)‖𝐵𝑉 (𝒪) d𝑠 < ∞,

let 𝒳 (2) denote the space of weakly càdlàg functions 𝑓 : [0, 𝑇 ] → L2, define 𝒳 (3) as 𝐶([0, 𝑇 ]; L2
𝑤) and equip the

spaces 𝒳 (1), 𝒳 (2) and 𝒳 (3) with the topology of uniform convergence in L2
𝑤.
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Theorem 3.1. The random variables(︀
𝑋𝜀,ℎ,𝜏 , 𝑋𝜀,ℎ,𝜏 , 𝑋𝜀,ℎ,𝜏

)︀
: (Ω𝜏 ,ℱ𝜏 , P𝜏 ) → 𝒳 (1) ×𝒳 (2) ×𝒳 (3),

are Borel measurable and their laws under P𝜏 ≡ P𝜀,ℎ,𝜏 are tight with respect to 𝜀, ℎ, 𝜏 . Moreover, every sequence
(𝜀𝑛, ℎ𝑛, 𝜏𝑛) → (0, 0, 0) has a subsequence (𝜀𝑛𝑘

, ℎ𝑛𝑘
, 𝜏𝑛𝑘

) such that laws of(︁
𝑋𝜀𝑛𝑘

,ℎ𝑛𝑘
,𝜏𝑛𝑘

, 𝑋𝜀𝑛𝑘
,ℎ𝑛𝑘

,𝜏𝑛𝑘
, 𝑋𝜀𝑛𝑘

,ℎ𝑛𝑘
,𝜏𝑛𝑘

)︁
,

under P𝜏𝑛𝑘
converge to a Radon probability measure 𝜈 on B(𝒳 (1) ×𝒳 (2) ×𝒳 (3)) that satisfies

𝜈
(︁

(𝑥1, 𝑥2, 𝑥3) ∈ 𝒳 (1) ×𝒳 (2) ×𝒳 (3) : 𝑥1 = 𝑥2 = 𝑥3

)︁
= 1,

and there exists a stochastic basis (Ω,ℱ , (ℱ𝑡), P) with independent (ℱ𝑡)-Wiener processes (𝑊 𝑘)𝑘∈N and a weakly
continuous L2-valued SVI solution 𝑋 of (1) in the sense of Definition 3.1 such that 𝑋(0) = 𝑥0, 𝜈 is the law of
(𝑋, 𝑋, 𝑋) on 𝒳 (1) ×𝒳 (2) ×𝒳 (3) and

E

⎡⎣ sup
𝑡∈[0,𝑇 ]

‖𝑋(𝑡)‖4 +

(︃∫︁ 𝑇

0

‖𝑋(𝑠)‖𝐵𝑉 (𝒪) d𝑠

)︃2
⎤⎦ ≤ 𝐶, (8)

where 𝐶 = 𝐶(𝑇,𝒪, ‖𝑥0‖, ‖𝑔‖).

Proof. See Corollary 6.1 and Theorem 7.1 for the proof. �

Remark 3.3. Compared to the (probabilistically strong) SVI solutions in [2, 5] where the stochastic basis is
given, the SVI solution obtained in this paper is probabilistically weak in the sense that the stochastic basis
(Ω,ℱ , (ℱ𝑡), P) and the Wiener processes (𝑊 𝑘)𝑘∈N are constructed as a part of the solution, cf., Corollary 6.1
and Theorem 7.1.

Corollary 3.1. If uniqueness in law holds for the SVI solution of (1), cf., [2], then the laws of(︀
𝑋𝜀,ℎ,𝜏 , 𝑋𝜀,ℎ,𝜏 , 𝑋𝜀,ℎ,𝜏

)︀
,

under P𝜏 converge to 𝜈 on B(𝒳 (1) ×𝒳 (2) ×𝒳 (3)) as (𝜀, ℎ, 𝜏) → (0, 0, 0). In particular, there is no need to pass
to a subsequence in Theorem 3.1.

In case we work on a fixed stochastic basis independent of 𝜏 with a given Wiener process and pathwise
uniqueness holds for (1) then we can construct probabilistically strong solutions.

Theorem 3.2. Let (𝑊 𝑗)𝑗∈N be independent (ℱ𝑡)-Wiener processes on (Ω,ℱ , (ℱ𝑡), P) and let

𝜉𝑖,𝑗
𝜏 = 𝑊 𝑗(𝑡𝑖)−𝑊 𝑗(𝑡𝑖−1), 𝑡𝑖 = 𝑖𝜏.

Furthermore, assume that pathwise uniqueness holds for SVI solutions of (1) satisfying (8). Then there exists
an SVI solution 𝑋 with respect to (𝑊 𝑗)𝑗∈N satisfying (8) such that

sup
𝑡∈[0,𝑇 ]

⃒⃒(︀
𝑋𝜀,ℎ,𝜏 (𝑡)−𝑋(𝑡), 𝜙

)︀⃒⃒
, sup

𝑡∈[0,𝑇 ]

⃒⃒(︀
𝑋𝜀,ℎ,𝜏 (𝑡)−𝑋(𝑡), 𝜙

)︀⃒⃒
, sup

𝑡∈[0,𝑇 ]

|(𝑋𝜀,ℎ,𝜏 (𝑡)−𝑋(𝑡), 𝜙)|

converge to 0 in probability as (𝜀, ℎ, 𝜏) → (0, 0, 0) for every 𝜙 ∈ L2.

Proof. See Theorem 8.1. �
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Remark 3.4. Theorems 3.1 and 3.2 can be strengthened considerably by Lemma 7.1. Assume that

𝐾 : 𝒳 (1) ×𝒳 (1) ×𝒳 (2) ×𝒳 (3) → [0,∞],

satisfies the following property:

𝐾
(︀
𝑓0, 𝑓1, 𝑔, ℎ

)︀
≤ lim inf

𝑛→∞
𝐾
(︀
𝑓0

𝑛, 𝑓1
𝑛, 𝑔𝑛, ℎ𝑛

)︀
, (9)

for any sequence (𝑓0
𝑘 , 𝑓1

𝑘 , 𝑔𝑘, ℎ𝑘) ∈ 𝒳 (1)×𝒳 (1)×𝒳 (2)×𝒳 (3) converging in 𝒳 (1)×𝒳 (1)×𝒳 (2)×𝒳 (3) to (𝑓0, 𝑓1, 𝑔, ℎ)
where in addition

sup
𝑘

∫︁ 𝑇

0

[︁⃦⃦
𝑓0

𝑘 (𝑠)
⃦⃦

𝐵𝑉 (𝒪)
+
⃦⃦
𝑓1

𝑘 (𝑠)
⃦⃦

𝐵𝑉 (𝒪)

]︁
d𝑠 < ∞.

Then the variables (𝑋𝜀𝑛𝑘
,ℎ𝑛𝑘

,𝜏𝑛𝑘
, 𝑋𝜀𝑛𝑘

,ℎ𝑛𝑘
,𝜏𝑛𝑘

, 𝑋𝜀𝑛𝑘
,ℎ𝑛𝑘

,𝜏𝑛𝑘
) from Theorem 3.1 satisfy

E[𝐾(𝑋, 𝑋, 𝑋, 𝑋)] ≤ lim inf
𝑘→∞

E𝜏𝑘

[︁
𝐾
(︁
𝑋𝜀𝑛𝑘

,ℎ𝑛𝑘
,𝜏𝑛𝑘

, 𝑋𝜀𝑛𝑘
,ℎ𝑛𝑘

,𝜏𝑛𝑘
, 𝑋𝜀𝑛𝑘

,ℎ𝑛𝑘
,𝜏𝑛𝑘

, 𝑋𝜀𝑛𝑘
,ℎ𝑛𝑘

,𝜏𝑛𝑘

)︁]︁
, (10)

and the random variables (𝑋, 𝑋𝜀,ℎ,𝜏 , 𝑋𝜀,ℎ,𝜏 , 𝑋𝜀,ℎ,𝜏 ) from Theorem 3.2 satisfy

E[𝐾(𝑋,𝑋, 𝑋, 𝑋)] ≤ lim inf
(𝜀,ℎ,𝜏)→(0,0,0)

E
[︀
𝐾(𝑋, 𝑋𝜀,ℎ,𝜏 , 𝑋𝜀,ℎ,𝜏 , 𝑋𝜀,ℎ,𝜏 )

]︀
. (11)

Obviously, if 𝐾 is real bounded and (9) holds also for −𝐾 then we get equalities and limits in (10) and (11). In
particular, under the assumptions of Theorem 3.2,

𝐾
(︀
𝑋, 𝑋𝜀,ℎ,𝜏 , 𝑋𝜀,ℎ,𝜏 , 𝑋𝜀,ℎ,𝜏

)︀
=
⃦⃦
𝑋𝜀,ℎ,𝜏 −𝑋

⃦⃦
𝐿𝑞((0,𝑇 );𝐿𝑟(𝒪))

→ 0,

in probability as (𝜀, ℎ, 𝜏) → (0, 0, 0) for every 𝑟 ∈ [1, 𝑑
𝑑−1 ) and every 𝑞 ∈ [1,∞) such that 𝑞(𝑟 − 2) < 𝑟.

4. A PRIORI estimates

The numerical approximation (3) satisfies a discrete energy estimate.

Lemma 4.1. Let 𝑥0, 𝑔 ∈ L2 and 𝑇 > 0. Then there exists a constant 𝐶 > 0 depending only on 𝑇 and on the
constants in (B1) and in Section 2 such that the solutions of scheme (3) satisfy for any 𝜀, ℎ ∈ (0, 1], 𝑁 ∈ N

E

⎡⎣(︃1
2

sup
𝑖=1,...,𝑁

‖𝑋𝑖‖2 +
𝑁∑︁

𝑖=1

(︂
1
4
‖𝑋𝑖 −𝑋𝑖−1‖2 + 𝜏𝒥𝜀(𝑋𝑖)

)︂)︃2
⎤⎦ ≤ 𝐶

(︂
1
2

+
1
2
‖𝑥0‖2 + |𝒪|+ 𝜆

2
‖𝑔‖2

)︂2

. (12)

Proof. Analogously to Lemma 4.9 of [5], we set 𝑣ℎ = 𝑋𝑖 in (3) use the identity(︀
𝑋𝑖 −𝑋𝑖−1, 𝑋𝑖

)︀
=

1
2
‖𝑋𝑖‖2 − 1

2
‖𝑋𝑖−1‖2 +

1
2
‖𝑋𝑖 −𝑋𝑖−1‖2,

and estimate using the Cauchy–Schwarz and Young’s inequalities

𝑁∑︁
𝑗=1

(︀
𝐵𝑗

(︀
𝑋𝑖−1

)︀
𝜉𝑖,𝑗
𝜏 , 𝑋𝑖

)︀
=

𝑁∑︁
𝑗=1

(︀
𝐵𝑗

(︀
𝑋𝑖−1

)︀
𝜉𝑖,𝑗
𝜏 , 𝑋𝑖−1

)︀
+

𝑁∑︁
𝑗=1

(︀
𝐵𝑗

(︀
𝑋𝑖−1

)︀
𝜉𝑖,𝑗
𝜏 , 𝑋𝑖 −𝑋𝑖−1

)︀

≤
𝑁∑︁

𝑗=1

(︀
𝐵𝑗

(︀
𝑋𝑖−1

)︀
𝜉𝑖,𝑗
𝜏 , 𝑋𝑖−1

)︀
+

1
4

⃦⃦
𝑋𝑖 −𝑋𝑖−1

⃦⃦2
+

⃦⃦⃦⃦
⃦⃦ 𝑁∑︁

𝑗=1

𝐵𝑗

(︀
𝑋𝑖−1

)︀
𝜉𝑖,𝑗
𝜏

⃦⃦⃦⃦
⃦⃦

2

,
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and similarly (︀
𝑋𝑖 − 𝑔,𝑋𝑖

)︀
=
⃦⃦
𝑋𝑖 − 𝑔

⃦⃦2
+
(︀
𝑋𝑖 − 𝑔, 𝑔

)︀
≥ 1

2

⃦⃦
𝑋𝑖 − 𝑔

⃦⃦2 − 1
2
‖𝑔‖2.

After rearranging and absorbing the corresponding terms in the left hand side we obtain using the convexity of
𝑓(𝑠) =

√
𝑠2 + 𝜀2 that

1
2
‖𝑋𝑖‖2 − 1

2
‖𝑋𝑖−1‖2 +

1
4
‖𝑋𝑖 −𝑋𝑖−1‖2 + 𝜏𝒥𝜀(𝑋𝑖) ≤ 𝜏𝒥𝜀(0) +

𝑁∑︁
𝑗=1

(︀
𝐵𝑗(𝑋𝑖−1), 𝑋𝑖−1

)︀
𝜉𝑖,𝑗
𝜏 +

⃦⃦⃦⃦
⃦⃦ 𝑁∑︁

𝑗=1

𝐵𝑗(𝑋𝑖−1)𝜉𝑖,𝑗
𝜏

⃦⃦⃦⃦
⃦⃦

2

,

for 1 ≤ 𝑖 ≤ 𝑁 .
We define

𝑎𝑖 =
1
2

+
1
2
‖𝑋𝑖‖2 +

𝑖∑︁
𝑗=1

(︂
1
4

⃦⃦
𝑋𝑗 −𝑋𝑗−1

⃦⃦2
+ 𝜏𝒥𝜀(𝑋𝑗)

)︂

𝑏 = 𝜏𝒥𝜀(0), 𝑐𝑖 =
𝑁∑︁

𝑗=1

(︀
𝐵𝑗

(︀
𝑋𝑖−1

)︀
, 𝑋𝑖−1

)︀
𝜉𝑖,𝑗
𝜏 , 𝑑𝑖 =

⃦⃦⃦⃦
⃦⃦ 𝑁∑︁

𝑗=1

𝐵𝑗

(︀
𝑋𝑖−1

)︀
𝜉𝑖,𝑗
𝜏

⃦⃦⃦⃦
⃦⃦

2

,

and observe that
𝑎𝑖 − 𝑎𝑖−1 ≤ 𝑏 + 𝑐𝑖 + 𝑑𝑖, 𝑖 = 1, . . . , 𝑁.

If 𝑎𝑖−1 ∈ 𝐿2(Ω) then 𝑋𝑖−1 ∈ 𝐿4(Ω; L2), 𝑐𝑖 ∈ 𝐿2(Ω), 𝑑𝑖 ∈ 𝐿2(Ω) and so, by induction, 𝑎𝑖 ∈ 𝐿2(Ω) for every
𝑖 = 0, . . . , 𝑁 . Next, observe that 𝑐𝑖 is a square integrable martingale difference and that

E
[︀
(𝑐𝑖)2

]︀
≤ 𝐶𝐵𝜏E

[︁(︀
𝑎𝑖−1

)︀2]︁
, E

[︀
(𝑑𝑖)2

]︀
≤ 𝐶𝐵𝜏2E

[︁(︀
𝑎𝑖−1

)︀2]︁
,

where 𝐶𝐵 depends only on the growth constant in (B1) and the constant in the assumption E
[︀
(𝜉𝑖,𝑗

𝜏 )4
]︀
≤ 𝐶𝜏2.

Let us define
𝑎𝑖
* = max

𝑗=0,...,𝑖
𝑎𝑗 𝑖 = 0, . . . , 𝑁.

Then

𝑎𝑖
* ≤

(︀
𝑎0 + 𝑁𝑏

)︀
+ max

𝑗=1,...,𝑖

⃒⃒⃒⃒
⃒

𝑗∑︁
ℓ=1

𝑐ℓ

⃒⃒⃒⃒
⃒+

𝑖∑︁
𝑗=1

𝑑𝑗 𝑖 = 1, . . . , 𝑁,

and (︀
𝑎𝑖
*
)︀2 ≤ 3

(︀
𝑎0 + 𝑁𝑏

)︀2
+ 3 max

𝑗=1,...,𝑖

⃒⃒⃒⃒
⃒

𝑗∑︁
ℓ=1

𝑐ℓ

⃒⃒⃒⃒
⃒
2

+ 3𝑁

𝑖∑︁
𝑗=1

(𝑑𝑗)2 𝑖 = 1, . . . , 𝑁.

Hence, by the discrete Burkholder–Davis–Gundy inequality, we obtain

E
[︁(︀

𝑎𝑖
*
)︀2]︁ ≤ 3

(︀
𝑎0 + 𝑁𝑏

)︀2
+ 3𝐶2

𝑖∑︁
𝑗=1

E
[︀
(𝑐𝑗)2

]︀
+ 3𝑁

𝑖∑︁
𝑗=1

E
[︀
(𝑑𝑗)2

]︀
≤ 3
(︀
𝑎0 + 𝑁𝑏

)︀2
+ 3𝐶2c𝜏

𝑖∑︁
𝑗=1

E
[︀
(𝑎𝑗−1)2

]︀
+ 3c𝜏2𝑁

𝑖∑︁
𝑗=1

E
[︀
(𝑎𝑗−1)2

]︀
≤ 3
(︀
𝑎0 + 𝑁𝑏

)︀2
+

𝐾𝐶,𝑇

𝑁

𝑖∑︁
𝑗=1

E
[︀
(𝑎𝑗−1
* )2

]︀
𝑖 = 1, . . . , 𝑁,

and we get the result by the discrete Gronwall lemma. �
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Next, we estimate the discrete time increments of the numerical solution.

Lemma 4.2. For any 0 ≤ 𝑛 ≤ ℓ + 𝑛 ≤ 𝑁 it holds that

E
[︁⃦⃦

𝑋𝑛+ℓ −𝑋𝑛
⃦⃦4

H−1

]︁
≤ 𝐶𝑡2ℓ ,

where 𝐶 does not depend on 𝜀, ℎ, 𝜏 .

Proof. Clearly, it suffices to treat the case ℓ ≥ 1. For any 𝑣 ∈ H1
0 we set 𝑣ℎ = 𝑃ℎ𝑣 in (3) and get after summing

up for 𝑖 = 𝑛 + 1, . . . , 𝑛 + ℓ by the definition of projection 𝑃ℎ that

(︀
𝑋𝑛+ℓ −𝑋𝑛, 𝑣ℎ

)︀
=
(︀
𝑋𝑛+ℓ −𝑋𝑛, 𝑃ℎ𝑣

)︀
≤ 𝜏

𝑛+ℓ∑︁
𝑖=𝑛+1

⃦⃦⃦⃦
⃦ ∇𝑋𝑖√︀

|∇𝑋𝑖|2 + 𝜀2

⃦⃦⃦⃦
⃦‖∇𝑃ℎ𝑣‖

+ 𝜏

𝑛+ℓ∑︁
𝑖=𝑛+1

𝜆
(︀
‖𝑋𝑖‖+ ‖𝑔‖

)︀
‖𝑃ℎ𝑣‖+

⃦⃦⃦⃦
⃦⃦ 𝑛+ℓ∑︁

𝑖=𝑛+1

𝑁∑︁
𝑗=1

𝐵𝑗

(︀
𝑋𝑖−1

)︀
𝜉𝑖,𝑗
𝜏

⃦⃦⃦⃦
⃦⃦‖𝑃ℎ𝑣‖ ∀𝑣 ∈ H1

0.

On noting that that
⃒⃒⃒⃒

∇·√
|∇·|2+𝜀2

⃒⃒⃒⃒
≤ 1 we deduce by the stability of the L2 projection ‖𝑃ℎ𝑣‖H1

0
≤ 𝜅‖𝑣‖H1

0
that

⃦⃦
𝑋𝑛+ℓ −𝑋𝑛

⃦⃦
H−1 ≤ 𝐶𝑡ℓ

[︂
1 + max

𝑖=1,...,𝑁

{︀⃦⃦
𝑋𝑖
⃦⃦}︀]︂

+

⃦⃦⃦⃦
⃦⃦ 𝑛+ℓ∑︁

𝑖=𝑛+1

𝑁∑︁
𝑗=1

𝐵𝑗(𝑋𝑖−1)𝜉𝑖,𝑗
𝜏

⃦⃦⃦⃦
⃦⃦.

Hence, we obtain

E
[︁⃦⃦

𝑋𝑛+ℓ −𝑋𝑛
⃦⃦4

H−1

]︁
≤ 𝑐𝑡4ℓ + 𝑐𝑡2ℓ ,

by the Burkholder–Rosenthal inequality (see e.g., [20], Thm. 5.50), Lemma 4.1 and linear growth of 𝐵 : L2 →
L2(ℓ2; L2). Indeed, the martingale difference

d𝑖 =
𝑁∑︁

𝑗=1

𝐵𝑗

(︀
𝑋𝑖−1

)︀
𝜉𝑖,𝑗
𝜏 ,

satisfies for 𝑝 ∈ {2, 4}

𝑛+ℓ∑︁
𝑖=𝑛+1

E
[︀
‖d𝑖‖𝑝|ℱ 𝑖−1

𝜏

]︀
≤ 𝑐𝜅𝜏

𝑝
2

𝑛+ℓ∑︁
𝑖=𝑛+1

⎡⎣ 𝑁∑︁
𝑗=1

‖𝐵𝑗

(︀
𝑋𝑖−1

)︀
‖2
⎤⎦

𝑝
2

≤ 𝑐𝜅𝜏
𝑝
2

𝑛+ℓ∑︁
𝑖=𝑛+1

⃦⃦
𝐵
(︀
𝑋𝑖−1

)︀⃦⃦𝑝

L2(ℓ2;L2)

≤ 𝑐𝜅𝜏
𝑝
2

𝑛+ℓ∑︁
𝑖=𝑛+1

[︀
1 +

⃦⃦
𝑋𝑖−1

⃦⃦]︀𝑝 ≤ 𝑐𝜅𝑡
𝑝
2
ℓ

[︂
1 + max

𝑖=1,...,𝑁

{︀
‖𝑋𝑖‖𝑝

}︀]︂
.

The Burkholder–Rosenthal inequality then yields

E

⎡⎣⃦⃦⃦⃦⃦
𝑛+ℓ∑︁

𝑖=𝑛+1

d𝑖

⃦⃦⃦⃦
⃦

4
⎤⎦ ≤ 𝛽 E

⎡⎣(︃ 𝑛+ℓ∑︁
𝑖=𝑛+1

E
[︀
‖d𝑖‖2|ℱ 𝑖−1

𝜏

]︀)︃2
⎤⎦+ 𝛽

𝑛+ℓ∑︁
𝑖=𝑛+1

E
[︀
‖d𝑖‖4

]︀
≤ 𝑐𝑡2ℓ ,

which completes the proof. �
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Lemma 4.3. Let 𝑢0 ∈ Vℎ, 𝐺1, . . . , 𝐺𝑁 and 𝐻0,𝑗 , . . . ,𝐻𝑁−1,𝑗 be ℱ𝜏 -adapted random variables in 𝐿2(Ω; Vℎ) for
every 𝑗 ∈ {1, . . . , 𝑁} and define

𝑈 𝑖 − 𝑈 𝑖−1 = −𝜏𝐺𝑖 +
𝑁∑︁

𝑗=1

𝐻𝑖−1,𝑗𝜉𝑖,𝑗
𝜏 , 𝑖 = 1, . . . , 𝑁. (13)

Then

1
2

E
[︁⃦⃦

𝑋𝑖 − 𝑈 𝑖
⃦⃦2
]︁

+ 𝜏

𝑖∑︁
ℓ=1

E
[︀
𝒥𝜀

(︀
𝑋ℓ
)︀]︀
≤ 1

2

⃦⃦
𝑥0 − 𝑢0

⃦⃦2
+ 𝜏

𝑖∑︁
ℓ=1

E
[︀
𝒥𝜀

(︀
𝑈 ℓ
)︀

+
(︀
𝐺ℓ, 𝑋ℓ − 𝑈 ℓ

)︀]︀
+

𝜏

2

𝑖∑︁
ℓ=1

𝑁∑︁
𝑗=1

E
[︁⃦⃦

𝑃ℎ𝐵𝑗

(︀
𝑋ℓ−1

)︀
−𝐻ℓ−1,𝑗

⃦⃦2
]︁
, 0 ≤ 𝑖 ≤ 𝑁.

Proof. On noting (3), (13) we deduce that 𝐷𝑖 = 𝑋𝑖 − 𝑈 𝑖 satisfies

(︀
𝐷𝑖 −𝐷𝑖−1, 𝑣ℎ

)︀
+ 𝜏

⎛⎝ ∇𝑋𝑖√︁
|∇𝑋𝑖|2 + 𝜀2

,∇𝑣ℎ

⎞⎠+ 𝜏𝜆
(︀
𝑋𝑖 − 𝑔, 𝑣ℎ

)︀
= 𝜏

(︀
𝐺𝑖, 𝑣ℎ

)︀
+

𝑁∑︁
𝑗=1

(︀
𝐵𝑗

(︀
𝑋𝑖−1

)︀
−𝐻𝑖−1,𝑗 , 𝑣ℎ

)︀
𝜉𝑖,𝑗
𝜏 ,

for all 𝑣ℎ ∈ Vℎ.
We then set 𝑣ℎ = 𝐷𝑖 in the above expression, use that (𝐵𝑗(𝑋𝑖−1), 𝐷𝑖) = (𝑃ℎ𝐵𝑗(𝑋𝑖−1), 𝐷𝑖) and proceed

analogously to the first part of the proof of Lemma 4.1 to obtain

1
2
‖𝐷𝑖‖2 − 1

2
‖𝐷𝑖−1‖2 + 𝜏𝒥𝜀(𝑋𝑖) ≤ 𝜏𝒥𝜀(𝑈 𝑖) + 𝜏

(︀
𝐺𝑖, 𝐷𝑖

)︀
+

𝑁∑︁
𝑗=1

(︀
𝐵𝑗

(︀
𝑋𝑖−1

)︀
−𝐻𝑖−1,𝑗 , 𝐷𝑖−1

)︀
𝜉𝑖,𝑗
𝜏

+
1
2

⃦⃦⃦⃦
⃦⃦ 𝑁∑︁

𝑗=1

(𝑃ℎ𝐵𝑗(𝑋𝑖−1)−𝐻𝑖−1,𝑗)𝜉𝑖,𝑗
𝜏

⃦⃦⃦⃦
⃦⃦

2

,

for 1 ≤ 𝑖 ≤ 𝑁 . The statement of the lemma then follows after summing up the above expression, taking the
expectation and using the properties of 𝜉𝑖,𝑗

𝜏 . �

5. Compactness in locally convex path spaces

In this section, 𝑌 stands for a Hausdorff locally convex space (typically a Hilbert space equipped with the
strong or the weak topology), 𝑌 [0,𝑇 ] denotes the space of functions from [0, 𝑇 ] to 𝑌 on which we consider the
topology of uniform convergence 𝜏u. We also define the subspaces 𝑄𝑛([0, 𝑇 ]; 𝑌 ), 𝑛 ∈ N spanned by the functions
𝑓 ∈ 𝑌 [0,𝑇 ] that are constant on every interval (𝑡𝑛𝑖−1, 𝑡

𝑛
𝑖 ) for 1 ≤ 𝑖 ≤ 𝑛 where 𝑡𝑘𝑗 = 𝑗𝑇/𝑘, the Hausdorff locally

convex path spaces

𝑄∞([0, 𝑇 ]; 𝑌 ) =
∞⋃︁

𝑛=1

𝑄𝑛([0, 𝑇 ]; 𝑌 ), 𝑄([0, 𝑇 ]; 𝑌 ) = 𝑄∞([0, 𝑇 ]; 𝑌 ),

and an important 𝐹𝜎 subset of 𝑄([0, 𝑇 ]; 𝑌 )

𝑄𝑐([0, 𝑇 ]; 𝑌 ) = 𝑄∞([0, 𝑇 ]; 𝑌 ) ∪ 𝐶([0, 𝑇 ]; 𝑌 ),

that contains both step-functions on equidistant partitions of [0, 𝑇 ] and continuous functions, equipped with the
uniform convergence topology, that is best suitable for our purposes in the sequel when piecewise constant pro-
cesses will converge uniformly to a continuous process. The space of continuous 𝑌 -valued functions 𝐶([0, 𝑇 ]; 𝑌 )
is also equipped with the topology of uniform convergence.
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Further, we define the space

𝑄𝑐,𝐵𝑉 ([0, 𝑇 ]; L2
𝑤) =

{︃
𝑓 ∈ 𝑄𝑐([0, 𝑇 ]; L2

𝑤) :
∫︁ 𝑇

0

‖𝑓(𝑠)‖𝐵𝑉 (𝒪) d𝑠 < ∞

}︃
,

as an 𝐹𝜎 subset of 𝑄([0, 𝑇 ]; L2
𝑤).

Finally, if 𝑀 is a subset of 𝑄([0, 𝑇 ]; 𝑌 ), we define

𝑀↑
𝑛 = 𝑀 ∖

𝑛−1⋃︁
𝑚=1

𝑄𝑚([0, 𝑇 ]; 𝑌 ).

Remark 5.1. Every 𝑓 ∈ 𝑄([0, 𝑇 ]; 𝑌 ), as a uniform limit of functions in 𝑄∞([0, 𝑇 ]; 𝑌 ), is bounded and con-
tinuous with an exception of an at most countable subset of rational numbers, and consequently 𝑓 is Borel
measurable.

Remark 5.2. If 𝑌 is sequentially complete then 𝑄([0, 𝑇 ]; 𝑌 ) coincides with the space of functions 𝑓 ∈ 𝑌 [0,𝑇 ]

that are continuous at every 𝑡 ∈ (𝑇Q{) ∩ [0, 𝑇 ] and that have right and left limits at every 𝑡 ∈ [0, 𝑇 ].

Remark 5.3. The space 𝑄([0, 𝑇 ]; 𝑌 ) can be also equipped (alternatively) with the Skorokhod topology defined
by neighborhoods

𝑁𝑂,𝜀(𝑓) = {𝑔 : ∃𝜇 such that 𝛾(𝜇) < 𝜀 and 𝑔(𝜇(𝑡))− 𝑓(𝑡) ∈ 𝑂 for every 𝑡 ∈ [0, 𝑇 ]},

where 𝑂 is an absolutely convex neighborhood of zero in 𝑌 , 𝜀 > 0, 𝜇 is an increasing bi-Lipschitz continuous
homeomorphisms of [0, 𝑇 ] onto [0, 𝑇 ] and 𝛾(𝜇) = ‖ log 𝜇′‖𝐿∞ . But the Skorokhod topology is strictly weaker
than the topology of uniform convergence. In other words, convergence in 𝑄([0, 𝑇 ]; 𝑌 ) implies convergence in
the Skorokhod topology but not vice versa. Thus, for our purposes, the space 𝑄([0, 𝑇 ]; 𝑌 ) with the topology of
uniform convergence is the better choice.

In the next theorem, we characterize compact sets in 𝑄𝑐([0, 𝑇 ]; 𝑌 ) which play an essential role in this paper.
To this end, we present an Arzela–Ascoli theorem.

Theorem 5.1. Let 𝑀 be a non-empty subset in 𝑄([0, 𝑇 ]; 𝑌 ) and consider the following:

(i) {𝑓(𝑡) : 𝑓 ∈ 𝑀} is relatively compact in 𝑌 for every 𝑡 ∈ [0, 𝑇 ];
(ii) for every 𝑂 being a neighbourhood of zero in 𝑌 , there exist 𝑚 ∈ N and 𝛿 > 0 such that

∀|𝑡− 𝑠| ≤ 𝛿 and ∀𝑓 ∈ 𝑀↑
𝑚 one has 𝑓(𝑡)− 𝑓(𝑠) ∈ 𝑂;

(iii) the closure of 𝑀 in (𝑌 [0,𝑇 ], 𝜏u) is a compact subset of 𝑄𝑐([0, 𝑇 ]; 𝑌 );
(iv) {𝑓(𝑡) : 𝑡 ∈ [0, 𝑇 ], 𝑓 ∈ 𝑀} is relatively compact in 𝑌 .

Then

[(i) & (ii)] ⇐⇒ (iii),
and
(iii) =⇒ (iv).

Proof. See Section A.1. �

Remark 5.4. If 𝑌 is sequentially complete and 𝑀 is relatively compact in 𝑄([0, 𝑇 ]; 𝑌 ) then (iv) in Theorem 5.1
still holds with the same proof.
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Corollary 5.1. If compacts of 𝑌 are metrizable and 𝑀 satisfies (iv) in Theorem 5.1 then 𝑀 is also metrizable.

Proof. See Section A.2. �

Now we provide an easy test for checking Borel measurability of 𝑄𝑐([0, 𝑇 ]; 𝑌 )-valued random variables. It
turns out that pointwise measurability and Borel measurability coincide for mappings with a 𝜎-compact range
in 𝑄𝑐([0, 𝑇 ]; 𝑌 ) provided that compact sets in 𝑌 are metrizable.

Corollary 5.2. Let compacts of 𝑌 be metrizable and let 𝑀 be 𝜎-compact in 𝑄𝑐([0, 𝑇 ]; 𝑌 ). Then

𝑉 ∈ B(𝑄([0, 𝑇 ]; 𝑌 )) ⇐⇒ 𝑉 ∈ 𝒴𝑇 ,

holds for every 𝑉 ⊆ 𝑀 where

𝒴𝑇 = 𝜎(𝜋𝑠 : 𝑠 ∈ (𝑇Q) ∩ [0, 𝑇 ]), 𝜋𝑠 : 𝑄([0, 𝑇 ]; 𝑌 ) → 𝑌 : 𝑓 ↦→ 𝑓(𝑠).

Proof. See Section A.3. �

Remark 5.5. Let us recall that a compact 𝐾 is metrizable if and only if there exists a countable family of real
continuous functions on 𝐾 separating points of 𝐾 (see e.g., [16]). In case of Hausdorff locally convex spaces
𝑌 , those functions can be chosen in such a way that they are linear and continuous on 𝑌 . Hence compacts are
metrizable in all spaces where there exists a countable family of continuous functions separating points of that
space. In particular, compact sets are metrizable e.g., in analytic spaces (see e.g., [9], Cor. 6.7.8) among which
all separable Fréchet spaces equipped with any locally convex topology weaker than or equal to the metric one
belong.

Example 5.1. If 𝐾 is a set in 𝑌 then we denote by 𝐶𝑛([0, 𝑇 ]; 𝐾) the space of functions 𝑓 : [0, 𝑇 ] → 𝐾 that
satisfy

𝑓(𝑡) =
𝑡− 𝑡𝑖−1

𝜏
𝑓(𝑡𝑖) +

𝑡𝑖 − 𝑡

𝜏
𝑓(𝑡𝑖−1), 𝑡 ∈ [𝑡𝑖−1, 𝑡𝑖],

for every 𝑖 ∈ {1, . . . , 𝑛} where 𝑡𝑖 = 𝑖𝜏 and 𝜏 = 𝑇/𝑛. If 𝐾 is compact then 𝐶𝑛([0, 𝑇 ]; 𝐾) is compact in 𝐶([0, 𝑇 ]; 𝑌 ).

Proof. Indeed, 𝐶𝑛([0, 𝑇 ]; 𝐾) is closed. Now, if 𝑂 is an absolutely convex neighbourhood of zero then 𝐾 ⊆ 𝜆𝑂
for some 𝜆 > 0, and so 𝑓(𝑡) − 𝑓(𝑠) ∈ 2𝜆𝜏−1(𝑡 − 𝑠)𝑂 holds for every 𝑠, 𝑡 ∈ [0, 𝑇 ] and every 𝑓 ∈ 𝐶𝑛([0, 𝑇 ]; 𝐾).
Hence 𝐶𝑛([0, 𝑇 ]; 𝐾) is relatively compact by Theorem 5.1. �

We will need the following version of the Prokhorov theorem.

Theorem 5.2. Let 𝑍 be a completely regular topological space, let {𝜇𝑛} be Borel probability measures such that
there exist metrizable compacts 𝐾𝑗 such that

sup
𝑗

[︁
inf
𝑛

𝜇𝑛(𝐾𝑗)
]︁

= 1.

Then there exists a subsequence {𝜇𝑛𝑘
} that converges to a Radon probability measure 𝜇 on 𝑍.

Proof. See Theorem 8.6.7. of [9]. �

Weak convergence of tight probability measures is actually more powerful than it might seem. Let us present
a reinforcement of the Portmanteau theorem, cf., Lemma 1.10 of [19].
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Proposition 5.1. Let 𝑍 be a completely regular topological space, let {𝜇𝑛} and 𝜇 be Radon probability measures
on 𝑍 such that ⟨𝑓, 𝜇𝑛⟩ → ⟨𝑓, 𝜇⟩ for every 𝑓 ∈ 𝐶𝑏(𝑍) and, for every 𝑟 > 0, there exist metrizable closed sets
𝐾𝑟,𝑛 ↘ 𝐾𝑟,∞ such that

𝜇𝑛(𝐾𝑟,𝑛) ≥ 1− 𝑟, 𝑛 ∈ N.

Let 𝐹𝑛, 𝐹 : 𝑍 → [−∞,∞] be such that 𝐹𝑛|𝐾𝑟,𝑛 , 𝐹 |𝐾𝑟,𝑛 are B(𝐾𝑟,𝑛)-measurable for every 𝑟 > 0 and 𝑛 ∈ N, and
denote by 𝜇* the outer measure associated with 𝜇. Then 𝐹𝑛 is 𝜇𝑛-measurable for every 𝑛 ∈ N, 𝐹 is 𝜇-measurable
and the following holds:

(1) If 𝐹𝑛 and 𝐹 are non-negative and 𝜇*(𝐷𝑟) = 0 for every 𝑟 ∈ (0, 1) where

𝐷𝑟 = {𝑥 ∈ 𝐾𝑟,∞ : ∃𝑥𝑛 ∈ 𝐾𝑟,𝑛, 𝑥𝑛 → 𝑥, lim inf 𝐹𝑛(𝑥𝑛) < 𝐹 (𝑥)},

then ∫︁
𝑍

𝐹 d𝜇 ≤ lim inf
∫︁

𝑍

𝐹𝑛 d𝜇𝑛.

(2) If 𝜇*(𝐷𝑟) = 0 for every 𝑟 ∈ (0, 1) where

𝐷𝑟 = {𝑥 ∈ 𝐾𝑟,∞ : ∃𝑥𝑛 ∈ 𝐾𝑟,𝑛, 𝑥𝑛 → 𝑥, lim sup |𝐹𝑛(𝑥𝑛)− 𝐹 (𝑥)| > 0},

and

lim
𝑅→∞

[︃
sup
𝑛∈N

∫︁
[|𝐹𝑛|>𝑅]

|𝐹𝑛|d𝜇𝑛

]︃
= 0,

then

lim
∫︁

𝑍

𝐹𝑛 d𝜇𝑛 =
∫︁

𝑍

𝐹 d𝜇.

Proof. See Section A.4. �

6. Tightness properties of the numerical approximation

We consider the interpolants 𝑋𝜏 , 𝑋𝜏 , 𝑋𝜏 defined in (6), (7), respectively. As in the previous section, to
simplify the notation, the dependence of 𝑋𝜏 , 𝑋𝜏 and 𝑋𝜏 on 𝜀, ℎ and 𝜏 will not be displayed for clarity reasons
until it matters.

The next lemma is a direct consequence of the a priori estimates in Lemma 4.1.

Lemma 6.1. The interpolants of the numerical solution of the scheme (3) satisfy the following bounds:

E
[︁⃦⃦

𝑋𝜏

⃦⃦2

𝐿1(0,𝑇 ;W1,1
0 )

]︁
≤ 𝐶, E

[︁
‖𝑋𝜏‖

2
𝐿1(𝜏,𝑇 ;W1,1

0 )

]︁
≤ 𝐶, E

[︁
‖𝑋𝜏‖2𝐿1(𝜏,𝑇 ;W1,1

0 )

]︁
≤ 𝐶, (14)

E
[︁⃦⃦

𝑋𝜏

⃦⃦4

𝐿∞(0,𝑇 ;L2)

]︁
≤ 𝐶, E

[︁
‖𝑋𝜏‖

4
𝐿∞(0,𝑇 ;L2)

]︁
≤ 𝐶, E

[︁
‖𝑋𝜏‖4𝐶([0,𝑇 ];L2)

]︁
≤ 𝐶, (15)

E
[︁⃦⃦

𝑋𝜏 −𝑋𝜏

⃦⃦4

𝐿𝑞(0,𝑇 ;L2)

]︁
≤ 𝐶𝜏

4
𝑞 , E

[︁⃦⃦
𝑋𝜏 −𝑋𝜏

⃦⃦4

𝐿𝑞(0,𝑇 ;L2)

]︁
≤ 𝐶𝜏

4
𝑞 , (16)

where 𝐶 does not depend on 𝜀, ℎ, 𝜏 and 𝑞 ∈ [2,∞].

Furthermore, by Lemma 4.2 the following time-fractional bounds hold for the piecewise linear interpolant.

Lemma 6.2. Let m denote the modulus of continuity of H−1-valued functions on [0, 𝑇 ]

m(𝑓, 𝛿) := sup {‖𝑓(𝑡)− 𝑓(𝑠)‖H−1 : 𝑠, 𝑡 ∈ [0, 𝑇 ], |𝑡− 𝑠| ≤ 𝛿}.
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Then the following estimate holds for 𝛼 ∈ (0, 1
2 ) and 𝑠 ∈ (0, 1

4 )

E
[︁
‖𝑋𝜏‖4𝑊 𝛼,4(0,𝑇 ;H−1)

]︁
≤ 𝐶, E

[︂
sup
𝛿>0

{𝛿−𝑠m(𝑋𝜏 , 𝛿)}
]︂
≤ 𝐶,

E
[︂
sup
𝛿>0

{(𝛿 + 𝜏)−𝑠m(𝑋𝜏 , 𝛿)}
]︂
≤ 𝐶, E

[︂
sup
𝛿>0

{(𝛿 + 𝜏)−𝑠m(𝑋𝜏 , 𝛿)}
]︂
≤ 𝐶,

where 𝐶 does not depend on 𝜀, ℎ, 𝜏 .

Proof. Use Lemmas 4.2, C.1 and the inequality

max {m(𝑋𝜏 , 𝛿),m(𝑋𝜏 , 𝛿)} ≤ m(𝑋, 𝛿 + 𝜏), 𝛿 > 0.

�

With the notation and the parameters from Lemma 6.2, for 𝑅 > 0 and 𝑎 ∈ [0, 𝑇 ], writing shortly 𝑄𝑛 for
𝑄𝑛([0, 𝑇 ]; L2

𝑤) and 𝐶 for 𝐶([0, 𝑇 ]; L2
𝑤), we consider the sets

𝑉𝑅,𝑛,𝑎 =

{︃
𝑓 ∈ 𝑄𝑛 : sup

𝑡∈[0,𝑇 ]

‖𝑓(𝑡)‖ ≤ 𝑅, sup
𝛿>0

m(𝑓, 𝛿)
(𝛿 + 𝑇/𝑛)𝑠

≤ 𝑅,

∫︁ 𝑇

𝑎

‖𝑓(𝑠)‖𝐵𝑉 (𝒪) d𝑠 ≤ 𝑅

}︃
,

𝑉𝑅,∞,𝑎 =

{︃
𝑓 ∈ 𝐶 : sup

𝑡∈[0,𝑇 ]

‖𝑓(𝑡)‖ ≤ 𝑅, sup
𝛿>0

m(𝑓, 𝛿)
𝛿𝑠

≤ 𝑅,

∫︁ 𝑇

𝑎

‖𝑓(𝑠)‖𝐵𝑉 (𝒪) d𝑠 ≤ 𝑅

}︃
,

𝑉 𝑚
𝑅,𝑏 = 𝑉𝑅,∞,𝑏* ∪

⋃︁
𝑛∈[𝑚,∞]

𝑉𝑅,𝑛,𝑏𝑛
, 𝑏* := lim sup

𝑛→∞
𝑏𝑛.

Proposition 6.1. The random variables 𝑋𝜏 , 𝑋𝜏 , 𝑋𝜏 are Borel measurable as mappings from (Ω𝜏 , F𝜏 , P𝜏 ) to
𝑄𝑐([0, 𝑇 ]; L2

𝑤). The sets 𝑉 𝑚
𝑅,𝑎 and 𝑉𝑅,𝑛,𝑎𝑛

are compact in 𝑄𝑐([0, 𝑇 ]; L2
𝑤) and the sets 𝑉𝑅,∞,𝑎∞ are compact in

𝐶([0, 𝑇 ]; L2
𝑤) for every 𝑚, 𝑛 ∈ N and 𝑎 ∈ [0, 𝑇 ]N∪{∞}. Furthermore

P𝜏

[︀
𝑋𝜏 /∈ 𝑉𝑅,𝑁,0

]︀
≤ 𝐶

𝑅
, P𝜏

[︀
𝑋𝜏 /∈ 𝑉𝑅,𝑁,𝑇/𝑁

]︀
≤ 𝐶

𝑅
, P𝜏

[︀
𝑋𝜏 /∈ 𝑉𝑅,∞,𝑇/𝑁

]︀
≤ 𝐶

𝑅
,

holds for every 𝑅 > 0 where 𝐶 does not depend on 𝜀, ℎ, 𝜏 and 𝑅. In particular, the laws

P𝜏

[︀
𝑋𝜀,ℎ,𝜏 ∈ ·

]︀
, P𝜏

[︀
𝑋𝜀,ℎ,𝜏 ∈ ·

]︀
P𝜏 [𝑋𝜀,ℎ,𝜏 ∈ ·],

are tight on 𝑄𝑐,𝐵𝑉 ([0, 𝑇 ]; L2
𝑤), 𝑄𝑐([0, 𝑇 ]; L2

𝑤) and 𝐶([0, 𝑇 ]; L2
𝑤) resp. with respect to 𝜀, ℎ, 𝜏 .

Proof. 𝑋𝜏 , 𝑋𝜏 and 𝑋𝜏 are clearly 𝒴𝑇 -measurable and 𝑄𝑁 ([0, 𝑇 ]; L2
𝑤) and 𝐶𝑁 ([0, 𝑇 ]; L2

𝑤) are 𝜎-compact in
𝐶([0, 𝑇 ]; L2

𝑤) by Theorem 5.1 and Example 5.1. Hence 𝑋𝜏 , 𝑋𝜏 and 𝑋𝜏 are Borel measurable by Corollary 5.2
as compact sets in 𝑄𝑐([0, 𝑇 ]; L2

𝑤) and 𝐶([0, 𝑇 ]; L2
𝑤) are metrizable (Rem. 5.5). Now the sets 𝑉𝑅,𝑛,𝑎𝑛

and 𝑉𝑅,𝑎

are closed and relatively compact in 𝑄𝑐([0, 𝑇 ]; L2
𝑤) and the sets 𝑉𝑅,∞,𝑎∞ are closed and relatively compact in

𝐶([0, 𝑇 ]; L2
𝑤) by Theorem 5.1, as the weak topology and the H−1-topology coincide on bounded sets in L2. In

the proof of closedness of the above sets, we use the fact that there exists a countable set ℋ of smooth compactly
supported functions such that

‖𝑔‖𝐵𝑉 (𝒪) = sup {(𝑔, 𝜙) : 𝜙 ∈ ℋ}, for 𝑔 ∈ 𝐿1
𝑙𝑜𝑐(𝒪),

holds, e.g., by Proposition 3.6 of [1] and by separability of 𝐶∞𝑐 (𝒪), see e.g., [13]. Hence

𝑓 ↦→
∫︁ 𝑇

0

‖𝑓(𝑠)‖𝐵𝑉 (𝒪) d𝑠,

as a supremum of continuous functions, is lower semicontinuous on 𝑄([0, 𝑇 ]; L2
𝑤).

The tightness then follows directly from Lemmas 6.1 and 6.2. �
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In the next lemma we obtain the convergence of the noise variables to a Wiener process.

Lemma 6.3. Let 𝑊 𝑗
𝜏 , 1 ≤ 𝑗 ≤ 𝑁 be the piecewise linear processes on [0, 𝑇 ] defined by

𝑊 𝑗
𝜏 (𝑡𝑖) =

𝑖∑︁
ℓ=1

𝜉ℓ,𝑗
𝜏 , 0 ≤ 𝑖 ≤ 𝑁,

and 𝑊 𝑗
𝜏 is linear on [𝑡𝑖−1, 𝑡𝑖] for every 0 < 𝑖 ≤ 𝑁 where 𝜏 = 𝑇/𝑁 and 𝑡𝑖 = 𝑖𝜏 . We also define 𝑊 𝑗

𝜏 = 0 for
𝑗 > 𝑁 . Then the laws of 𝑊 𝑗

𝜏 converge to the Wiener measure on 𝐶 [0, 𝑇 ] as 𝜏 → 0, for every 𝑗 ∈ N.

Proof. Let 𝑠 ∈ (1/4, 1/2). Then,

E
[︁⃒⃒

𝑊 𝑗
𝜏 (𝑡𝑛)−𝑊 𝑗

𝜏 (𝑡𝑛−ℓ)
⃒⃒4]︁ ≤ 𝐶𝜅𝑡2ℓ , 1 ≤ ℓ ≤ 𝑛 ≤ 𝑁,

hence, by Lemma C.1 we get
E
[︁
‖𝑊 𝑗

𝜏 ‖4𝐵𝑠
4,4(0,𝑇 )

]︁
≤ 𝐶𝜅,𝑠,𝑇 . (17)

In particular, since 𝐵𝑠
4,4(0, 𝑇 ) is embedded compactly in 𝐶𝛼([0, 𝑇 ]) for every 0 < 𝛼 < 𝑠− 1

4 e.g., by Corollary 26
of [21], the laws of {𝑊 𝑗

𝜏 } are tight on B(𝐶([0, 𝑇 ])). Since (𝑊 𝑗
𝜏 (𝑠0), . . . ,𝑊 𝑗

𝜏 (𝑠𝑘)) converge in law to the law of
(𝑊 (𝑠0), . . . ,𝑊 (𝑠𝑘)) where 𝑊 is a Wiener process, e.g., by Theorem 18.2 in [8], we get the claim. �

Let us consider the completely regular space with metrizable compacts (see Rem. 5.5)

Z = 𝑄𝑐,𝐵𝑉

(︀
[0, 𝑇 ]; L2

𝑤

)︀
×𝑄𝑐

(︀
[0, 𝑇 ]; L2

𝑤

)︀
× 𝐶

(︀
[0, 𝑇 ]; L2

𝑤

)︀
× 𝐶([0, 𝑇 ])× 𝐶([0, 𝑇 ])× 𝐶([0, 𝑇 ])× . . . ,

define the projections

𝑆1 : Z → 𝑄𝑐,𝐵𝑉 ([0, 𝑇 ]; L2
𝑤)

(︀
𝑓1, 𝑓2, 𝑓3, 𝑤1, 𝑤2, 𝑤3, . . .

)︀
↦→ 𝑓1,

𝑆2 : Z → 𝑄𝑐([0, 𝑇 ]; L2
𝑤)

(︀
𝑓1, 𝑓2, 𝑓3, 𝑤1, 𝑤2, 𝑤3, . . .

)︀
↦→ 𝑓2,

𝑆3 : Z → 𝐶([0, 𝑇 ]; L2
𝑤)

(︀
𝑓1, 𝑓2, 𝑓3, 𝑤1, 𝑤2, 𝑤3, . . .

)︀
↦→ 𝑓3, (18)

𝑊 𝑗 : Z → 𝐶([0, 𝑇 ])
(︀
𝑓1, 𝑓2, 𝑓3, 𝑤1, 𝑤2, 𝑤3, . . .

)︀
↦→ 𝑤𝑗 ,

and the canonical filtration on Z

𝒵𝑡 = 𝜎
(︀
𝑆1

𝑠 , 𝑆2
𝑠 , 𝑆3

𝑠 , 𝑊 𝑗
𝑠 : 𝑠 ∈ [0, 𝑡], 𝑗 ∈ N

)︀
, 𝑡 ∈ [0, 𝑇 ].

If 𝜈 is a probability measure on B(Z) then 𝒵𝜈
𝑡 stands for the augmentation of 𝒵𝑡 by 𝜈-negligible Borel sets.

Corollary 6.1. The random variables

𝑍𝜀,ℎ,𝜏 =
(︀
𝑋𝜀,ℎ,𝜏 , 𝑋𝜀,ℎ,𝜏 , 𝑋𝜀,ℎ,𝜏 , 𝑊 1

𝜏 , 𝑊 2
𝜏 , 𝑊 3

𝜏 , . . .
)︀
,

are Borel measurable as mappings from (Ω𝜏 , F𝜏 , P𝜏 ) to Z and their laws under P𝜏 are tight on B(Z) with
respect to 𝜀, ℎ, 𝜏 . In particular, every sequence (𝜀𝑛, ℎ𝑛, 𝜏𝑛) has a subsequence (𝜀𝑛𝑘

, ℎ𝑛𝑘
, 𝜏𝑛𝑘

) such that laws of
𝑍𝜀𝑛𝑘

,ℎ𝑛𝑘
,𝜏𝑛𝑘

under P𝜏𝑛𝑘
converge to a Radon probability measure 𝜇 on B(Z).

Proof. Since 𝑋𝜀,ℎ,𝜏 , 𝑋𝜀,ℎ,𝜏 and 𝑋𝜀,ℎ,𝜏 take values in 𝜎-compact subsets of 𝑄𝑐,𝐵𝑉 ([0, 𝑇 ]; L2
𝑤), 𝑄𝑐([0, 𝑇 ]; L2

𝑤) and
𝐶([0, 𝑇 ]; L2

𝑤) respectively by Theorem 5.1 and Example 5.1 and the fact that compact sets in all these spaces are
metrizable (Rem. 5.5), we get that 𝑍𝜀,ℎ,𝜏 is Borel measurable e.g., by Lemma 6.4.2/ii of [9]. Tightness follows
from Proposition 6.1 and Lemma 6.3 and convergence of a subsequence by Theorem 5.2. �
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7. Construction of a probabilistically weak SVI solution

Thanks to Corollary 6.1, in the sequel, we choose a subsequence (𝜀𝑘, ℎ𝑘, 𝜏𝑘) → (0, 0, 0) such that the Borel
laws of 𝑍𝑘 = 𝑍𝜀𝑘,ℎ𝑘,𝜏𝑘

under P𝜏𝑘
converge to a Radon probability measure 𝜇 on B(Z).

Lemma 7.1. Let 𝐹𝑘, 𝐹 : Z → [−∞,∞] be such that 𝐹𝑘|𝐾 and 𝐹 |𝐾 are B(𝐾)-measurable for every compact 𝐾
in Z (e.g., sequentially lower semicontinuous) and every 𝑘 ∈ N. Further, assume that one of the following

(a) 𝐹𝑘 and 𝐹 are non-negative and

𝐹
(︀
𝑓, 𝑔, ℎ, 𝑤1, 𝑤2, . . .

)︀
≤ lim inf

𝑘→∞
𝐹𝑘

(︀
𝑓𝑘, 𝑔𝑘, ℎ𝑘, 𝑤1

𝑘, 𝑤2
𝑘, . . .

)︀
,

(b) lim𝑘→∞ 𝐹𝑘

(︀
𝑓𝑘, 𝑔𝑘, ℎ𝑘, 𝑤1

𝑘, 𝑤2
𝑘, . . .

)︀
= 𝐹

(︀
𝑓, 𝑔, ℎ, 𝑤1, 𝑤2, . . .

)︀
and

lim
𝑅→∞

[︂
sup
𝑘∈N

E𝜏𝑘

[︀
1[|𝐹𝑘(𝑍𝑘)|>𝑅]|𝐹𝑘(𝑍𝑘)|

]︀]︂
= 0, (19)

holds for every

(i) 𝑓𝑘 → 𝑓 in 𝑄𝑐,𝐵𝑉 ([0, 𝑇 ]; L2
𝑤), sup𝑘

∫︀ 𝑇

0
‖𝑓𝑘(𝑠)‖𝐵𝑉 (𝒪) d𝑠 < ∞, 𝑓 ∈ 𝐶([0, 𝑇 ]; L2

𝑤),
(ii) 𝑔𝑘 → 𝑔 in 𝑄𝑐([0, 𝑇 ]; L2

𝑤), sup𝑘

∫︀ 𝑇

𝜏*𝑘
‖𝑔𝑘(𝑠)‖𝐵𝑉 (𝒪) d𝑠 < ∞, 𝑔 ∈ 𝐶([0, 𝑇 ]; L2

𝑤) ∩𝑄𝑐,𝐵𝑉 ([0, 𝑇 ]; L2
𝑤),

(iii) ℎ𝑘 → ℎ in 𝐶([0, 𝑇 ]; L2
𝑤), sup𝑘

∫︀ 𝑇

𝜏*𝑘
‖ℎ𝑘(𝑠)‖𝐵𝑉 (𝒪) d𝑠 < ∞, ℎ ∈ 𝑄𝑐,𝐵𝑉 ([0, 𝑇 ]; L2

𝑤),

(iv) 𝑤𝑗
𝑘 → 𝑤𝑗 in 𝐶([0, 𝑇 ]) for every 𝑗 ∈ N

where 𝜏*𝑘 = max{𝜏𝑖 : 𝑖 ≥ 𝑘}. If (a) holds then∫︁
Z

𝐹 d𝜇 ≤ lim inf
𝑘→∞

E𝜏𝑘
[𝐹𝑘(𝑍𝑘)].

If (b) holds then ∫︁
Z

𝐹 d𝜇 = lim
𝑘→∞

E𝜏𝑘
[𝐹𝑘(𝑍𝑘)].

Proof. The sets

𝒦𝑅,𝑛 =

⎡⎣ ⋃︁
𝑚∈[𝑛,∞]

𝑉𝑅,𝑚,0

⎤⎦×
⎡⎣ ⋃︁

𝑚∈[𝑛,∞]

𝑉𝑅,𝑚,𝑇/𝑚

⎤⎦× 𝑉𝑅,∞,𝑇/𝑛 × 𝐶([0, 𝑇 ])× 𝐶([0, 𝑇 ])× . . . ,

are closed, metrizable and decreasing in the second variable,

𝒦𝑅,∞ :=
∞⋂︁

𝑛=1

𝒦𝑅,𝑛 = 𝑉𝑅,∞,0 × 𝑉𝑅,∞,0 × 𝑉𝑅,∞,0 × 𝐶([0, 𝑇 ])× 𝐶([0, 𝑇 ])× . . . ,

and
P𝜏𝑘

[𝑍𝑘 /∈ 𝒦𝑅,𝑇/𝜏*𝑘
] ≤ P𝜏𝑘

[𝑍𝑘 /∈ 𝒦𝑅,𝑇/𝜏𝑘
] ≤ 𝐶

𝑅
,

by Proposition 6.1. The rest follows from Proposition 5.1. �

Remark 7.1. From the definition of the topological space Z we observe that 𝑋𝜀𝑘,ℎ𝑘,𝜏𝑘
converges in a sig-

nificantly stronger (hence better) sense than 𝑋𝜀𝑘,ℎ𝑘,𝜏𝑘
and 𝑋𝜀𝑘,ℎ𝑘,𝜏𝑘

. This is due to the fact that we have
𝐿1(0, 𝑇 ; W1,1

0 ) apriori bounds for the processes 𝑋𝜀𝑘,ℎ𝑘,𝜏𝑘
in Lemma 6.1 that are not available on the full interval

[0, 𝑇 ] for 𝑋𝜀𝑘,ℎ𝑘,𝜏𝑘
and 𝑋𝜀𝑘,ℎ𝑘,𝜏𝑘

.



NUMERICAL APPROXIMATION OF STOCHASTIC TV FLOW 801

Corollary 7.1. If 𝛼 ∈ (0, 1
2 ) then the following holds:

(I) The L2-valued processes 𝑆1, 𝑆2, 𝑆3 and the real-valued processes (𝑊 𝑘)𝑘∈N are (𝒵𝑡)-progressively measur-
able.

(II) 𝜇
(︀
𝑆1 = 𝑆2 = 𝑆3

)︀
= 1.

(III) We have

∫︁
Z

⎡⎣ sup
𝑡∈[0,𝑇 ]

‖𝑆3(𝑡)‖4 + ‖𝑆3‖4𝑊 𝛼,4(0,𝑇 ;H−1) +

(︃∫︁ 𝑇

0

‖𝑆1(𝑡)‖𝐵𝑉 (𝒪) d𝑡

)︃2
⎤⎦d𝜇 < ∞.

(IV) The 𝜎-algebras 𝒵𝑡 and 𝜎(𝑊 𝑗(𝑏)−𝑊 𝑗(𝑎) : 𝑡 ≤ 𝑎 ≤ 𝑏 ≤ 𝑇, 𝑗 ∈ N) are 𝜇-independent.
(V) The processes 𝑊 1, 𝑊 2, 𝑊 3, . . . are 𝜇-independent (𝒵𝑡)-Brownian motions.

Proof. (I) follows from Remark 5.1 as the processes 𝑆1, 𝑆2, 𝑆3 are continuous with an exception of an at
most countable set and they are (𝒵𝑡)-adapted by definition, cf., Proposition 1.13 of [17], and (II), (III) from
Lemmas 6.1, 6.2 and 7.1.

As for (IV), it suffices to realize that

𝒵𝑡 = 𝜎
(︀(︀

𝜙, 𝑆1
𝑠

)︀
,
(︀
𝜙, 𝑆2

𝑠

)︀
,
(︀
𝜙, 𝑆3

𝑠

)︀
, 𝑊 𝑗

𝑠 : 𝑠 ∈ [0, 𝑡], 𝑗 ∈ N, 𝜙 ∈ L2
)︀
.

If 𝑢 ≥ 𝑡 + 𝜏𝑘 then 𝜎(𝑊 𝑗(𝑏)−𝑊 𝑗(𝑎) : 𝑢 ≤ 𝑎 ≤ 𝑏 ≤ 𝑇, 𝑗 ∈ N) and 𝒵𝑡 are P𝜏𝑘
(𝑍𝑘 ∈ · )-independent, hence also 𝜇-

independent by Lemma 7.1. Consequently, 𝜎(𝑊 𝑗(𝑏)−𝑊 𝑗(𝑎) : 𝑡 < 𝑎 ≤ 𝑏 ≤ 𝑇, 𝑗 ∈ N) and 𝒵𝑡 are 𝜇-independent
but the former coincides with 𝜎(𝑊 𝑗(𝑏)−𝑊 𝑗(𝑎) : 𝑡 ≤ 𝑎 ≤ 𝑏 ≤ 𝑇, 𝑗 ∈ N) since the processes 𝑊 𝑗 are continuous.

As for (V), the 𝜎-algebras 𝜎(𝑊 1), 𝜎(𝑊 2), 𝜎(𝑊 3), . . . are P𝜏𝑘
(𝑍𝑘 ∈ · )-independent, hence also 𝜇-independent

by Lemma 7.1. And Lemma 6.3 yields that they are Brownian. �

Theorem 7.1. The process 𝑆3 defined in (18) is an SVI solution on (Z, B(Z), (𝒵𝜇
𝑡 ), 𝜇) with Wiener processes

(𝑊 𝑘)𝑘∈N (also defined in defined in (18)) in the sense of Definition 3.1.

Proof. The proof is divided into several steps. Recall that we consider the sub-sequence (𝜀𝑘, ℎ𝑘, 𝜏𝑘) → (0, 0, 0)
for 𝑘 → 0.

(i) First, we show that a discrete version (25) of (4) holds for simple step-processes 𝐺 and 𝐻. For let 0 = 𝑠0 <

· · · < 𝑠𝑚 = 𝑇 , define R4𝑀2
-valued continuous mappings on Z as

𝑉 𝛼 =
(︁(︁

𝜙𝛽 , 𝑆1
𝑟𝛼

𝛾

)︁
,
(︁
𝜙𝛽 , 𝑆2

𝑟𝛼
𝛾

)︁
,
(︁
𝜙𝛽 , 𝑆3

𝑟𝛼
𝛾

)︁
, 𝑊 𝑗

𝑟𝛼
𝛾

: 𝛽, 𝛾, 𝑗 ∈ {1, . . . ,𝑀}
)︁
, 0 ≤ 𝛼 ≤ 𝑚,

for some 𝑟𝛼
𝛾 ∈ [0, 𝑠𝛼] and 𝜙𝛽 ∈ L2 where we consider the product with 𝜙𝛽 to work with real-valued random

variables, and let
𝑔𝛼, ℎ𝛼,𝑗 : R4𝑀2

→ H1
0, 𝛼 ∈ {0, . . . ,𝑚}, 𝑗 ∈ N,

be H1
0-bounded continuous functions such that ℎ𝛼,𝑗 = 0 for 𝑗 ≥ 𝑗0 and some arbitrary 𝑗0 ∈ N, to simplify

the argument. We define

𝐺(𝑡) =
𝑚−1∑︁
𝛼=0

1(𝑠𝛼,𝑠𝛼+1](𝑡)𝑔𝛼(𝑉 𝛼), 𝐻𝑗(𝑡) =
𝑚−1∑︁
𝛼=0

1(𝑠𝛼,𝑠𝛼+1](𝑡)ℎ𝛼,𝑗(𝑉 𝛼),

and

𝐼(𝑡) = 𝑢0 −
∫︁ 𝑡

0

𝐺(𝑠) d𝑠 +
𝑗0∑︁

𝑗=1

∫︁ 𝑡

0

𝐻𝑗(𝑠) d𝑊 𝑗 . (20)
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Setting 𝑁𝑘 = 𝑇/𝜏𝑘, 𝑡𝑖 := 𝑖𝜏𝑘 for 𝑖 ∈ {0, . . . , 𝑁𝑘} then 𝐺𝑡𝑖
(𝑍𝑘) and 𝐻𝑗,𝑡𝑖

(𝑍𝑘) are ℱ 𝑖
𝜏𝑘

-measurable, Lemma 4.3
yields

1
2

E𝜏𝑘

[︁⃦⃦
𝑆1

𝑡𝑖
(𝑍𝑘)− 𝑃ℎ𝑘

𝑈 𝑖(𝑍𝑘)
⃦⃦2
]︁

+ E𝜏𝑘

[︂∫︁ 𝑡𝑖

0

𝒥𝜀𝑘

(︀
𝑆1

𝑠 (𝑍𝑘)
)︀

d𝑠

]︂
≤ 1

2

⃦⃦
𝑥0 − 𝑢0

⃦⃦2

+
𝑖∑︁

ℓ=1

E𝜏𝑘

[︃∫︁ 𝑡ℓ

𝑡ℓ−1

[︀
𝒥𝜀𝑘

(︀
𝑃ℎ𝑘

𝑈 ℓ(𝑍𝑘)
)︀

+
(︀
𝑃ℎ𝑘

𝐺𝑡ℓ
(𝑍𝑘), 𝑆1

𝑠 (𝑍𝑘)− 𝑈 ℓ(𝑍𝑘)
)︀]︀

d𝑠

]︃

+
1
2

𝑖∑︁
ℓ=2

E𝜏𝑘

[︃∫︁ 𝑡ℓ−1

𝑡ℓ−2

⃦⃦
𝑃ℎ𝑘

𝐵
(︀
𝑆1

𝑠 (𝑍𝑘)
)︀
− 𝑃ℎ𝑘

𝐻𝑡ℓ−1(𝑍𝑘)
⃦⃦2

L2(ℓ2,L2)
d𝑠

]︃
+

𝜏𝑘

2

⃦⃦
𝑃ℎ𝐵(𝑥0)

⃦⃦2

L2(ℓ2,L2)
,

for 0 ≤ 𝑖 ≤ 𝑁𝑘 where

𝑈 𝑖 = 𝑢0 − 𝜏𝑘

𝑖∑︁
ℓ=1

𝐺(𝑡ℓ) +
𝑖∑︁

ℓ=1

𝑁𝑘∑︁
𝑗=1

(︀
𝑊 𝑗(𝑡ℓ)−𝑊 𝑗(𝑡ℓ−1)

)︀
𝐻𝑗(𝑡ℓ−1) 𝑖 ∈ {0, . . . , 𝑁𝑘}, (21)

as 𝑆1
𝑡𝑖

(𝑍𝑘) = 𝑋
𝑖

𝜀𝑘,ℎ𝑘,𝜏𝑘
by the definition of 𝑆1 and 𝑍𝑘. For 𝑁𝑘 ≥ 𝑗0 we deduce that

max
1≤ℓ≤𝑁𝑘

sup
𝑡∈[𝑡ℓ−1,𝑡ℓ]

‖𝐼(𝑡)− 𝑈 ℓ‖H1
0
≤ 𝐶𝐺𝜏𝑘 + 𝐶𝐻

𝑗0∑︁
𝑗=1

m(𝑊 𝑗 , 𝜏𝑘), (22)

where m is the modulus of continuity of real-valued functions.
In the following, we replace 𝑈 by 𝐼 in the last but one inequality above, we proceed term by term. We note
that

E𝜏𝑘

[︃
max

1≤ℓ≤𝑁𝑘

⃦⃦
𝑈 ℓ(𝑍𝑘)

⃦⃦2

H1
0

+ sup
𝑠∈[0,𝑇 ]

⃦⃦
𝑆1

𝑠 (𝑍𝑘)
⃦⃦2

]︃
≤ 𝐶, (23)

and
E𝜏𝑘

[︀
m
(︀
𝑊 𝑗(𝑍𝑘), 𝜏𝑘

)︀]︀2 ≤ 𝐶𝜏2𝜃
𝑘 , (24)

hold for some 𝜃 ∈ (0, 1
4 ) by (17), the Doob maximal inequality for submartingales and Lemma 6.1. Next,

we observe that⃒⃒⃒
E𝜏𝑘

[︁⃦⃦
𝑆1

𝑡𝑖
(𝑍𝑘)− 𝑃ℎ𝑘

𝑈 𝑖(𝑍𝑘)
⃦⃦2
]︁
− E𝜏𝑘

[︁⃦⃦
𝑆1

𝑡𝑖
(𝑍𝑘)− 𝑃ℎ𝑘

𝐼𝑡𝑖(𝑍𝑘)
⃦⃦2
]︁⃒⃒⃒

≤ E𝜏𝑘

[︁⃦⃦
𝑃ℎ𝑘

𝑈 𝑖(𝑍𝑘)− 𝑃ℎ𝑘
𝐼𝑡𝑖(𝑍𝑘)

⃦⃦2
]︁

+ 4
√

𝐶
{︁

E𝜏𝑘

[︁⃦⃦
𝑃ℎ𝑘

𝑈 𝑖(𝑍𝑘)− 𝑃ℎ𝑘
𝐼𝑡𝑖

(𝑍𝑘)
⃦⃦2
]︁}︁ 1

2

≤ 𝐶𝜏𝜃
𝑘 ,

and

E𝜏𝑘

[︃∫︁ 𝑡ℓ

𝑡ℓ−1

⃒⃒
𝒥𝜀𝑘

(︀
𝑃ℎ𝑘

𝑈 ℓ(𝑍𝑘)
)︀
− 𝒥𝜀𝑘

(𝑃ℎ𝑘
𝐼𝑠(𝑍𝑘))

⃒⃒
d𝑠

]︃

≤ 𝐶

2∑︁
𝑗=1

∫︁ 𝑡ℓ

𝑡ℓ−1

E𝜏𝑘

[︁⃦⃦
𝑃ℎ𝑘

𝑈 ℓ(𝑍𝑘)− 𝑃ℎ𝑘
𝐼𝑠(𝑍𝑘)

⃦⃦𝑗

H1
0

]︁
d𝑠



NUMERICAL APPROXIMATION OF STOCHASTIC TV FLOW 803

+ 𝐶

2∑︁
𝑗=1

∫︁ 𝑡ℓ

𝑡ℓ−1

E𝜏𝑘

[︂⃦⃦
𝑃ℎ𝑘

𝑈 ℓ(𝑍𝑘)− 𝑃ℎ𝑘
𝐼𝑠(𝑍𝑘)

⃦⃦ 𝑗
2

H1
0

⃦⃦
𝑃ℎ𝑘

𝑈 ℓ(𝑍𝑘)
⃦⃦ ℓ

2

H1
0

]︂
d𝑠

≤ 𝐶𝜏
1+ 𝜃

2
𝑘 ,

by the stability of the projections {𝑃ℎ}ℎ>0 in H1
0 from Assumption 2.1(3).

Now denote by 𝑅𝑘 the set of ℓ ∈ {1, . . . , 𝑁𝑘} such that the interval (𝑡ℓ−1, 𝑡ℓ) is not fully contained in some of
the intervals (𝑠𝛼, 𝑠𝛼+1] for 𝛼 ∈ {0, . . . ,𝑚−1}. If ℓ ∈ 𝑅𝑘 then there exists unique 𝛼 such that 𝑠𝛼 < 𝑡ℓ ≤ 𝑠𝛼+1.
If 𝑠𝛼 ≤ 𝑡ℓ−1 then this would contradict that ℓ ∈ 𝑅𝑘 hence 𝑠𝛼 < 𝑡ℓ < 𝑠𝛼 + 𝜏𝑘. In particular, card (𝑅𝑘) ≤ 𝑚,
and consequently

𝑁𝑘∑︁
ℓ=1

E𝜏𝑘

[︃∫︁ 𝑡ℓ

𝑡ℓ−1

|(𝑃ℎ𝑘
𝐺𝑡ℓ

(𝑍𝑘)− 𝑃ℎ𝑘
𝐺𝑠(𝑍𝑘), 𝑆1

𝑠 (𝑍𝑘)− 𝑈 ℓ(𝑍𝑘))|d𝑠

]︃

=
∑︁

ℓ∈𝑅𝑘

E𝜏𝑘

[︃∫︁ 𝑡ℓ

𝑡ℓ−1

|(𝑃ℎ𝑘
𝐺𝑡ℓ

(𝑍𝑘)− 𝑃ℎ𝑘
𝐺𝑠(𝑍𝑘), 𝑆1

𝑠 (𝑍𝑘)− 𝑈 ℓ(𝑍𝑘))|d𝑠

]︃
≤ 𝐶𝑚𝜏𝑘.

Analogously, we estimate

𝑁𝑘∑︁
ℓ=2

E𝜏𝑘

[︃∫︁ 𝑡ℓ−1

𝑡ℓ−2

‖𝐵(𝑆1
𝑠 (𝑍𝑘))−𝐻𝑡ℓ−1(𝑍𝑘)‖2L2(ℓ2,L2) d𝑠

]︃
≤ 𝐶𝑚𝜏𝑘,

𝑁𝑘∑︁
ℓ=2

E𝜏𝑘

[︃∫︁ 𝑡ℓ−1

𝑡ℓ−2

‖𝐵(𝑆1
𝑠 (𝑍𝑘))−𝐻𝑠(𝑍𝑘)‖2L2(ℓ2,L2) d𝑠

]︃
≤ 𝐶𝑚𝜏𝑘,

by the linear growth of 𝐵 assumed in (B1). In the fourth step, we estimate

E𝜏𝑘

[︃∫︁ 𝑡ℓ

𝑡ℓ−1

|(𝑃ℎ𝑘
𝐺𝑠(𝑍𝑘), 𝑈 ℓ(𝑍𝑘))− (𝑃ℎ𝑘

𝐺𝑠(𝑍𝑘), 𝐼𝑠(𝑍𝑘))|d𝑠

]︃
≤ C𝜏1+𝜃

𝑘 ,

by boundedness of 𝐺. Hence, we conclude that

1
2

E𝜏𝑘

[︁⃦⃦
𝑆1

𝑡𝑖
(𝑍𝑘)− 𝑃ℎ𝑘

𝐼𝑡𝑖
(𝑍𝑘)

⃦⃦2
]︁

+ E𝜏𝑘

[︂∫︁ 𝑡𝑖

0

𝒥 (𝑆1
𝑠 (𝑍𝑘)) d𝑠

]︂
≤ 1

2
E𝜏𝑘

[︁⃦⃦
𝑆1

𝑡𝑖
(𝑍𝑘)− 𝑃ℎ𝑘

𝐼𝑡𝑖
(𝑍𝑘)

⃦⃦2
]︁

+ E𝜏𝑘

[︂∫︁ 𝑡𝑖

0

𝒥𝜀𝑘

(︀
𝑆1

𝑠 (𝑍𝑘)
)︀

d𝑠

]︂
≤ 1

2

⃦⃦
𝑥0 − 𝑢0

⃦⃦2

+ E𝜏𝑘

[︂∫︁ 𝑡𝑖

0

[︀
𝒥𝜀𝑘

(𝑃ℎ𝑘
𝐼𝑠(𝑍𝑘)) +

(︀
𝑃ℎ𝑘

𝐺𝑠(𝑍𝑘), 𝑆1
𝑠 (𝑍𝑘)− 𝐼𝑠(𝑍𝑘)

)︀]︀
d𝑠

]︂
+

1
2

E𝜏𝑘

[︂∫︁ 𝑡𝑖

0

⃦⃦
𝐵
(︀
𝑆1

𝑠 (𝑍𝑘)
)︀
−𝐻𝑠(𝑍𝑘)

⃦⃦2

L2(ℓ2,L2)
d𝑠

]︂
+ 𝐶𝜏

𝜃
2

𝑘 , (25)

for 0 ≤ 𝑖 ≤ 𝑁𝑘 and some 𝐶 independent of 𝑖 and 𝑘. Here we used 𝒥 ≤ 𝒥𝜀 and the linear growth of 𝐵
assumed in (B1).

(ii) In the second step, we extend the discrete result from step (i) to the time-continuous case on the stochastic
basis (Z, B(Z), (𝒵𝜇

𝑡 ), 𝜇), yet still for the simple processes 𝐺 and 𝐻 defined in part (i).
We note that by construction the mapping 𝐼 : [0, 𝑇 ] × Z → H1

0 from (i) is continuous and the following
properties hold for every 𝑘 and 𝑟 ∈ [0, 𝑇 ]:
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(a) ‖𝑆1
𝑟 − 𝑃ℎ𝑘

𝐼𝑟‖2 is lower semicontinuous on Z,
(b)

∫︀ 𝑟

0
𝒥 (𝑆1) d𝑠 is lower semicontinuous on Z by Remark B.1,

(c)
∫︀ 𝑟

0
[𝒥𝜀𝑘

(𝑃ℎ𝑘
𝐼) + (𝑃ℎ𝑘

𝐺, 𝑆1 − 𝐼)] d𝑠 is continuous on Z as (𝑃ℎ𝑘
𝐺, 𝑆1) = (𝐺, 𝑃ℎ𝑘

𝑆1),
(d)

∫︀ 𝑟

0
‖𝐵(𝑆1)−𝐻‖2L2(ℓ2,L2) d𝑠 is B(Z)-measurable by Corollary 7.1 (I).

Furthermore, from the fact that 𝒥𝜀 → 𝒥 for 𝜀 → 0 and ‖∇𝑣 − ∇𝑃ℎ𝑣‖ → 0, 𝑣 ∈ H1 for ℎ → 0 we deduce
the convergence

⃦⃦
𝑆1

𝑡 (𝑧)− 𝐼𝑡(𝑧)
⃦⃦2 ≤ lim inf

𝑘→∞

⃦⃦⃦
𝑆1

𝑡𝑘
𝑖𝑘

(𝑧𝑘)− 𝑃ℎ𝑘
𝐼𝑡𝑘

𝑖𝑘

(𝑧𝑘)
⃦⃦⃦2

,∫︁ 𝑟

0

𝒥 (𝐼(𝑧)) d𝑠 = lim
𝑘→∞

∫︁ 𝑟

0

𝒥𝜀𝑘
(𝑃ℎ𝑘

𝐼(𝑧𝑘)) d𝑠,∫︁ 𝑟

0

(𝐺(𝑧), 𝑆1(𝑧)− 𝐼(𝑧)) d𝑠 = lim
𝑘→∞

∫︁ 𝑟

0

(︀
𝑃ℎ𝑘

𝐺(𝑧𝑘), 𝑆1(𝑧𝑘)− 𝐼(𝑧𝑘)
)︀

d𝑠,∫︁ 𝑟

0

⃦⃦
𝐵(𝑆1(𝑧))−𝐻(𝑧)

⃦⃦2

L2(ℓ2,L2)
d𝑠 = lim

𝑘→∞

∫︁ 𝑟

0

⃦⃦
𝐵
(︀
𝑆1(𝑧𝑘)

)︀
−𝐻(𝑧𝑘)

⃦⃦2

L2(ℓ2,L2)
d𝑠,

whenever 𝑡𝑘𝑖𝑘
↗ 𝑡 and 𝑧𝑘 → 𝑧 in the sense of (i)–(iv) of Lemma 7.1 where, in the last step, we used the

assumption (B2) on continuity of 𝐵 if 𝑑 ≥ 2 (if 𝑑 = 1, continuity of 𝐵 suffices). Indeed, assume that∫︁ 𝑇

0

‖𝐵(𝑓𝑘)−𝐵(𝑓)‖2L2(ℓ2,L2) d𝑠 ≥ 𝑟 > 0, (26)

for some 𝑓𝑘 → 𝑓 in the sense of (i) of Lemma 7.1. Then 𝑓𝑘 → 𝑓 uniformly in H−𝑑 and
∫︀ 𝑇

0
‖𝑓𝑘‖𝐵𝑉 d𝑠 ≤ 𝐶.

Hence
∫︀ 𝑇

0
‖𝑓𝑘 − 𝑓‖L1 d𝑠 → 0 since 𝐵𝑉 (𝒪) →˓→˓ L1 →˓ H−𝑑. If 𝑑 = 1 then even

∫︀ 𝑇

0
‖𝑓𝑘 − 𝑓‖L2 d𝑠 → 0 since

𝐵𝑉 (𝒪) →˓→˓ L2 →˓ H−𝑑. Thus there exists a subsequence 𝑘𝑙 such that 𝑓𝑘𝑙
(𝑠) → 𝑓(𝑠) a.e. on 𝒪 (or in L2

if 𝑑 = 1) for a.e. 𝑠 ∈ [0, 𝑇 ]. In particular, ‖𝐵(𝑓𝑘𝑙
(𝑠)) − 𝐵(𝑓(𝑠))‖L2(ℓ2,L2) → 0 for a.s. 𝑠 ∈ [0, 𝑇 ], and the

linear growth of 𝐵 then yields that
∫︀ 𝑇

0
‖𝐵(𝑓𝑘𝑙

)−𝐵(𝑓)‖2L2(ℓ2,L2) d𝑠 → 0 which is a contradiction with (26).
Finally,

‖𝐼𝑠(𝑍𝑘)‖H1
0
≤ 𝑐 + 𝑐

𝑗0∑︁
𝑗=1

⃦⃦
𝑊 𝑗

𝜏𝑘

⃦⃦
𝐶([0,𝑇 ])

,

|𝒥𝜀𝑘
(𝑃ℎ𝑘

(𝐼𝑠(𝑍𝑘)))| ≤ 𝑐
[︁
1 + ‖𝐼𝑠(𝑍𝑘)‖2H1

0

]︁
,

holds by stability of the projections {𝑃ℎ}ℎ>0 in H1
0 so (19) is satisfied by (17), Lemma 6.1 and the linear

growth of 𝐵. Hence on taking the limit 𝑘 →∞ in (25) we conclude by Lemma 7.1 that (4) holds.
(iii) In the last step, we prove the full result. The extension of (4) to (𝒵𝜇

𝑡 )-progressively measurable processes
in 𝐿2([0, 𝑇 ] × Ω; H1

0) and 𝐿2([0, 𝑇 ] × Ω; L2(ℓ2, H1
0)) follows by a standard density argument (see e.g., [17],

Sect. 3.2, Lem. 2.4), and the general case can be obtained by considering 𝐺ℎ = 𝑃ℎ𝐺 and 𝐻ℎ = 𝑃ℎ𝐻, and
then letting ℎ → 0.

�

8. Convergence to pathwise unique probabilistically strong solution

In this section we study convergence of the interpolants 𝑋𝜀,ℎ,𝜏 , 𝑋𝜀,ℎ,𝜏 and 𝑋𝜀,ℎ,𝜏 to a probabilistically strong
SVI solution of (1) in probability. The proofs rely on a generalization of the the Gyongy–Krylov lemma to
non-Polish spaces (see e.g., the proof in [11], Thm. 2.10.3):
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Lemma 8.1. Let (Ω,ℱ , P) be a probability space, 𝑌 a Hausdorff locally convex topological vector space such that
there exists a continuous injection of 𝑌 into some Polish space 𝑃 and let 𝑈𝑛 : Ω → 𝑌 be a tight sequence of Borel
measurable random variables such that, for every two subsequences {𝑛𝑘}, {𝑚𝑘}, there exists a subsequence {𝑘𝑗}
and a Borel probability measure 𝜃 on 𝑌 ×𝑌 supported in the diagonal of 𝑌 ×𝑌 such that (𝑈𝑛𝑘𝑗

, 𝑈𝑚𝑘𝑗
) converges

in law to 𝜃. Then {𝑈𝑛} converges in 𝑌 in probability to some Borel measurable random variable 𝑈 : Ω → 𝑌 .

Theorem 8.1. Let (𝑊 𝑗) be independent (ℱ𝑡)-Wiener processes on (Ω,ℱ , (ℱ𝑡), P) and let

𝜉𝑖,𝑗
𝜏 = 𝑊 𝑗(𝑡𝑖)−𝑊 𝑗(𝑡𝑖−1), 𝑡𝑖 = 𝑖𝜏.

Assume also that pathwise uniqueness holds for the SVI solutions of (1) satisfying (8). Then 𝑋𝜀,ℎ,𝜏 , 𝑋𝜀,ℎ,𝜏 and
𝑋𝜀,ℎ,𝜏 converge to 𝑋 in probability in 𝑄𝑐,𝐵𝑉 ([0, 𝑇 ]; L2

𝑤), 𝑄𝑐([0, 𝑇 ]; L2
𝑤) and 𝐶([0, 𝑇 ]; L2

𝑤) respectively where 𝑋
is a solution (1) with respect to (𝑊 𝑗)𝑗∈N.

Proof. The proof is based on the Gyongy–Krylov Lemma 1.1 in [15]. Define

S = 𝑄𝑐,𝐵𝑉 ([0, 𝑇 ]; L2
𝑤)×𝑄𝑐,𝐵𝑉 ([0, 𝑇 ]; L2

𝑤)× 𝐶([0, 𝑇 ])× 𝐶([0, 𝑇 ])× 𝐶([0, 𝑇 ])× 𝐶([0, 𝑇 ])× . . . ,

and the projections

𝑌 1 : S → 𝑄𝑐,𝐵𝑉

(︀
[0, 𝑇 ]; L2

𝑤

)︀ (︀
𝑓1, 𝑓2, 𝑤1, 𝑤2, 𝑤3, . . .

)︀
↦→ 𝑓1,

𝑌 2 : S → 𝑄𝑐,𝐵𝑉

(︀
[0, 𝑇 ]; L2

𝑤

)︀ (︀
𝑓1, 𝑓2, 𝑤1, 𝑤2, 𝑤3, . . .

)︀
↦→ 𝑓2,

𝑊 𝑗 : S → 𝐶([0, 𝑇 ])
(︀
𝑓1, 𝑓2, 𝑤1, 𝑤2, 𝑤3, . . .

)︀
↦→ 𝑤𝑗 ,

and the canonical filtration on S

𝒮𝑡 = 𝜎
(︀
𝑌 1

𝑠 , 𝑌 2
𝑠 , 𝑊 𝑗

𝑠 : 𝑠 ∈ [0, 𝑡], 𝑗 ∈ N
)︀
, 𝑡 ∈ [0, 𝑇 ].

We consider two different sequences of discretization parameters (𝜀𝑖
𝑘, ℎ𝑖

𝑘, 𝜏 𝑖
𝑘) → (0, 0, 0) for 𝑖 = 1, 2, which are

chosen as in Corollary 6.1, such that

𝑍𝑘 :=
(︁
𝑋𝜀1

𝑘,ℎ1
𝑘,𝜏1

𝑘
, 𝑋𝜀2

𝑘,ℎ2
𝑘,𝜏2

𝑘
, 𝑊 1, 𝑊 2, 𝑊 3, . . .

)︁
,

converge to a Radon probability measure 𝜃 on B(S). Analogously as in Corollary 7.1, the processes 𝑌 1, 𝑌 2 and
(𝑊 𝑘)𝑘∈N are (𝒮𝑡)-progressively measurable, paths of 𝑌 1 and 𝑌 2 are continuous 𝜃-a.s.,∫︁

S

⎡⎣ sup
𝑡∈[0,𝑇 ]

‖𝑌 𝑖(𝑡)‖4 +

(︃∫︁ 𝑇

0

‖𝑌 𝑖(𝑡)‖𝐵𝑉 (𝒪) d𝑡

)︃2
⎤⎦d𝜃 < ∞, 𝑖 = 1, 2,

the 𝜎-algebras 𝒮𝑡 and 𝜎(𝑊 𝑗(𝑏) −𝑊 𝑗(𝑎) : 𝑡 ≤ 𝑎 ≤ 𝑏 ≤ 𝑇, 𝑗 ∈ N) are 𝜃-independent and 𝑊 1, 𝑊 2, 𝑊 3, . . . are
𝜃-independent (𝒮𝑡)-Brownian motions. The proof that 𝑌 1 and 𝑌 2 are SVI solutions with respect to (𝑊 𝑘)𝑘∈N
and

𝜃
[︀
𝑌 1(0) = 𝑌 2(0) = 𝑥0

]︀
= 1,

is analogous to the proof of Theorem 7.1, we point out the differences below.
In step (i) one modifies the definition of the R3𝑀2

-valued random variables

𝑉 𝛼 =
(︁(︁

𝜙𝛽 , 𝑌 1
𝑟𝛼

𝛾

)︁
,
(︁
𝜙𝛽 , 𝑌 2

𝑟𝛼
𝛾

)︁
, 𝑊 𝑗

𝑟𝛼
𝛾

: 𝛽, 𝛾, 𝑗 ∈ {1, . . . ,𝑀}
)︁
, 0 ≤ 𝛼 ≤ 𝑚,

defined on S, the functions 𝑔𝛼, ℎ𝛼,𝑗 map R3𝑀2
to H1

0 and have the same properties as in the proof of Theorem 7.1
and

𝐺(𝑡) =
𝑚−1∑︁
𝛼=1

1(𝑠𝛼,𝑠𝛼+1](𝑡)𝑔𝛼(𝑉 𝛼−1), 𝐻𝑗(𝑡) =
𝑚−1∑︁
𝛼=1

1(𝑠𝛼,𝑠𝛼+1](𝑡)ℎ𝛼,𝑗(𝑉 𝛼−1),



806 L’. BAŇAS AND M. ONDREJÁT

i.e., there is a backward time shift compared to the definition of 𝐺 and 𝐻 in the proof of Theorem 7.1. Once
we set we set 𝑁 𝑖

𝑘 = 𝑇/𝜏 𝑖
𝑘, 𝑡𝑖ℓ := ℓ𝜏 𝑖

𝑘 for ℓ ∈ {0, . . . , 𝑁 𝑖
𝑘}, 𝑖 = 1, 2 the above modification ensures that 𝑉 𝛼−1(𝑍𝑘)

is ℱ𝑠𝛼 -measurable. Consequently, 𝐺(𝑡, 𝑍𝑘) and 𝐻𝑗(𝑡, 𝑍𝑘) are (ℱ𝑡)-adapted processes as long as 𝜏 𝑖
𝑘, 𝑖 = 1, 2 are

smaller than the mesh of the partition {𝑠𝛼}.
Pathwise uniqueness of solutions of (1) yields that 𝑌 1 = 𝑌 2 holds P-a.s. hence 𝑋𝜀,ℎ,𝜏 is convergent in

𝑄𝑐,𝐵𝑉 ([0, 𝑇 ]; L2
𝑤) in probability as (𝜀, ℎ, 𝜏) → (0, 0, 0) by Lemma 8.1.

Now we apply the Gyongy–Krylov Lemma 8.1 once again. By Corollary 6.1 we deduce that the laws of the
sequence (︁

𝑋𝜀1
𝑘,ℎ1

𝑘,𝜏1
𝑘
, 𝑋𝜀1

𝑘,ℎ1
𝑘,𝜏1

𝑘
, 𝑋𝜀1

𝑘,ℎ1
𝑘,𝜏1

𝑘
, 𝑋𝜀2

𝑘,ℎ2
𝑘,𝜏2

𝑘
, 𝑋𝜀2

𝑘,ℎ2
𝑘,𝜏2

𝑘
, 𝑋𝜀2

𝑘,ℎ2
𝑘,𝜏2

𝑘

)︁
,

on
B(𝑄𝑐,𝐵𝑉 ×𝑄𝑐 × 𝐶 ×𝑄𝑐,𝐵𝑉 ×𝑄𝑐 × 𝐶),

where 𝑄𝑐,𝐵𝑉 = 𝑄𝑐,𝐵𝑉 ([0, 𝑇 ]; L2
𝑤), 𝑄𝑐 = 𝑄𝑐([0, 𝑇 ]; L2

𝑤)) and 𝐶 = 𝐶([0, 𝑇 ]; L2
𝑤) converge to some probability

measure 𝜈. Consequently
𝜈{𝑥1 = 𝑥2 = 𝑥3, 𝑥4 = 𝑥5 = 𝑥6, 𝑥1 = 𝑥4} = 1,

by Corollary 7.1 (II) and the first part of the proof. Hence Theorem 2.10.3 of [11] yields that 𝑋𝜀,ℎ,𝜏 and 𝑋𝜀,ℎ,𝜏

converge in probability in 𝑄𝑐([0, 𝑇 ]; L2
𝑤)) and 𝐶([0, 𝑇 ]; L2

𝑤) respectively as (𝜀, ℎ, 𝜏) → (0, 0, 0). And the limit
equals to 𝑋 by (16).

Analogously as in the proof of Theorem 7.1 we set

𝐺(𝑡) =
𝑚−1∑︁
𝛼=0

1(𝑠𝛼,𝑠𝛼+1](𝑡)𝑔𝛼 𝐻𝑗(𝑡) =
𝑚−1∑︁
𝛼=0

1(𝑠𝛼,𝑠𝛼+1](𝑡)ℎ𝛼,𝑗 , (27)

for some 0 = 𝑠0 < · · · < 𝑠𝑚 = 𝑇 where 𝑔𝛼 and ℎ𝛼,𝑗 are simple H1
0-valued ℱ𝑠𝛼 -measurable random variables

such that ℎ𝛼,𝑗 = 0 for 𝑗 ≥ 𝑗0 for some arbitrary 𝑗0 ∈ N and define the process 𝐼 as in (20). Setting 𝑁 = 𝑇/𝜏 ,
𝑡𝑖 := 𝑖𝜏 for 𝑖 ∈ {0, . . . , 𝑁} then, as in (25) in the proof of Theorem 7.1 we obtain that

1
2

E
[︁⃦⃦

𝑋𝜏 (𝑡𝑖)− 𝑃ℎ𝐼(𝑡𝑖)
⃦⃦2
]︁

+ E
[︂∫︁ 𝑡𝑖

0

𝒥
(︀
𝑋𝜏 (𝑠)

)︀
d𝑠

]︂
≤ 1

2

⃦⃦
𝑥0 − 𝑢0

⃦⃦2

+ E
[︂∫︁ 𝑡𝑖

0

[︀
𝒥𝜀(𝑃ℎ𝐼(𝑠)) +

(︀
𝑃ℎ𝐺(𝑠), 𝑋𝜏 (𝑠)− 𝐼(𝑠)

)︀]︀
d𝑠

]︂
+

1
2

E
[︂∫︁ 𝑡𝑖

0

⃦⃦
𝐵
(︀
𝑋𝜏 (𝑠)

)︀
−𝐻(𝑠)

⃦⃦2

L2(ℓ2,L2)
d𝑠

]︂
+ 𝑐𝜏

𝜃
2 ,

for 0 ≤ 𝑖 ≤ 𝑁 if 𝑁 ≥ 𝑗0. If 0 ≤ 𝑡 ≤ 𝑡𝑖 < 𝑡 + 𝜏 then

1
2

E
[︁⃦⃦

𝑋𝜏 (𝑡𝑖)− 𝑃ℎ𝐼(𝑡𝑖)
⃦⃦2
]︁

+ E
[︂∫︁ 𝑡

0

𝒥
(︀
𝑋𝜏 (𝑠)

)︀
d𝑠

]︂
≤ 1

2

⃦⃦
𝑥0 − 𝑢0

⃦⃦2

+ E
[︂∫︁ 𝑡

0

[︀
𝒥𝜀(𝑃ℎ𝐼(𝑠)) +

(︀
𝑃ℎ𝐺(𝑠), 𝑋𝜏 (𝑠)− 𝐼(𝑠)

)︀]︀
d𝑠

]︂
+

1
2

E
[︂∫︁ 𝑡

0

⃦⃦
𝐵
(︀
𝑋𝜏 (𝑠)

)︀
−𝐻(𝑠)

⃦⃦2

L2(ℓ2,L2)
d𝑠

]︂
+ 𝑐𝜏

𝜃
2 + 𝑐1𝜏.

We deduce that the following holds for (𝜀, ℎ, 𝜏) → (0, 0, 0):

– 𝑋𝜏 (𝑡𝑖)− 𝑃ℎ𝐼(𝑡𝑖) is tight in L2
𝑤 and converges to 𝑋(𝑡)− 𝐼(𝑡) in L2

𝑤 in probability (hence also in law) thus

E
[︁⃦⃦

𝑋(𝑡)− (𝑡)
⃦⃦2
]︁
≤ lim inf E

[︁⃦⃦
𝑋𝜏 (𝑡𝑖)− 𝑃ℎ𝐼(𝑡𝑖)

⃦⃦2
]︁
,

by Proposition 5.1,
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– 𝑋𝜏 converges to 𝑋 in 𝑄𝑐,𝐵𝑉 ([0, 𝑇 ]; L2
𝑤) in probability (hence also in law) thus

E
[︂∫︁ 𝑡

0

𝒥 (𝑋(𝑠)) d𝑠

]︂
≤ lim inf E

[︂∫︁ 𝑡

0

𝒥 (𝑋𝜏 (𝑠)) d𝑠

]︂
,

as in the proof of Theorem 7.1,
–

E
[︂∫︁ 𝑡

0

𝒥 (𝐼(𝑠)) d𝑠

]︂
= lim E

[︂∫︁ 𝑡

0

𝒥𝜀(𝑃ℎ𝐼(𝑠)) d𝑠

]︂
,

as in the proof of Theorem 7.1,
–

E

[︃∫︁ 𝑇

0

⃒⃒(︀
𝑃ℎ𝐺(𝑠)−𝐺(𝑠), 𝑋𝜏 (𝑠)− 𝐼(𝑠)

)︀⃒⃒
d𝑠

]︃
≤ 𝐶E

[︃∫︁ 𝑇

0

‖𝑃ℎ𝐺(𝑠)−𝐺(𝑠)‖2 d𝑠

]︃
→ 0,

–

E

[︃∫︁ 𝑇

0

⃒⃒
(𝐺(𝑠), 𝑋𝜏 (𝑠)−𝑋(𝑠))

⃒⃒
d𝑠

]︃
=

𝑚−1∑︁
𝛼=0

E
[︂∫︁ 𝑠𝛼+1

𝑠𝛼

⃒⃒(︀
𝑔𝛼, 𝑋𝜏 (𝑠)−𝑋(𝑠)

)︀⃒⃒
d𝑠

]︂

≤ 𝑇

𝑚−1∑︁
𝛼=0

E

[︃
sup

𝑠∈[0,𝑇 ]

⃒⃒(︀
𝑔𝛼, 𝑋𝜏 (𝑠)−𝑋(𝑠)

)︀⃒⃒]︃
→ 0,

since 𝑔𝛼 are simple,
– we proved in the proof of Theorem 7.1 that if 𝑓 𝑗

𝑛 → 𝑓 𝑗 in 𝑄𝑐,𝐵𝑉 ([0,𝑇 ];L2
𝑤) and

∫︁ 𝑇

0

‖𝑓 𝑗
𝑛(𝑠)‖𝐵𝑉 (𝒪) d𝑠 ≤ 𝐶, 𝑗 = 1, 2,

then ∫︁ 𝑇

0

‖𝐵(𝑓1
𝑛)−𝐵(𝑓2

𝑛)‖2L2(ℓ2,L2) d𝑠 →
∫︁ 𝑇

0

‖𝐵(𝑓1)−𝐵(𝑓2)‖2L2(ℓ2,L2) d𝑠.

Now (𝑋𝜏 , 𝑋) are tight in 𝑄𝑐,𝐵𝑉 ([0,𝑇 ];L2
𝑤) × 𝑄𝑐,𝐵𝑉 ([0,𝑇 ];L2

𝑤) and converge in probability (hence in law) to
(𝑋, 𝑋). By Proposition 5.1 we deduce

lim E

[︃∫︁ 𝑇

0

⃦⃦
𝐵
(︀
𝑋𝜏 (𝑠)

)︀
−𝐵(𝑋(𝑠))

⃦⃦2

L2(ℓ2,L2)
d𝑠

]︃
= E

[︃∫︁ 𝑇

0

‖𝐵(𝑋(𝑠))−𝐵(𝑋(𝑠))‖2L2(ℓ2,L2) d𝑠

]︃
.

Hence, we obtain as in (ii) in the proof of Theorem 7.1 that

1
2

E[‖𝑋(𝑡)− 𝐼(𝑡)‖2] + E
[︂∫︁ 𝑡

0

𝒥 (𝑋(𝑠)) d𝑠

]︂
≤ 1

2
‖𝑥0 − 𝑢0‖2 + E

[︂∫︁ 𝑡

0

[𝒥 (𝐼(𝑠)) + (𝐺(𝑠), 𝑋(𝑠)− 𝐼(𝑠))] d𝑠

]︂
+

1
2

E
[︂∫︁ 𝑡

0

‖𝐵(𝑋(𝑠))−𝐻(𝑠)‖2L2(ℓ2,L2) d𝑠

]︂
.

The extension to general 𝐺, 𝐻 and 𝐼 is analogous to (iii) in the proof of Theorem 7.1.
�
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9. Numerical experiments

We perform numerical experiments in 𝑑 = 2 on the unit square 𝒪 = (0, 1)2. We construct a triangulation
𝒯ℎ of 𝒪 with mesh size ℎ = 2−ℓ by partitioning the unit square into sub-squares of size ℎ and subdividing
each square into four equal right-angled triangles. Given the triangulation 𝒯ℎ we consider the finite element
space Vℎ ≡ Vℎ(𝒯ℎ) = span{𝜑𝑗 , 𝑗 = 1, . . . , 𝐽}. For simplicity of implementation we consider a finite dimensional
noise: given a scalar valued function 𝜎 (to be specified below) we set 𝐵𝑗(𝑋) = 𝐵𝑗(𝑋, ℎ) = 𝜎(𝑋)𝜑𝑗 and consider
discrete increments ∆𝑖𝛽𝑗 := 𝛽𝑗(𝑡𝑖) − 𝛽𝑗(𝑡𝑖−1) where 𝛽𝑗 , 𝑗 = 1, . . . , 𝐽 are independent scalar-valued Wiener
processes.

The above choice of the noise yields a variant of scheme (3): for 𝑖 = 1, . . . , 𝑁 we seek 𝑋𝑖
𝜀,ℎ ∈ Vℎ that satisfies

(︀
𝑋𝑖

𝜀,ℎ, 𝑣ℎ

)︀
=
(︁
𝑋𝑖−1

𝜀,ℎ , 𝑣ℎ

)︁
− 𝜏

⎛⎝ ∇𝑋𝑖
𝜀,ℎ√︁

|∇𝑋𝑖
𝜀,ℎ|2 + 𝜀2

,∇𝑣ℎ

⎞⎠
− 𝜏𝜆

(︀
𝑋𝑖

𝜀,ℎ − 𝑔ℎ, 𝑣ℎ

)︀
+

𝐽∑︁
𝑗=1

(︁
𝜎(𝑋𝑖−1

𝜀,ℎ )𝜑𝑗 , 𝑣ℎ

)︁
∆𝑖𝛽𝑗 ∀𝑣ℎ ∈ Vℎ, (28)

𝑋0
𝜀,ℎ = 𝑥0

ℎ.

where 𝑔ℎ, 𝑥0
ℎ ∈ ̃︀Vℎ ⊂ Vℎ are suitable approximations (see below) of the data 𝑔, 𝑥0, respectively.

For comparison we also perform simulations using a non-conforming variant of (28) where the (H1-conforming)
space Vℎ in (28) is replaced by a non-conforming finite element space Vcr ̸⊂ H1

0. Given a partition 𝒯ℎ of 𝒪 we
denote the set of all faces of elements 𝑇 ∈ 𝒯ℎ as 𝒮ℎ = ∪𝑇∈𝒯ℎ

𝜕𝑇 and for a face 𝑆 ∈ 𝒮ℎ we denote its barycenter
by 𝑏𝑆 . Then we define the non-conforming finite element space as

Vcr =
{︀
𝜙 ∈ L2; 𝜙|𝑇 ∈ 𝒫1(𝑇 ) ∀𝑇 ∈ 𝒯ℎ, 𝜙 is continuous at 𝑏𝑆 ∀𝑆 ∈ 𝒮ℎ ∩ 𝒪
and 𝜙(𝑏𝑆) = 0 for 𝑆 ∈ 𝒮ℎ ∩ 𝜕𝒪

}︀
.

The above finite element space corresponds to the first order Crouzeix–Raviart finite element which is more
suitable for the approximation of discontinuous solutions, cf., [3] and the references therein, for its use in the
context of image processing. We note that Vℎ(𝒯ℎ) ⊂ Vcr(𝒯ℎ) but since Vcr ̸⊂ H1

0 the elements of Vcr have no
(global) weak gradients in general. Hence for 𝑤ℎ ∈ Vcr we define a discrete gradient ∇ℎ𝑤ℎ via ∇ℎ𝑤ℎ = ∇(𝑤ℎ|𝑇 ).
Then the non-conforming counterpart of the scheme (3) is obtained by replacing Vℎ with Vcr and the gradients
∇ in (3) by the discrete gradient ∇ℎ. The numerical solutions 𝑋𝑖

𝜀,ℎ ∈ Vcr, 𝑖 = 1, . . . , 𝑁 the exist and satisfy an
energy law (counterpart of Lem. 4.1), however, the convergence of the non-conforming scheme is open so far.

To construct an approximation of the data 𝑔, 𝑥0 we consider the space ̃︀Vℎ ≡ Vℎ(̃︀𝒯ℎ) with fixed mesh size
ℎ = 2−6. We define the function 𝑔ℎ ∈ ̃︀Vℎ, which represents an “exact image”, as the composition of the
characteristic function of a square with side 1

2 at the center of 𝒪 scaled by the factor 1
2 and the characteristic

function of a circle with radius 1
4 shifted by 0.2 to the right of the center of 𝒪 interpolated on the mesh ̃︀𝒯ℎ, see

Figure 1 (left), i.e., 𝑔ℎ(𝑥) =
∑︀𝐽

𝑗=1 𝑔(𝑥𝑗)𝜑𝑗(𝑥) where {𝜑𝑗}𝐽
𝑗=1 are the nodal basis functions associated with the

nodes the {𝑥𝑗}𝐽
𝑗=1 of the mesh ̃︀𝒯ℎ. Hence, we set 𝑔ℎ = 𝑔ℎ + 𝜉ℎ ∈ ̃︀Vℎ with the “noise” 𝜉ℎ(𝑥) = 0.1

∑︀𝐽
𝑗=1 𝜑𝑗(𝑥)𝜉𝑗 ,

𝑥 ∈ 𝒪 where 𝜉𝑗 , 𝑗 = 1, . . . , 𝐽 are realizations of independent 𝒰(−1, 1)-distributed random variables. The
corresponding realization of the noise 𝜉ℎ and the resulting “noisy image” 𝑔ℎ are displayed in Figure 1 (middle
and right, respectively).

In all experiments we set 𝑇 = 0.1, 𝜆 = 200, 𝜀 = 10−4, 𝑥0
ℎ = 𝑔ℎ. The nonlinear algebraic system which

corresponds to (28) is solved using a simple fixed-point iterative scheme with tolerance 10−4, cf., Section 5 of
[4]. If not mentioned otherwise we use the time step 𝜏 = 10−3 and the mesh size ℎ = 2−6.

We consider the problem with additive noise 𝜎(𝑋) ≡ 𝜎 = 1 first. The time-evolution of the discrete energy
functional 𝒥𝜀 for one realization of the space-time noise 𝑊ℎ is displayed in Figure 2 (left); P1 denotes the
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Figure 1. The original image 𝑔ℎ (left), the noise 𝜉ℎ (middle) and the noisy image 𝑔ℎ (right).
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Figure 2. Evolution of the discrete total energy 𝑡𝑖 → 𝒥𝜀(𝑋𝑖
𝜀,ℎ) (left) and of the distance to

the exact image 𝑡𝑖 → 𝒥𝜆(𝑋𝑖
𝜀,ℎ) (right).

solution with the conforming finite element approximation and CR denotes the non-conforming approximation,
h7, h8 respectively denote the solution with mesh size ℎ = 2−7, 2−8 and 𝑑𝑒𝑡 stands for the deterministic
solution with 𝜎 = 0. The evolution of the fidelity term 𝒥𝜆(𝑋) := 𝜆

2 ‖𝑋−𝑔ℎ‖2, which measures the quality of the
approximation of the exact image 𝑔ℎ, is displayed in Figure 2 (right). We make the following observations for the
conforming finite element method: in the deterministic case (i.e., for 𝜎 = 0) the value of the term 𝒥𝜆 decreases
with decreasing mesh size, in the stochastic case it oscillates around the values of its deterministic counterpart.
For the non-conforming approximation we measure the quality of the approximation using a modified fidelity
term 𝒥𝜆(Π0

ℎ𝑋), where Π0
ℎ is the projection onto piecewise constant functions on 𝒯ℎ, see Figure 3 where we

also display the solution of the conforming finite element scheme. As expected, cf., [3], on the same mesh with
𝜎 = 0 the non-conforming finite element method yields a better approximation of the original image then the
conforming method. The non-conforming approximation requires roughly 3 times more degrees of freedom than
the conforming one but the approximation is still comparable to the conforming method with smaller mesh size
ℎ = 2−7 (which involves 4 times more degrees of freedom than the approximation with ℎ = 2−6). Nevertheless,
we also observe that the non-conforming approximation is more sensitive to the noise, i.e., the corresponding
fidelity term 𝒥𝜆 attains larger values for 𝜎 = 1 then its counterpart for the conforming approximation. For
comparison in Figure 4 we also display the piecewise constant projections of the solutions computed with the
conforming scheme with ℎ = 2−6 and ℎ = 2−8.
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Figure 3. Solution computed with the conforming finite element scheme (left) and the pro-
jected solution of the non-conforming finite element scheme (right).

Figure 4. Projected solution of the conforming finite element scheme with 𝜎 = 0 for ℎ = 2−6

(left) and ℎ = 2−8 (right) at 𝑇 = 0.1.

Next, we consider the scheme (28) (with the conforming spatial discretization) with multiplicative noise. We
choose 𝜎 = {𝜎1(𝑋), 𝜎2(𝑋)} with 𝜎1(𝑋) = |𝑋 − 𝑔ℎ|, 𝜎2(𝑋) = |𝑋 − 𝑔ℎ|1/2, note that 𝜎1 does not satisfy the
conditions (B1), (B2) while 𝜎2 does. The remaining parameters were the same as in the previous experiments.
In Figure 5 we display the evolution of the discrete energy functional 𝒥𝜀 and the evolution of the fidelity term 𝒥𝜆

for the two choices of the multiplicative noise as well as for the additive noise with 𝜎 = 1 and the deterministic
case 𝜎 = 0. The energy in the multiplicative noise case is lower then in the case of additive noise. This can be
attributed to the fact that the multiplicative noise with 𝜎 = {𝜎1, 𝜎2} has lower intensity when the numerical
solution is close to the noisy image 𝑔ℎ. Analogously, the lower noise intensity in the multiplicative case results in
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Figure 5. Evolution of the discrete total energy 𝑡𝑖 → 𝒥𝜀(𝑋𝑖
𝜀,ℎ) (left) and of the distance to the

exact image 𝑡𝑖 → 𝒥𝜆(𝑋𝑖
𝜀,ℎ) (right) for multiplicative noise 𝜎1, 𝜎2 and for additive noise with

𝜎 = 1.

better approximation of the exact image (i.e., lower values of 𝒥𝜆) then in the additive noise case. Furthermore,
since 𝜎1(𝑠) < 𝜎2(𝑠) for |𝑠| < 1, the fidelity term 𝒥𝜆 attains slightly lower values for 𝜎 = 𝜎1 then for 𝜎 = 𝜎2.
Graphically the numerical solutions with mutliplicative noise 𝜎 = {𝜎1, 𝜎2} were very similar to those shown in
Figure 3 and are therefore not displayed.

Appendix A. Proofs of the results from Section 5

A.1. Proof of Theorem 5.1

The proof is analogous to that of the generalized Arzela–Ascoli theorem e.g., Theorem 7.6 of [18]. Denote
by 𝜏p the topology of pointwise convergence on 𝑌 [0,𝑇 ]. Apparently, 𝜏p ⊆ 𝜏u. Basically, (i) yields that 𝑀

𝜏p is
compact in 𝑌 [0,𝑇 ] by the Tychonoff theorem, and the traces of 𝜏p and 𝜏u coincide on 𝑀

𝜏p by (ii). To see the
latter, fix an absolutely convex neighbourhood of zero 𝑂 and get 𝛿 > 0 and 𝑚 ∈ N from (ii). Let 𝐷 be a finite
subset of (𝑇Q) ∩ [0, 𝑇 ] that contains all 𝑡𝑛𝑗 for 0 ≤ 𝑗 ≤ 𝑛 ≤ 𝑚, let 𝐷 intersect each non-empty intersection
(𝑡𝑘𝑖−1, 𝑡

𝑘
𝑖 ) ∩ (𝑡𝑙𝑗−1, 𝑡

𝑙
𝑗) whenever 1 ≤ 𝑖 ≤ 𝑘 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑙 ≤ 𝑚, and let 𝐷 be a 𝛿-net in (𝑡𝑘𝑖−1, 𝑡

𝑘
𝑖 ) for every

1 ≤ 𝑖 ≤ 𝑘 ≤ 𝑚. With these preparations, if 𝑓, 𝑔 ∈ 𝑀 are such that 𝑓(𝑟) − 𝑔(𝑟) ∈ 𝑂 for every 𝑟 ∈ 𝐷 then
𝑓(𝑡) − 𝑔(𝑡) ∈ 3𝑂 for every 𝑡 ∈ [0, 𝑇 ]. Thus, if 𝑓, 𝑔 ∈ 𝑀

𝜏p are such that 𝑓(𝑟) − 𝑔(𝑟) ∈ 𝑂 for every 𝑟 ∈ 𝐷 then
𝑓(𝑡)− 𝑔(𝑡) ∈ 3𝑂 for every 𝑡 ∈ [0, 𝑇 ]. In particular, (ii) yields that 𝜏p is stronger than 𝜏u on 𝑀

𝜏p . But since 𝜏p
is weaker than 𝜏u, the topologies coincide on 𝑀

𝜏p . Now (ii) also yields

𝑀
𝜏p =

∞⋂︁
𝑛=1

{︃
𝑀↑

𝑛

𝜏p
∪

𝑛−1⋃︁
𝑚=1

𝑀 ∩𝑄𝑚
𝜏p

}︃
⊆ 𝑄∞ ∪

∞⋂︁
𝑛=1

𝑀↑
𝑛

𝜏p
⊆ 𝑄∞ ∪ 𝐶([0, 𝑇 ]; 𝑌 ) = 𝑄𝑐. (A.1)

The implication (iii) ⇒ (i) is obvious and one gets (iii) ⇒ (ii) by contradiction.
To prove (iii) ⇒ (iv) and the assertion in Remark 5.4, we are going to use only the fact that 𝑓(𝑠+) and 𝑓(𝑡−)

exist for every 0 ≤ 𝑠 < 𝑡 ≤ 𝑇 and every 𝑓 in 𝑀 . For let 𝐾 be the closure of 𝑀 and define

𝑅 = {𝑓(𝑡−), 𝑓(𝑡), 𝑓(𝑡+) : 𝑡 ∈ [0, 𝑇 ], 𝑓 ∈ 𝐾},

where 𝑓(0−) := 𝑓(0) and 𝑓(𝑇+) := 𝑓(𝑇 ). The definition of 𝑅 is correct since we know by (A.1) that 𝐾 ⊆
𝑄∞ ∪ 𝐶([0, 𝑇 ]; 𝑌 ) if (iii) holds, or we refer to Remark 5.2. Let us prove that 𝑅 is compact in 𝑌 . For let 𝒰 be
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an ultrafilter in 𝑅 and define

𝑆𝑈 = {(𝑡, 𝑓) ∈ [0, 𝑇 ]× 𝐶 : {𝑓(𝑡−), 𝑓(𝑡), 𝑓(𝑡+)} ∩ 𝑈 ̸= ∅}.

Then {𝑆𝑈 : 𝑈 ∈ 𝒰} is a basis of a filter in the compact space [0, 𝑇 ] ×𝐾, and therefore it converges to some
(𝑠, 𝑔) ∈ [0, 𝑇 ]×𝐾. We conclude that

[(𝑔(𝑠−) + 𝑂) ∪ (𝑔(𝑠) + 𝑂) ∪ (𝑔(𝑠+) + 𝑂)] ∩ 𝑈 ̸= ∅,

holds for every 𝑈 ∈ 𝒰 and every neighbourhood 𝑂 of zero in 𝑌 . Since 𝒰 is an ultrafilter,

[(𝑔(𝑠−) + 𝑂) ∪ (𝑔(𝑠) + 𝑂) ∪ (𝑔(𝑠+) + 𝑂)] ∩𝑅 ∈ 𝒰 ,

and so 𝒰 converges to one of the elements in the set {𝑔(𝑠−), 𝑔(𝑠), 𝑔(𝑠+)}.

A.2. Proof of Corollary 5.1

Say that 𝑓 takes values in some compact 𝐾 for every 𝑓 ∈ 𝑀 , let {[| · |𝑛 < 1] : 𝑛 ∈ N} be a basis of absolutely
convex open neighbourhoods of zero in the compact set

𝐶 =
⋃︁

max {|𝑎|,|𝑏|}≤1

(𝑎𝐾 + 𝑏𝐾),

for some continuous pseudonorms | · |𝑛 on 𝑌 and define

𝑑(𝑦1, 𝑦2) =
∞∑︁

𝑛=1

2−𝑛 min {1, |𝑦1 − 𝑦2|𝑛}, 𝑦1, 𝑦2 ∈ 𝑌.

Then
𝐷(𝑓, 𝑔) = sup {𝑑(𝑓(𝑡), 𝑔(𝑡)) : 𝑡 ∈ [0, 𝑇 ]}, 𝑓, 𝑔 ∈ 𝑄([0, 𝑇 ]; 𝑌 ), (A.2)

metrizes the topology on 𝑀 .

A.3. Proof of Corollary 5.2

It suffices to prove the assertion for compact sets 𝑀 in 𝑄𝑐([0, 𝑇 ]; 𝑌 ). The mapping 𝑓 ↦→ 𝐷(𝑓, 𝑔) is 𝒴𝑇 -
measurable for every 𝑔 ∈ 𝑄([0, 𝑇 ]; 𝑌 ) by Remark 5.1, hence the traces of B(𝑄([0, 𝑇 ]; 𝑌 )) and 𝒴𝑇 coincide on
𝑀 as (𝑀,𝐷) is a separable metric space by Corollary 5.1. Now it suffices to prove that 𝑀 itself belongs to 𝒴𝑇 .
According to Theorem 5.1, there exist {𝑚𝑛 : 𝑛 ∈ N} ⊆ N and {𝛿𝑛 : 𝑛 ∈ N} ⊆ (0,∞) such that 𝑀 ⊆ 𝑅 where

𝑅 =

⎡⎣ ⋂︁
𝑡∈[0,𝑇 ]

𝜋−1
𝑡 [𝐾]

⎤⎦ ∩ ∞⋂︁
𝑛=1

⎧⎨⎩
⎡⎣𝑚𝑛⋃︁

𝑗=1

𝑄𝑗

⎤⎦ ∪
⎡⎣ ⋂︁
|𝑡−𝑠|≤𝛿𝑛

{𝑓 : |𝑓(𝑡)− 𝑓(𝑠)|𝑛 ≤ 1}

⎤⎦⎫⎬⎭,

and 𝐾 and {| · |𝑛} are the same as in the proof of Corollary 5.1. But 𝑅 is closed (as an intersection of closed
sets), relatively compact in 𝑄𝑐([0, 𝑇 ]; 𝑌 ) by Theorem 5.1 (hence compact), and 𝒴𝑇 -measurable as

𝑅 =

[︃ ⋂︁
𝑡∈𝐷𝑇

𝜋−1
𝑡 [𝐾]

]︃
∩

∞⋂︁
𝑛=1

⎧⎨⎩
⎡⎣𝑚𝑛⋃︁

𝑗=1

𝑄𝑗

⎤⎦ ∪
⎡⎣ ⋂︁

𝑡,𝑠∈𝐷𝑇 , |𝑡−𝑠|≤𝛿𝑛

{𝑓 : |𝑓(𝑡)− 𝑓(𝑠)|𝑛 ≤ 1}

⎤⎦⎫⎬⎭,

where 𝐷𝑇 = (𝑇Q)∩ [0, 𝑇 ]. Thus the trace of B(𝑄([0, 𝑇 ]; 𝑌 )) on 𝑅 is a subset of 𝒴𝑇 and, in particular, 𝑀 ∈ 𝒴𝑇 .
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A.4. Proof of Proposition 5.1

It suffices to prove the first assertion for 𝐹𝑛 and 𝐹 real-valued (otherwise compose theses functions with
𝑥 ↦→ min {𝑥, 𝑚} and then let 𝑚 →∞). If 𝑡 ∈ (0,∞) then set 𝑅 = (−∞, 𝑡], and we have, for every 𝑟 ∈ (0, 1),

𝜇𝑛(𝐹𝑛 ∈ 𝑅) ≤ 𝑟 + 𝜇𝑛

(︃ ∞⋃︁
𝑘=𝑚

[𝐹𝑘 ∈ 𝑅] ∩𝐾𝑟,𝑘

)︃
, 𝑚 ≤ 𝑛,

so

lim sup 𝜇𝑛(𝐹𝑛 ∈ 𝑅) ≤ 𝑟 + 𝜇

(︃ ∞⋂︁
𝑚=1

∞⋃︁
𝑘=𝑚

[𝐹𝑘 ∈ 𝑅] ∩𝐾𝑟,𝑘

)︃
≤ 𝑟 + 𝜇(𝐹 ∈ 𝑅) + 𝜇*(𝐷𝑟),

by the classical Portmanteau theorem, cf., Corollary 8.2.10 of [9], hence

lim inf 𝜇𝑛(𝐹𝑛 > 𝑡) ≥ 𝜇(𝐹 > 𝑡)

and therefore ∫︁
𝑋

𝐹d𝜇 =
∫︁ ∞

0

𝜇(𝐹 > 𝑡) d𝑡 ≤ lim inf
∫︁ ∞

0

𝜇𝑛(𝐹𝑛 > 𝑡) d𝑡 = lim inf
∫︁

𝑋

𝐹𝑛 d𝜇,

by the Fatou lemma. The second part of the proof is analogous but we take any closed set 𝑅. In this way, we
get

lim sup 𝜇𝑛(𝐹𝑛 ∈ 𝑅) ≤ 𝜇(𝐹 ∈ 𝑅),

for every 𝑅 closed, therefore lim sup 𝜇𝑛(𝐹𝑛 ∈ · ) ⇒ 𝜇(𝐹 ∈ · ). The first part of the proof now yields that |𝐹 | is
integrable with respect to 𝜇, and we get the claim by the assumption of uniform integrability of |𝐹𝑛|d𝜇𝑛.

Appendix B. Bounded variation spaces

Lemma B.1. The functional

ℐ(𝑢) = sup
{︂∫︁

𝒪
𝑢 div 𝜙 d𝑥 : 𝜙 ∈ 𝐶∞

(︀
R𝑑; R𝑑

)︀
, |𝜙| ≤ 1

}︂
, 𝑢 ∈ L1,

satisfies

ℐ(𝑢) = ‖∇𝑢‖TV(𝒪) +
∫︁

𝜕𝒪
|𝑢|d𝑥, for 𝑢 ∈ 𝐵𝑉 (𝑂),

and ℐ(𝑢) = ∞ for 𝑢 ∈ L1 ∖ 𝐵𝑉 (𝑂) where ‖𝜈‖𝑇𝑉 (𝒪) denotes the total variation of a vector measure on 𝒪. In
particular, ℐ is lower semicontinuous on (L1, weak) and convex on 𝐵𝑉 (𝒪) and 𝒥 is lower weakly semicontinuous
on L2 and convex on L2 ∩𝐵𝑉 (𝒪).

Proof. If ℐ(𝑢) < ∞ then 𝑢 ∈ 𝐵𝑉 (𝑂) e.g., by Proposition 3.6 in [1]. If 𝑢 ∈ 𝐵𝑉 (𝑂) then∫︁
𝒪

𝑢 div 𝜙 d𝑥 =
∫︁

𝜕𝒪
𝑢(𝜙, 𝜈) d𝑆 −

∫︁
𝒪

𝜙 · d∇𝑢, 𝜙 ∈ 𝐶∞
(︀
R𝑑; R𝑑

)︀
,

where 𝜈 is the outer normal vector field on 𝜕𝑂 by the integration by parts formula, see e.g., (3.85) in [1], so

ℐ(𝑢) = sup
{︂∫︁

𝒪
𝜙 · d 𝜃 : 𝜙 : R𝑑 → R𝑑 Borel measurable, |𝜙| ≤ 1

}︂
,

by a standard density argument (cf., [1]) where 𝜃 = 𝑢𝜈ℋ𝑑−1|𝜕𝑂 −∇𝑢. Hence

ℐ(𝑢) = ‖𝜃‖TV(𝒪) = ‖∇𝑢‖TV(𝒪) + ‖𝑢𝜈ℋ𝑑−1‖TV(𝜕𝒪) = ‖∇𝑢‖TV(𝒪) +
∫︁

𝜕𝒪
|𝑢|d𝑆.

�
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Remark B.1. There exists a countable subset ℋ of 𝐶∞(R𝑑) such that

ℐ(𝑢) = sup
{︂∫︁

𝒪
𝑢𝜑 d𝑥 : 𝜑 ∈ ℋ

}︂
, 𝑢 ∈ L1,

by separability of {div 𝜙 : 𝜙 ∈ 𝐶∞(R𝑑; R𝑑), |𝜙| ≤ 1} in 𝐶∞(R𝑑), see e.g., [13].

Appendix C. Besov spaces

Lemma C.1. Let 𝑌 be a Banach space and let 𝑓 : [0, 𝑇 ] → 𝑌 be a continuous function linear on every [𝑡𝑖, 𝑡𝑖+1]
for 𝑖 = 0, . . . , 𝑁 − 1 and define

𝑓𝑖,𝑎 =

⎡⎣𝜏

𝑁∑︁
𝑗=𝑖

‖𝑓(𝑡𝑗)− 𝑓(𝑡𝑗−𝑖)‖𝑎

⎤⎦ 1
𝑎

, 𝑓𝑖,∞ = max
𝑖≤𝑗≤𝑁

‖𝑓(𝑡𝑗)− 𝑓(𝑡𝑗−𝑖)‖.

Then

‖𝑓‖𝐿𝑟(0,𝑇 ) ≤

[︃
𝑁∑︁

𝑖=0

𝜏‖𝑓(𝑡𝑖)‖𝑟

]︃ 1
𝑟

, ‖𝑓‖𝐿∞(0,𝑇 ) ≤ max
0≤𝑖≤𝑁

‖𝑓(𝑡𝑖)‖,

[𝑓 ]𝐵𝑠
𝑝,𝑞
≤ 8

𝑠(1− 𝑠)

(︃
𝑁−1∑︁
𝑖=1

𝜏
𝑓𝑞

𝑖,𝑝

𝑡1+𝑠𝑞
𝑖

)︃ 1
𝑞

, [𝑓 ]𝐵𝑠
𝑝,∞

≤ 3 max
1≤𝑖<𝑁

𝑓𝑖,𝑝

𝑡𝑠𝑖
,

for every 𝑠 ∈ (0, 1), 𝑝 ∈ [1,∞] and 𝑟, 𝑞 ∈ [1,∞).
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