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Abstract
We consider a continuous-time Robbins–Monro-type stochastic approximation pro-
cedure for a system described by a (multidimensional) stochastic differential equation
driven by a general Lévy process, and we find sufficient conditions for its convergence
in terms of Lyapunov functions. While the jump part of the noise may spoil conver-
gence to the root of the drift in some cases, we show that by a suitable choice of noise
coefficients we obtain convergence under hypotheses on the drift weaker than those
used in the diffusion case or convergence to a selected root in the case of multiple
roots of the drift.

Keywords Stochastic approximation algorithms · Robbins–Monro procedure ·
Lévy-driven stochastic differential equations

Mathematics Subject Classification 60H10 · 62L20

1 Introduction

Stochastic approximation algorithms concern convergence of sequences (Yn) of ran-
dom variables defined recursively, i.e., by a stochastic difference equation Yn+1 =
Yn + αnUn where Un’s represent noisy observations and the step sizes αn > 0 satisfy
suitable smallness assumptions. Originally proposed as a tool for finding a root of
a function (the Robbins–Monro procedure) or its minimum (the Kiefer–Wolfowitz

Communicated by Negash G. Medhin.
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procedure), these algorithms found various applications in optimization and machine
learning. See, e.g., the books [2–4, 7, 13, 14] for a thorough discussion of various
aspects of stochastic approximation algorithms and their use. (Let us mention also [8,
Chapter 8] for very recent applications to variational inequalities with random data.)

Nevel’son and Khas’minskii developed a continuous-time approach to stochastic
approximation, which in the case of the Robbins–Monro-type procedure leads to a
stochastic differential equation

dYt = α(t)
(
R(Yt ) dt + σ(t,Yt ) dWt

)
(1)

driven by a Wiener process W . Having advanced tools of stochastic analysis at their
disposal—in particular the Lyapunov functions method from the stability theory of
stochastic differential equations—they showed that sufficient conditions on coeffi-
cients of (1) implying convergence of its solutions almost surely as t → ∞ to the
(unique) root of the drift R may be found and proved in a straightforward and trans-
parent way. See their book [21] for a systematic development of these ideas and, for
example, the papers [6, 11, 22] and the book [12] for further results on continuous-time
stochastic approximation.

As discrete-time systems indicate, it is reasonable to consider more general driv-
ing noises in Eq. (1). Stochastic recursive procedures described by equations driven
by semimartingales were considered by Mel’nikov [20] and Lazrieva et al. [15–18].
Precise statements of their results are rather technical, but roughly speaking, the mar-
tingale part of the driving noise is a locally square integrable martingale or a random
measure like a compensated Poisson randommeasure; proofs in these papers are based
on results on convergence of semimartingales. A number of results concerning equa-
tions driven by square integrable processes with independent increments are stated in
the book [12]; proofs, using Lyapunov functions techniques, are given, however, only
in the discrete-time case.

In our paper, we shall study equations of the type (1) but driven by a general
(multidimensional) Lévy process. Owing to the Lévy–Itô decomposition, such an
equation may be written as

dXt = α(t)
(
R(Xt ) dt + σ(t, Xt ) dWt +

∫

{|y|<c}
H(Xt−, y) Ñ (dt, dy)

+
∫

{|y|≥c}
K (Xt−, y) N (dt, dy)

)
,

(2)

where N and Ñ are an uncompensated and a compensated Poisson random measures,
respectively, andW is aWiener process. Comparedwith the available results, we admit
a non-compensated Poisson process as a driving noise and essentially no hypotheses
of the L2-integrability type are needed. Employing the Lyapunov functions approach,
we generalize results on convergence of the Robbins–Monro procedure from [21] to
Eq. (2). It may look odd that the noise in Eq. (2) is not centered since then the last
term on the right-hand side influences the drift R (e.g., if c is changed) and hence
also its roots. Indeed, it may happen that solutions of (2) converge to a given point
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which, however, is not a root of R. Nevertheless, a nontrivial class of coefficients H
and K exists such that solutions to (2) converge to the root of R under conditions
weaker than those used in the diffusion case (1) as no monotonicity-type hypotheses
are needed. Moreover, in the case of a drift with multiple roots, by choosing K in a
suitable way wemay select a unique root of R the solutions will converge to. Again, in
the diffusion case the behavior is different. In Remark 4.1, we discuss the differences
between behavior of solutions to (1) and (2) in detail.

Let us note that the coefficients H and K is (2) are defined on disjoint sets R≥0 ×
R
m ×{|y| < c} and R≥0 ×R

m ×{|y| ≥ c}, respectively, so we may—and will—treat
them as restrictions of a single function defined on R≥0 ×R

m ×R
n . This convention

simplifies the form of the Itô formula.
In the next section, we introduce the equation we deal with precisely and we state

the Itô formula in a form required in our proofs. In Sect. 2, the main results are proved:
Theorem 3.1 giving general sufficient conditions for convergence of solutions to a
stochastic differential equation driven by aLévyprocess to a singleton and itsCorollary
3.1 concerning theRobbins–Monro procedure, i.e., the problem (2). In Sect. 3,we show
how to apply these results to particular systems.

In the rest of this section, let us introduce some notations to be used in the sequel.
We setR≥0 = [0,∞) andR>0 = (0,∞). ByRm×n , we denote the space of allm × n
matriceswith real entries. If A ∈ R

m×n , then AT ∈ R
n×m is the transpose of thematrix

A. Further, we denote by Cb(R
m;Rk) the set of all bounded continuous Rk-valued

functions on Rm , and by ‖ · ‖∞ its norm, i.e., ‖u‖∞ = supRm |u|. Let C 2(Rm) be the
space of all continuous real-valued functions onRm having two continuous derivatives,
and let the first and second Fréchet derivatives of V ∈ C 2(Rm) be denoted by DV
and D2V , respectively.

2 Preliminaries

Let m, n ∈ N and suppose that Borel functions

f : R≥0 × R
m −→ R

m, g : R≥0 × R
m −→ R

m×n, H : R≥0 × R
m × R

n −→ R
m,

and a Borel probability measure μ on R
m are given. We consider the equation

dXt = f (t, Xt ) dt + g(t, Xt ) dWt +
∫

{y∈Rn; |y|<c}
H(t, Xt−, y) Ñ (dt, dy)

+
∫

{y∈Rn; |y|≥c}
H(t, Xt−, y) N (dt, dy), t ≥ 0,

X0 ∼ μ,

(3)

for some c ∈ R>0 and a pair (W , N ), where N is a Poisson random measure, Ñ is its
compensated counterpart, and W is a Wiener process independent of N , see, e.g., [1,
Section 2.3.1]. More precisely, recalling that a Borel measure on R

n \ {0} is called a
Lévy measure if
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∫

Rn\{0}
(|y|2 ∧ 1

)
ν(dy) < ∞

we define a solution of (3) as follows.

Definition 2.1 A triplet ((Ω,F , (Ft )t≥0,P ), (W , N ), X) is called a solution to Eq.
(3) provided

(i) (Ω,F , (Ft )t≥0,P ) is a stochastic basis with a normal filtration (Ft )t≥0,
(ii) W is an (Ft )-Wiener process with values in R

n ,
(iii) N is an (Ft )-Poisson random measure N on R≥0 × (Rn\{0}) whose intensity is

dt ν(dy) for some Lévy measure ν on R
n\{0} and which is independent of W ,

(iv) Ñ = N − dt ν(dy), and
(v) X is an R

m-valued (Ft )-progressively measurable càdlàg process such that the
distribution of X0 is μ and

Xt = X0 +
∫ t

0
f (s, Xs) ds +

∫ t

0
g(s, Xs) dWs

+
∫ t

0

∫

{|y|<c}
H(s, Xs−, y) Ñ (ds, dy)

+
∫ t

0

∫

{|y|≥c}
H(s, Xs−, y) N (ds, dy) P -a.s.

for all t ∈ R≥0.

In paragraph (v) of Definition 2.1, it is supposed implicitly that all integrals are
well defined, that is,

∫ t

0

{
| f (s, Xs)| + |g(s, Xs)|2 +

∫

{|y|<c}
|H(s, Xs, y)|2 ν(ds)

}
ds < ∞ P-a.s.

for all t ≥ 0.
Throughout the paper, we impose the following assumption:

Assumption 2.1 We shall assume that

∫

{|y|<c}
|H(t, x, y)|2 ν(dy) < ∞ for all (t, x) ∈ R≥0 × R

m (4)

and the function

(t, x) 	−→
∫

{|y|≥c}
|H(t, x, y)| ν(dy) (5)

is locally bounded on R≥0 × R
m .

Now, let us set

V = {
V ∈ C 2(Rm); DV ∈ Cb(R

m;Rm), D2V ∈ Cb(R
m;Rm×m)

}
(6)
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and introduce an operatorL associated with Eq. (3) that will henceforth play a crucial
role. For V ∈ V , we define

L V : R≥0 × R
m −→ R,

(t, x) 	−→ 〈
f (t, x), DV (x)

〉 + 1

2
Tr

(
g(t, x)T D2V (x)g(t, x)

)

+
∫

Rn\{0}
[
V (x + H(t, x, y)) − V (x)

− 1{|y|<c}(y)
〈
H(t, x, y), DV (x)

〉]
ν(dy).

(7)

Using hypotheses (4) and (5), we can check easily that the definition ofL is correct,
see analogous considerations in the proof of Proposition 2.1.

Remark 2.1 (a) Assumption (4) can be omitted ifwedefineL V as a function on the set
{(t, x) ∈ R≥0 ×R

m; the right-hand side of (7) makes sense}. It is a direct conse-
quence of the integrability condition in part (v) of Definition 2.1. We only adopted
(4) so that the formulation of our main results may be more straightforward.

(b) On the other hand, (5) is important and cannot be dispensed with easily. In a
companion paper [19], related results on stability of solutions to (3) are obtained
under a weaker hypothesis that

(t, x) 	−→
∫

{|y|≥c}
|H(t, x, y)|p ν(dy) is locally bounded on R≥0 × R

m (8)

for some p ∈ (0, 1). The same choice is possible in the present paper. Under (8),
we have to restrict ourselves to a narrower class of Lyapunov functions than V ,
proofs become rather complicated while the gain is not very impressive: the final
criterion for convergence of the Robbins–Monro procedure remains almost the
same. That is why we opted for (5).

Using the operatorL , we can state the Itô formula for smooth functions of solutions
to (3) in a suitable form.

Proposition 2.1 Assume that V ∈ V and X solves (3), then

dV (Xt ) = L V (t, Xt )dt + 〈
g(t, Xt )

T DV (Xt ), ·
〉
dWt

+
∫

{|y|<c}
[
V (Xt− + H(t, Xt−, y)) − V (Xt−)

]
Ñ (dt, dy)

+
∫

{|y|≥c}
[
V (Xt− + H(t, Xt−, y)) − V (Xt−)

]
N (dt, dy)

−
∫

{|y|≥c}
[
V (Xt + H(t, Xt , y)) − V (Xt )

]
ν(dy) dt .

(9)
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Proof By [1, Theorem 4.4.7], we have

dV (Xt ) =
(〈

f (t, Xt ), DV (Xt )
〉 + 1

2
Tr

(
g(t, Xt )

T D2V (Xt )g(t, Xt )
))

dt

+ 〈
g(t, Xt )

T DV (Xt ), ·
〉
dWt

+
∫

{|y|<c}
[
V (Xt− + H(t, Xt−, y)) − V (Xt−)

]
Ñ (dt, dy)

+
∫

{|y|<c}
[
V (Xt + H(t, Xt , y)) − V (Xt )

− 〈
DV (Xt ), H(t, Xt , y)

〉]
ν(dy) dt

+
∫

{|y|≥c}
[
V (Xt− + H(t, Xt−, y)) − V (Xt−)

]
N (dt, dy).

(10)

Now adding and substracting

∫ t

0

∫

{|y|≥c}
[
V (Xs + H(s, Xs, y)) − V (Xs)

]
ν(dy) ds, (11)

to the right-hand side of (10) we obtain the formula (9) provided (11) is well defined
for every t ≥ 0 P -almost surely. However, realizing that θ 	−→ V (x + θH(s, x, y))
is a smooth function on [0, 1] and invoking boundedness of DV , we get

∫

{|y|≥c}
∣
∣V (x + H(s, x, y)) − V (x)

∣
∣ ν(dy)

=
∫

{|y|≥c}

∣∣∣∣

∫ 1

0

〈
DV (x + θH(s, x, y)), H(s, x, y)

〉
dθ

∣∣∣∣ ν(dy)

≤ ‖DV ‖∞
∫

{|y|≥c}
∣∣H(s, x, y)

∣∣ ν(dy)

for all x ∈ R
m and s ∈ R≥0. Hence,

∫ t

0

∫

{|y|≥c}
∣∣V (Xs + H(s, Xs, y)) − V (Xs)

∣∣ ν(dy) ds < ∞ P -a.s.

follows by (5) since the paths of X are locally bounded. ��

3 Main Results

In this section, we first state a criterion based on Lyapunov functions for a solution to
(3) to converge to a given point of the state space Rm . The following theorem and its
corollary generalize results from [21] to equations driven by Lévy processes.
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Theorem 3.1 Let Assumption 2.1 be satisfied and let there exist x0 ∈ R
m, a mea-

surable function ϕ : Rm −→ R≥0, a function V ∈ V , and measurable functions
α, γ : R≥0 −→ R>0 such that

(H1) either

inf|x−x0|≥ε
ϕ(x) > 0 for all ε > 0 (12)

or

lim|x |→∞ V (x) = +∞ and inf

≥|x−x0|≥ε

ϕ(x) > 0 for all 
 > ε > 0, (13)

(H2) V (x0) = 0, V ∈ L1(μ) and

inf|x−x0|≥ε
V (x) > 0 (14)

for any ε > 0,
(H3) α ∈ L1

loc(R≥0) \ L1(R≥0), γ ∈ L1(R≥0) ∩ C (R≥0) and

L V (t, x) ≤ −α(t)ϕ(x) + γ (t)(1 + V (x)) (15)

for all t ≥ 0 and x ∈ R
m.

Then, any solution (Ω,F , (Ft ), (W , N ), X) to (3) satisfies

lim
t→∞ Xt = x0 P -a.s. (16)

Proof Let us set

ξ(t) = exp

(∫ ∞

t
γ (r)dr

)
, t ∈ R≥0,

and

U (t, x) = ξ(t)(1 + V (x)) = exp

(∫ ∞

t
γ (r)dr

)
(1 + V (x)) , (t, x) ∈ R≥0 × R

m .

Step 1 We establish convergence of V (Xt ) as t → ∞. To this end, we first show that
(U (t, Xt ))t≥0 is a supermartingale. Define

τ 1n = inf{t ≥ 0 : |Xt | > n},
τ 2n = inf

{
t ≥ 0 :

∫ t

0
|g(s, Xs)|2 ds > n

}
,

τ 3n = inf
{
t ≥ 0 :

∫ t

0

∫

{|y|<c}
|H(s, Xs, y)|2 ν(dy) ds > n

}
,

τn = τ 1n ∧ τ 2n ∧ τ 3n

(17)
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for n ∈ N. Obviously, τn’s are stopping times and τn → ∞ P -almost surely as
n → ∞.

By the product rule for semimartingales, we get

dU (t, Xt ) = (1 + V (Xt )) dξ(t) + ξ(t) dV (Xt ), t ∈ R≥0. (18)

Hence, combining (9) and (18), we obtain for any n ∈ N and t ∈ R≥0 (fixed but
arbitrary)

U (τn ∧ t, Xτn∧t ) −U (0, X0)

=
∫ τn∧t

0

[
(1 + V (Xs))ξ

′(s) + ξ(s)L V (s, Xs)
]
ds

+
∫ τn∧t

0
ξ(s)

〈
g(s, Xs)

T DV (Xs), ·
〉
dWs

+
∫ τn∧t

0

∫

{|y|<c}
ξ(s)

[
V (Xs− + H(s, Xs−, y)) − V (Xs−)

]
Ñ (ds, dy)

+
∫ τn∧t

0

∫

{|y|≥c}
ξ(s)

[
V (Xs− + H(s, Xs−, y)) − V (Xs−)

]
N (ds, dy)

−
∫ τn∧t

0

∫

{|y|≥c}
ξ(s)

[
V (Xs + H(t, Xs, y)) − V (Xs)

]
ν(dy) ds.

(19)

By the hypothesis (H3), we may estimate

∫ τn∧t

0

[
(1 + V (Xs))ξ

′(s) + ξ(s)L V (s, Xs)
]
ds

=
∫ τn∧t

0
ξ(s)

{−γ (s)(1 + V (Xs)) + L (s, Xs)
}
ds

≤ −
∫ τn∧t

0
ξ(s)α(s)ϕ(Xs) ds

≤ 0

(20)

as α and ϕ are nonnegative. Therefore, from (19) we get

U (τn ∧ t, Xτn∧t ) −U (0, X0)

≤
∫ τn∧t

0
ξ(s)

〈
g(s, Xs)

T DV (Xs), ·
〉
dWs

+
∫ τn∧t

0

∫

{|y|<c}
ξ(s)

[
V (Xs− + H(s, Xs−, y)) − V (Xs−)

]
Ñ (ds, dy)

+
∫ τn∧t

0

∫

{|y|≥c}
ξ(s)

[
V (Xs− + H(s, Xs−, y)) − V (Xs−)

]
N (ds, dy)

−
∫ τn∧t

0

∫

{|y|≥c}
ξ(s)

[
V (Xs + H(t, Xs, y)) − V (Xs)

]
ν(dy) ds.

(21)
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We aim at showing that the right-hand side of (21) is a martingale for any n ∈ N. This
having been established we find that

E
[
U (t ∧ τn, Xt∧τn ) −U (0, X0)

] ≤ 0,

so we may apply the Fatou lemma and arrive at

EU (t, Xt ) = E lim
n→∞U (t ∧ τn, Xt∧τn ) ≤ lim inf

n→∞ EU (t ∧ τn, Xt∧τn )

≤ EU (0, X0)

= e‖γ ‖L1E V (X0) < ∞

for every t ∈ R≥0, as V ∈ L1(μ). Using the Fatou lemma for conditional expectations,
we get in a completely analogous way that (U (t, Xt ), t ∈ R≥0) is a supermartingale,
we skip the details.

Hence, now we fix n ∈ N and we shall proceed with the terms on the right-hand
side of (21) separately.

First, since DV ∈ Cb(R
m;Rm) by assumption we get

E

∫ t∧τn

0

∣
∣ξ(s)

〈
g(s, Xs)

T DV (Xs), ·
〉∣∣2 ds ≤ e2‖γ ‖L1 ‖DV ‖2∞ nt < ∞

for all t ∈ R≥0 due to the definition of τ 2n , so the stochastic integral

∫ ·∧τn

0
ξ(s)

〈
g(s, Xs)

T DV (Xs), ·
〉
dWs

is a martingale.
Similarly, the compensated integral

∫ ·∧τn

0

∫

{|y|<c}
ξ(s)

(
V (Xs− + H(s, Xs−, y)) − V (Xs−)

)
Ñ (ds, dy)

is a martingale, since proceeding as in the proof of Proposition 2.1 and invoking the
definition of τ 3n we get

E

∫ t∧τn

0

∫

{|y|<c}
∣∣ξ(s)

(
V (Xs + H(s, Xs, y)) − V (Xs)

)∣∣2 ν(dy) ds

= E

∫ t∧τn

0

∫

{|y|<c}

∣∣∣∣

∫ 1

0
ξ(s)

〈
DV (Xs + θH(s, Xs, y)), H(s, Xs, y)

〉
dθ

∣∣∣∣

2

ν(dy) ds

≤ e2‖γ ‖L1 ‖DV ‖2∞E

∫ t∧τn

0

∫

{|y|<c}
|H(s, Xs, y)|2 ν(dy) ds

≤ e2‖γ ‖L1 ‖DV ‖2∞ nt

< ∞
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for every t ∈ R≥0.
Finally,

E

∫ t∧τn

0

∫

{|y|≥c}
∣∣ξ(s)

(
V (Xs + H(s, Xs, y)) − V (Xs)

)∣∣ν(dy) ds

= E

∫ t∧τn

0

∫

{|y|≥c}

∣
∣∣∣

∫ 1

0
ξ(s)

〈
DV (Xs + θH(s, Xs, y)), H(s, Xs, y)

〉
dθ

∣
∣∣∣ ν(dy) ds

≤ e‖γ ‖L1 ‖DV ‖∞E

∫ t∧τn

0

∫

{|y|≥c}
|H(s, Xs, y)| ν(dy) ds

< ∞

for all t ∈ R≥0 owing to (5). Therefore, by the same argument as in [9, Lemma
II.3.1] (see the proof of formula (3.8) on page 62 therein) or by modifying slightly the
definition of τn’s and using [10, Theorem II.1.8] we have that

∫ ·∧τn

0

∫

{|y|≥c}
ξ(s)

(
V (Xs− + H(s, Xs−, y)) − V (Xs−)

)
N (ds, dy)

−
∫ ·∧τn

0

∫

{|y|≥c}
ξ(s)

(
V (Xs + H(s, Xs, y)) − V (Xs)

)
ν(dy) ds

is again a martingale.
Hence, the proof that (U (t, Xt )) is a supermartingale is completed. SinceU (t, Xt )

is plainly nonnegative and right-continuous, the martingale convergence theorem
implies that there exists an integrable random variable U∞ ∈ L1(P ) such that
limt→∞ U (t, Xt ) = U∞ P -a.s., whence it follows that

lim
t→∞ V (Xt ) = lim

t→∞ exp
(
−

∫ ∞

t
γ (r) dr

)
U (t, Xt ) − 1 = U∞ − 1 =: V∞ (22)

P -almost surely.

Step 2 Now we show that

lim inf
t→∞

∣∣Xt − x0
∣∣ = 0 P -a.s. (23)

Let ω ∈ Ω be such that

∣
∣Xt (ω) − x0

∣
∣ ≥ ε

for some t0 ∈ R≥0 and ε > 0 and all t ≥ t0. If (12) is satisfied, then clearly a δ > 0
may be found such that

ϕ(Xt (ω)) ≥ δ for all t ≥ t0. (24)
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If (13) is satisfied, then note that by (22) we may assume that V (Xt (ω)) converges to
a finite limit as t → ∞, so by the first part of (13) there exists a constant ζ = ζ(ω)

such that

sup
t≥0

|Xt (ω)| ≤ ζ.

Hence, the second part of (13) implies that

ϕ(Xt (ω)) ≥ inf
ζ≥|x |≥ε

ϕ(x) ≥ δ

for some δ > 0 and all t ≥ t0, that is, (24) again holds. Thus, we have

∫ ∞

t0
α(s)ϕ(Xs(ω)) ds = ∞,

because α ∈ L1
loc(R≥0)\L1(R≥0). Therefore, (23) is established provided we show

that
∫ ∞

0
α(s)ϕ(Xs) ds < ∞ P -a.s. (25)

As ξ ≥ 1, we have

∫ t∧τn

0
α(s)ϕ(Xs) ds ≤ −

∫ t∧τn

0

[
(1 + V (Xs))ξ

′(s) + ξ(s)L V (s, Xs)
]
ds

for all t ∈ R≥0 and n ∈ N by (20). Using (19) together with the fact that the stochastic
integrals in (19) are centered and U ≥ 0, we obtain

E

∫ t∧τn

0
α(s)ϕ(Xs) ds ≤ −E

∫ t∧τn

0

[
(1 + V (Xs))ξ

′(s) + ξ(s)L V (s, Xs)
]
ds

= E
{
U (0, X0) −U (t ∧ τn, Xt∧τn )

}

≤ EU (0, X0)

for all t ∈ R≥0 and n ∈ N, thus passing first n → ∞ and then t → ∞ and applying
the monotone convergence theorem twice, we find the estimate

E

∫ ∞

0
α(s)ϕ(Xs) ds ≤ EU (0, X0) = e‖γ ‖L1E V (X0)

the right-hand side of which is finite by (H2). We see that (25) holds true.

Step 3 It remains to show that

lim
t→∞ Xt = x0 P -a.s. (26)

123



828 Journal of Optimization Theory and Applications (2023) 197:817–837

Suppose that ω ∈ Ω is such that

∣∣Xtn (ω) − x0
∣∣ ≥ ε

for some ε > 0 and a sequence tn ↗ ∞. By the hypothesis (H2) of Theorem 3.1, an
η > 0 may be found for which

V (Xtn (ω)) ≥ η (27)

for every n ∈ N. We shall show that then either

lim
t→∞ V (Xt (ω)) = V∞(ω) (28)

or

lim inf
t→∞

∣∣Xt (ω) − x0
∣∣ = 0 (29)

does not hold, where V∞ is defined by (22). Indeed, (27) together with (28) imply
that V∞(ω) ≥ η. On the other hand, if (29) is satisfied, then there exists a sequence
rn ↗ ∞ such that

lim
n→∞ Xrn (ω) = x0,

hence, again by (28) and (H2),

V∞(ω) = lim
n→∞ V (Xrn (ω)) = V (x0) = 0,

which is a contradiction. However, we have already shown that both (28) and (29)
hold for P -almost all ω ∈ Ω , which concludes the proof of Theorem 3.1. ��

Now we focus on a particular case of Eq. (3) corresponding to the continuous-
time stochastic approximation procedure of Robbins–Monro type with a general Lévy
noise. Recall that in this setting we are looking for a stochastic differential equation
such that its solutions converge to a root of the drift R for a class of noise coefficients
as wide as possible. Namely, we consider the equation

dXt = α(t)
(
R(Xt ) dt + σ(t, Xt ) dWt +

∫

{|y|<c}
K (Xt−, y) Ñ (dt, dy)

+
∫

{|y|≥c}
K (Xt−, y) N (dt, dy)

)
, t ≥ 0

X0 ∼ μ,

(30)

with Borel coefficients

α : R≥0−→R>0, R : Rm −→R
m, σ : R≥0 × R

m −→R
m×n, K : Rm × R

n −→ R
m
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and a Borel probability measure μ on R
m . The driving noise (W , N ) is the same as

in (3). Since the function K is independent of time now, Assumption 2.1 takes the
following form:

Assumption 3.1 We shall assume that

∫

{|y|<c}
|K (x, y)|2 ν(dy) < ∞ for all x ∈ R

m

and the function
∫

{|y|≥c}
∣
∣K (·, y)∣∣ ν(dy)

is locally bounded on R
m .

Let us state a result which one obtains applying Theorem 3.1 to (30).

Corollary 3.1 Let Assumption 3.1 be satisfied. Let there exist x0 ∈ R
m, a function

V ∈ V ∩ L1(μ) with V (x0) = 0 and a measurable function ϕ : Rm −→ R≥0 such
that

inf

≥|x−x0|≥ε

ϕ(x) > 0 for all 
 > ε > 0 (31)

and

lim|x |→∞ V (x) = +∞, inf|x−x0|≥ε
V (x) > 0 for all ε > 0. (32)

Assume further that α ∈ C (R≥0,R>0) satisfies

∫ ∞

0
α(r) dr = ∞,

∫ ∞

0
α2(r) dr < ∞. (33)

Let there exist a constant Kσ ∈ R≥0 and a function β ∈ C (R≥0)∩ L1(R≥0) such that

〈
R(x) +

∫

{|y|≥c}
K (x, y) ν(dy), DV (x)

〉
≤ −ϕ(x), (34)

Tr
(
σ(t, x)T D2V (x)σ (t, x)

) ≤ Kσ

(
1 + V (x)

)
(35)

and
∫

Rn\{0}
[
V (x + α(t)K (x, y)) − V (x) − α(t)

〈
K (x, y), DV (x)

〉]
ν(dy)

≤ β(t)
(
1 + V (x)

)
(36)

for all x ∈ R
m and t ∈ R≥0.
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If (Ω,F , (Ft ), (W , N ), X) is a solution to (30), then

lim
t→∞ Xt = x0 P-a.s. (37)

Proof To see that Corollary 3.1 follows immediately from Theorem 3.1, it suffices to
check that the hypothesis (H3) is satisfied. However, the operator L associated with
(30) takes the form

L V (t, x) = α(t)
〈
R(x), DV (x)

〉 + α2(t)

2
Tr

(
σ(t, x)T D2V (x)σ (t, x)

)

+
∫

Rn\{0}
[
V (x + α(t)K (x, y)) − V (x)

− α(t)1{|y|<c}(y)
〈
K (x, y), DV (x)

〉]
˚(dy)

= α(t)
〈
R(x) +

∫

{|y|≥c}
K (x, y)ν(dy), DV (x)

〉

+ α2(t)

2
Tr

(
σ(t, x)T D2V (x)σ (t, x)

)

+
∫

Rn\{0}
[
V (x + α(t)K (x, y)) − V (x) − α(t)

〈
K (x, y), DV (x)

〉]
ν(dy)

for any x ∈ R
m and t ∈ R>0; the last term on the right-hand side is well defined owing

to Assumption 3.1. The assumptions of Corollary 3.1 thus imply that

L V (t, x) ≤ −α(t)ϕ(x) + 1

2

(
Kσ α2(t) + 2β(t)

)(
1 + V (x)

)
.

Since (Kσ α2 + 2β) ∈ L1(R≥0) ∩ C (R≥0), the proof is completed. ��
Remark 3.1 (a) As in Theorem 3.1, we may replace (31) and (32) with

inf|x−x0|≥ε

(
V (x) ∧ ϕ(x)

)
> 0 for any ε > 0. (38)

(b) If the function

x 	−→
〈
R(x) +

∫

{|y|≥c}
K (x, y) ν(dy), DV (x)

〉

is continuous on Rm and

〈
R(x) +

∫

{|y|≥c}
K (x, y) ν(dy), DV (x)

〉
< 0 for x �= x0
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we may set

ϕ(x) = −
〈
R(x) +

∫

{|y|≥c}
K (x, y) ν(dy), DV (x)

〉
, x ∈ R

m,

then both (31) and (34) are satisfied.

If H = 0 and K = 0, then Theorem 3.1 and Corollary 3.1 correspond essentially to
[21], Theorems 3.8.1 and 4.4.1, respectively.

4 Applications

Sufficient conditions for convergence of a solution X of (30) to a point are given in
Corollary 3.1 in terms of a Lyapunov function V . Choosing a particular Lyapunov
function, we get more applicable criteria in terms of the coefficients of (30). If K = 0,
then V = | ·−x0|2 is a standard choice; however, in the general case, we must proceed
in a different way since we need a Lyapunov function belonging to the system V .

Example 4.1 Let x0 ∈ R
m and let us set

V : Rm −→ R≥0, x 	−→ log
(
1 + |x − x0|2

)
.

Obviously, the Fréchet derivatives of V are given by

DV (x) = 2
x − x0

1 + |x − x0|2
,

D2V (x) = 2

1 + |x − x0|2
I − 4

(
1 + |x − x0|2

)2 (x − x0)(x − x0)
T ,

for all x ∈ R
m and thus V ∈ V , furthermore, V (x) → +∞ as |x | → ∞.

Let Assumption 3.1 be satisfied and suppose that the coefficients σ and K of (30)
satisfy the linear growth condition: there exists a constant L ∈ R≥0 such that

|σ(t, x)|2 +
∫

Rn\{0}
|K (x, y)|2 ν(dy) ≤ L

(
1 + |x |2) (39)

for all x ∈ R
m and t ≥ 0. Denote by k the function

k : Rm −→ R, x 	−→
〈
R(x) +

∫

{|y|≥c}
K (x, y) ν(dy), x − x0

〉
.

Since

〈
R(x) +

∫

{|y|≥c}
K (x, y) ν(dy), DV (x)

〉
= 2

1 + |x − x0|2 k(x) (40)
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for all x ∈ R
m , (34) is satisfied with the choice

ϕ : x 	−→ − 2k(x)

1 + |x − x0|2 . (41)

The function ϕ defined by (41) surely satisfies (31) if k is continuous and

k(x) < 0 for all x �= x0. (42)

If k is not continuous, it may be difficult to check (31) and a more feasible way may
be to strengthen (42) assuming that there exists η > 0 such that

k(x) ≤ −η|x − x0|2 for all x ∈ R
m . (43)

In this case, we may set

ϕ : x 	−→ 2η|x − x0|2
1 + |x − x0|2

obtaining a function that clearly satisfies (31). We claim that the other hypotheses of
Corollary 3.1 (in the version of Remark 3.1) are also satisfied.

For any x ∈ R
m , we may compute using (39)

Tr
(
σ(t, x)T D2V (x)σ (t, x)

)

= 2

1 + |x − x0|2 |σ(t, x)|2 − 4
(
1 + |x − x0|2

)2
∣∣σ(t, x)T (x − x0)

∣∣2

≤ 2

1 + |x − x0|2 |σ(t, x)|2

≤ 2L
1 + |x |2

1 + |x − x0|2

= 4L
(
1 + |x0|2

1 + |x − x0|2
)

≤ 4L
(
1 + |x0|2

)(
1 + V (x)

)

(44)

and (35) follows. Finally, we verify that (36) holds with the choice β = 2α2 L(1 +
|x0|2). Using that log(y) ≤ y − 1 for all y > 0 plainly and the definition of V , we
obtain

∫

Rn\{0}
[
V (x + α(t)K (x, y)) − V (x) − α(t)

〈
K (x, y), DV (x)

〉]
ν(dy)

=
∫

Rn\{0}

[
log

(
1 + |x + α(t)K (x, y) − x0|2

1 + |x − x0|2
)
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− 2α(t)

1 + |x − x0|2
〈
K (x, y), x − x0

〉]
ν(dy)

≤ 1

1 + |x − x0|2
∫

Rn\{0}
[|x − x0 + α(t)K (x, y)|2 − |x − x0|2

−2α(t)
〈
K (x, y), x − x0

〉]
ν(dy)

= α2(t)

1 + |x − x0|2
∫

Rn\{0}
|K (x, y)|2 ν(dy)

≤ α2(t)L
1 + |x |2

1 + |x − x0|2
≤ 2α2(t)L

(
1 + |x0|2

)(
1 + V (x)

)
(45)

for all t ∈ R≥0 and x ∈ R
m . Note also that Assumption 3.1 clearly follows from (39).

Therefore, whenever α ∈ C (R≥0,R>0) obeys (33) and ((W , N ), X) is a solution
to (30), then X converges almost surely to x0 as t → ∞.

Remark 4.1 It should be stressed that under the hypotheses of Example 4.1 the point
x0 ∈ R

m the solution of (30) converges to need not be a root of the drift R; therefore, a
priori it might be misleading to speak about a Robbins–Monro stochastic approxima-
tion procedure. Let us discuss this problem more carefully: Our main positive results
are illustrated in paragraphs (d) and (f), while (c) contains a counterexample. In (a),
(b) and (e), particular cases related to hitherto available results are treated.

(a) Assume that K = 0. Then, (42) reduces to

〈R(x), x − x0〉 < 0 for all x �= x0. (46)

Hence, if R is continuous (which is a rather natural assumption)we have R(x0) = 0
(as it is well known from the theory of monotone mappings, see, e.g., [5, Lemma
1] for a much more general result) and plainly x0 is the unique root of R. If σ

satisfies the linear growth condition and R is a continuous function such that (46)
holds, then

lim
t→∞ Xt = x0 P -almost surely (47)

for any solution of the equation

dXt = α(t)
(
R(Xt ) dt + σ(t, Xt ) dWt

)
, X0 ∼ μ. (48)

This is a classical result going back to [21].
(b) If the driving Lévy noise has a purely discontinuous component, but there are no

large jumps, that is, ν{|x | ≥ a} = 0 for some a ∈ (0,∞), then the results are
virtually the same as in the diffusion case. Indeed, if R is continuous, obeys (46),
and σ and K have at most linear growth, then (47) holds for any solution of

dXt = α(t)
(
R(Xt ) dt + σ(t, Xt ) dWt
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+
∫

{|y|<a}
K (Xt−, y)Ñ (dt, dy)

)
, X0 ∼ μ. (49)

Again, x0 is the unique root of R. Related results, obtained by different methods,
may be found in [15, 20].

(c) In the general case K �= 0 and ν{|y| ≥ c} > 0, the situation changes considerably.
This should not be surprising: the last term on the right-hand side of (30), that is,
the process

∫ ·

0

∫

{|y|≥c}
K (Xt−, y) N (dt, dy) (50)

is not centered in general. Moreover, if we would like to keep the driving Lévy
noise in (3) but to use a representation with a different c it results in a change of
the drift (and, a fortiori, of the roots of the drift). Hence, Corollary 3.1 need not be
applicable to the Robbins–Monro procedure, as it implies convergence to a point
x0 such that R(x0) �= 0. Indeed, if in the setting of Example 4.1 the function k is
continuous and satisfies (42), then we only know that

R(x0) +
∫

{|y|≥c}
K (x0, y) ν(dy) = 0

The following simple example illustrates this phenomenon. Define the coefficients
R and K by

R : x 	−→ A(x − a), K : (x, y) 	−→ B(x − b)

for some a, b ∈ R
m and matrices A, B ∈ R

m×m such that A+ B is invertible and
negative definite, and A(x0 − a) �= 0 where we set x0 = (A + B)−1(Aa + Bb).
We can assume for simplicity that ν{|y| ≥ c} = 1. Then,

k(x) =
〈
A(x − a) +

∫

{|y|≥c}
B(x − b) ν(dy), x − x0

〉

= 〈
(A + B)x − (Aa + Bb), x − x0

〉

= 〈
(A + B)(x − x0), x − x0

〉

≤ −η|x − x0|2

for some η > 0 and all x �= x0, however, R(x0) �= 0.
(d) Therefore, in the general case of (30) we must add the assumption R(x0) = 0 if

Corollary 3.1 is to be applied to stochastic approximation; for Eqs. (48) and (49)
this is redundant. On the other hand, by choosing K in an appropriate way we may
obtain (47) under rather mild hypotheses on R. Let us assume that R(x0) = 0 and
R is Lipschitz continuous, denote by Lip(R) its Lipschitz constant. If K satisfies,
still in the setting of Example 4.1,

〈∫

{|y|≥c}
K (x, y) ν(dy), x − x0

〉
≤ −(Lip(R) + 1)|x − x0|2 for all x ∈ R

m,
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then Corollary 3.1 is applicable. In the diffusion case (48), the mere Lipschitz
continuity of R need not be sufficient for the convergence of the stochastic
approximation procedure. (Indeed, consider (48) with the choice m = n = 1,
R(x) = σ(t, x) = x for (t, x) ∈ R≥0 × R, V = | · |2, and α(t) = (1 + t)−1

for t ≥ 0, then all assumptions of Corollary 3.1 are satisfied except the hypoth-
esis (34), R is plainly globally Lipschitz continuous having 0 as its only root,
nevertheless, a simple direct calculation shows that Xt → ∞ P-a.s. as t → ∞.)

(e) If
∫

{|y|≥c}
K (x, y) ν(dy) = 0 for all x ∈ R

m

then the process (50) is centered and we see that any solution X to (30) con-
verges to the unique root of R under the hypothesis that R is a continuous function
satisfying (46) (and σ and K has at most linear growth). This result may be com-
pared with theorems stated in [12] where equations driven by centered square
integrable processes with independent increments are dealt with. We do not need
L2-integrability, on the other hand sharper asymptotic results than mere con-
vergence almost surely are established in [12] at the price of more restrictive
assumptions on noise coefficients and the cumulant process of the driving Lévy
process.

(f) Finally, note that the hypotheses of Example 4.1 may be satisfied even if R has
multiple roots. The coefficient K then “selects” a root of R which a solution to (30)
converges to. This may happen only if a noncentered non-compensated Poisson
process is allowed as a driving noise. As we have already indicated above, large
jumps of theLévy process virtually change the drift and, consequently, it is possible
that a solution to (30) no longer converges to some (or all) of its roots. Again, in
the diffusion case or for Eq. (49) the situation is completely different, see, e.g.,
[21, Chapter 5]. For example, let m = 1 and let σ and K satisfy (39) and

x ·
∫

{|y|≥c}
K (x, y) ν(dy) ≤ −2|x |2 for all x ∈ R.

Then, any solution to

dXt = α(t)
(
sin Xt dt + σ(t, Xt ) dWt +

∫

{|y|<c}
K (Xt−, y) Ñ (dt, dy)

+
∫

{|y|≥c}
K (Xt−, y) N (dt, dy)

)
, t ≥ 0

X0 ∼ μ,

satisfies

lim
t→∞ Xt = 0 P -a.s.

(g) It is possible to allow coefficients K depending on time, i.e., defined on R≥0 ×
R
m × R

n . If Eq. (49) is considered, that is, there are no large jumps, this change
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results in a trivial modification of the assumptions. In the general case, however,
the hypotheses become cumbersome and thus we content ourselves with time-
independent K ’s.

5 Conclusions

We extended a Lyapunov-functions-based approach to convergence of a continuous-
time Robbins–Monro procedure of stochastic approximation from diffusion processes
to systems defined by a stochastic differential equation driven by a general Lévy
process. While for a driving noise with small jumps only our results are essentially
comparable with available results (albeit our proofs are different), if large jumps are
allowed we showed that new phenomena may occur: the large jumps may force the
procedure to converge to a “fake“ root of the drift, on the other hand, if the noise
coefficient is properly chosen, we obtain convergence under hypothesis weaker than
those of the standard theory.
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