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ABSTRACT
The article addresses the recently emerging inferential problem of
testing axial symmetry up to a shift, which is useful even for testing
certain hypotheses of exchangeability, independence, goodness-of-
fit or equality of scale. In particular, it introduces a new test of axial
symmetry based on integrated rank scores for directional quantile
regression. The test outperforms existing competitors in terms of
size, power, robustness, moment conditions or computational fea-
sibility. All that is illustrated with a series of simulated examples.
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1. Introduction

This article deals with nonparametric testing of symmetry around a line in a given direc-
tion. From the mathematical point of view, stochastic vector Y ∈ R

m, m ≥ 2, is axially
symmetric around an axis with direction u ∈ R

m when L{Y − EY} = L{R(Y − EY)} for
the rotational (orthonormal) reflection matrix R = 2uu� − I.

The tests of axial symmetry may also be useful for testing certain exchangeability, inde-
pendence, goodness-of-fit and equality-of-scale hypotheses, as explained and illustrated
with simulated and real data examples in Hudecová and Šiman (2021a) or Hudecová
and Šiman (2021b). They might also be useful in full generality because axial symmetry
naturally occurs (not only) whenever mirrors or reflections are employed.

Nonparametric tests of symmetry around a general line already exist in the bivariate
case when axial symmetry and halfspace symmetry coincide (Rao and Raghunath 2012).
See also Hollander (1971) andModarres (2008) for some examples of (bivariate) nonpara-
metric tests of exchangeability that use a particular axis of symmetry, namely the axis of
the first quadrant. Furthermore, the tests of (multivariate) conditional symmetry with a
scalar conditioning variable also test axial symmetry of the joint distribution around the
coordinate axis corresponding to the conditioning variable; see, e.g. Riahi and Patil (2021),
or the kernel-based nonparametric test of Su (2006) and references given there.
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In spaces of arbitrary dimension, Kalina (2021) tested the axial symmetry hypothesis
by means of certain permutation tests without desirable invariance properties. Further-
more, Hudecová and Šiman (2021a) introduced some nonparametric asymptotic tests of
the hypothesis in a general regression setup. They are based on the directional quantile
regression of Hallin, Paindaveine, and Šiman (2010), naturally invariant, free of restric-
tive distributional assumptions, and consistent in the class of all elliptical distributions
even for a single quantile level. Unfortunately, the most powerful tests of them are poorly
sized and have a complex null asymptotic distribution whose critical values or p-values are
impossible to determine accurately if the dimension of observations is large.

Finally, Hudecová and Šiman (2021b) came up with some parametric, nonparametric,
permutation and asymptotic naturally invariant tests of the more general hypothesis of
symmetry around a shifted subspace, but only in the purely multivariate (non-regression)
case. The tests employ canonical or rank correlations. Although their parametric variants
are practical only for elliptical distributions and require quite stringentmoment conditions,
they have simple null asymptotic distributions andmay be more powerful than all the tests
of Hudecová and Šiman (2021a).

This work introduces a new test of axial symmetry that is defined by means of inte-
grated rank scores. Although it stems from the directional quantile regression like the
tests of Hudecová and Šiman (2021a), it appears not to share their drawbacks, namely
low power, inaccurate size for small samples and complicated asymptotic distribution not
tractable in large dimensions. In particular, the power of the new test with the van der
Waerden or Wilcoxon scores reaches that of its most powerful competitors of Hudecová
and Šiman (2021b). Other scores may be useful in the presence of outliers or if some
information about the underlying distribution is available in advance.

In what follows, Section 2 presents the notation and summarises useful relevant results,
and Section 3 introduces the new test and derives its null asymptotic distribution for vari-
ous score functions. Section 4 explores the proposed test in terms of finite sample behaviour
and compares it to other general tests of axial symmetry, while Section 5 is focusing on
size and power comparisons with some rather specific tests in the bivariate case. The last
Section 6 collects concluding comments. The proofs, figures, and tables are provided in
Appendices 1–3, respectively.

2. Definitions and preliminary considerations

Let Y be anm-dimensional real vector satisfying

Assumption 2.1: The distribution L(Y) of Y is absolutely continuous with finite expec-
tation, cumulative distribution function F, and probability density function f that is
continuous, bounded, and positive in the interior of a connected support.

Hudecová and Šiman (2021a) proved that the null hypothesis

HS
0(u) : L(Y) is axially symmetric around a line in unit direction u ∈ R

m

always implies

H0(u) : γ τ = 0 for all τ ∈ (0, 1)



476 ŠÁRKA HUDECOVÁ ANDM. ŠIMAN

where (γ �
τ ,ατ )

� by definition minimises

min
(γ �,α)�∈Rm

Eρτ (u�Y − γ ���
u Y − α) (1)

with �u being an m × (m − 1) matrix complementing u to an orthonormal matrix. That
article also proved that H0(u) implies HS

0(u) in the class of elliptical distributions where
γ τ = 0 either for all τ ∈ (0, 1) or for none of them.

Consider also n independent copies Y1, . . . , Yn of Y and write Y = (Y1, . . . ,Yn)
�.

Define rank score vector â(τ ) = (̂a1(τ ), . . . , ân(τ ))�,

â(τ ) = argmax{u�
Y

�a : n−11�
n a = (1 − τ), a ∈ [0, 1]n},

and integrated rank score vector b̂ = (̂b1, . . . , b̂n)� with

b̂i = −
∫ 1

0
φ(t) d̂ai(t) = φ(0) +

∫ 1

0
âi(t) dφ(t) (2)

where the last equality holds because the (score) function φ is required here to meet the
following assumption:

Assumption 2.2: Function φ : [0, 1] → R is a square-integrable and non-decreasing real
function constant outside [ε, 1 − ε] for some ε > 0. (Then also φ̄ := ∫ 1

0 φ(t) dt < ∞.)

For example, φ(t) = sign(t − 0.5) results in the sign (or, median) scores, φ(t) = t −
0.5 generates the Wilcoxon scores, and φ equal to the quantile function of the standard
normal distribution leads to the normal (or, van der Waerden) scores. In fact, the normal
quantile function should be changed to a constant outside the [ε, 1 − ε] interval to comply
with Assumption 2.2 but ε may be always small enough to make no practical difference.
Therefore, the simulation studies below do not distinguish between the two cases.

3. Theory

Articles Gutenbrunner and Jurečková (1992) and Gutenbrunner, Jurečková, Koenker, and
Portnoy (1993) already defined (integrated) rank scores and employed them for testing
whether certain regression coefficients are zero in quantile regression models with deter-
ministic regressors. This article suggests to follow their approach and to use their test
statistic even for testing γ τ = 0 in the quantile regression model behind (1) when the
regressors are stochastic and possibly dependent on the response. This complicates the
matter and requires a new proof regarding the asymptotic null distribution of the test
statistic; see Appendix A.

Proposition 3.1: Consider test statistic

Ŝn = 1√
n

n∑
i=1

��
u (Yi − Y)̂bi, (3)
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suppose that Assumptions 2.1 and 2.2 hold with E‖Y‖2+δ < ∞ for some δ > 0, and assume
that HS

0(u) is true. Then, as n → ∞,

Ŝn
D→ N(0,�) and Ŝ�

n �−1̂Sn
D→ χ2

m−1

where

� = E{[φ(Fu(u�Y)) − φ̄]2��
u (Y − EY)(Y − EY)��u} (4)

and Fu is the cumulative distribution function of u�Y.

As a consequence, HS
0(u) may be tested by means of the test statistic

Tn := Ŝ�
n �̂

−1̂Sn
D→ χ2

m−1 (5)

where

�̂ = 1
n

n∑
i=1

[φ(̂Fu(u�Yi)) − φ̄]2��
u (Yi − Y)(Yi − Y)��u

is a consistent estimator of � using a consistent empirical counterpart F̂u to Fu such as the
empirical cummulative distribution function.

Remark 3.1: The original (integrated) rank score χ2-test of Gutenbrunner et al. (1993),
known from the standard quantile regression and implemented in various software, uses
almost the same test statistic but with the sample matrix estimator �̂0 of

�0 := Var (��
u Y)

∫ 1

0
[φ(t) − φ̄]2 dt.

Consequently, the test remains valid in the present context only in certain special cases
when �̂0 = �̂ + oP(1), e.g. if ��

u Y and u�Y are independent, or if the sign score function
is employed.

Remark 3.2: If φ(t) = 0.5 sign(t − 0.5), then b̂ = â(0.5) − 1n and the test Tn of (5)
exactly coincides with the χ2 test of (4.4) in Hudecová and Šiman (2021a) for k = 1 and
τ1 = 0.5.

Remark 3.3: Note also that the test statistic Tn = Tn(u,Y,�u) of (5),

Tn = 1
n
b̂�

(
I − 1

n
11�

)
Y�u�̂

−1
��
u Y

�
(
I − 1

n
11�

)�
b̂, (6)

inherits favourable invariance and equivariance properties from the tests in Hudecová and
Šiman (2021a). In particular, Tn is independent of the choice of �u and naturally invariant
with respect to linear transformations preserving axial symmetry, namely to certain shift,
rotation and linear scale transformations:

Tn(u,Y,�u) = Tn(u,Y − s�1n,�u) = Tn(Au,YA�,A�u)

= Tn(u,Y(u|�u)D(u|�u)
�,�u)

for any vector s ∈ R
m, any orthonormal (i.e. rotational) m × m matrix A, and any m ×

m diagonal matrix D = diag(d11, . . . , dmm) with d11 > 0. The equalities can be obtained
directly from (6).
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Remark 3.4: The test of (5) is consistent in the class of elliptically symmetric distributions
according to what is written in Section 2. It is also sensitive to many other alternatives,
though not against all.

Remark 3.5: The computation of Tn can be done easily, e.g. in the R computational envi-
ronment (R Core Team 2021) with the aid of the quantreg package (Koenker 2015) and its
functions qr and ranks.

Note also that if φ is (a trimmed version of) the quantile function of the standard nor-
mal distribution and if the assumptions of Proposition 3.1 hold, then � of (4) can be
consistently estimated by means of

�̂ = 1
n

n∑
i=1

[φ(̂Fu(u�Yi) − 0.5/n) − φ̄]2��
u (Yi − Y)(Yi − Y)��u,

where the correction term 0.5/n makes no asymptotic difference but simplifies the com-
putation of the van der Waerden scores considerably.

Remark 3.6: Proposition 3.1 with (5) defines one test with many variants that depend on
the choice of the score function and lead to the same asymptotic null distribution. The
Wilcoxon and van der Waerden scores are known to be asymptotically optimal in the case
of deterministic regressors for the logistic and normal distributions, respectively (Guten-
brunner et al. 1993). The sign scores are useful in the same context in the presence of
outliers or heavy tails. This is the reason why these three types of scores are employed in
the following simulation study focusing on the the behaviour of the new test.

4. Empirical study

This section uses simulations to explore the proposed test (5), to investigate its finite sample
performance for various score functions and data distributions, and to compare it to the
representative tests of Hudecová and Šiman (2021a) and Hudecová and Šiman (2021b)
that are used for benchmarking here. To the best of our knowledge, there are no other
competitors suitable for comparison beyond dimension two. In addition, the benchmark
tests themselves have already been shown to clearly outperform the closest competitor in
the bivariate case (Rao and Raghunath 2012), see Hudecová and Šiman (2021b).

In particular, three benchmark tests are considered:

• TC: the χ2 Wilks correlation test based on (1) and (2) of Hudecová and Šiman (2021b),
• TR: the χ2 rank test based on (6) of Hudecová and Šiman (2021b),
• Tsup: the sup-based non-χ2 test based on (4.5) of Hudecová and Šiman (2021a),

and the following tests based on integrated rank scores are used for comparison:

• TN : the χ2 test of (5) with normal scores,
• TS: the χ2 test of (5) with sign scores,
• TW : the χ2 test of (5) with Wilcoxon’s scores,
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and also their variants TN0, TS0, and TW0 using �̂0 of Remark 3.1 instead of �̂, although
only the TN0 variant is also presented in the graphical output for the sake of brevity.

Note that the particular tests TC and TR work only for elliptical distributions, that TC
also requires finite sixth moments, and that Tsup assumes rather special conditions to be
fulfilled such as normally distributed data. All that had to be taken into consideration in
the simulations.

The simulation experiments behind all figures were conducted in the R computa-
tional environment (R Core Team 2021). Each experiment used 1000 independent m-
dimensional random samples of size n and tested them individually for symmetry around
a line in direction u = (cos(α), sin(α), 0�)�, α ∈ [0,π/6]. The null hypothesis always cor-
responds (only) to α = 0. The results are reported in terms of average sample p-values and
their plots against α. Recall that the average p-values should concentrate around 0.5 under
the null hypothesis and decrease with α. The most powerful test corresponds to that with
the lowest average p-values for α > 0.

Themost interesting findings are presented in FiguresA1 toA9.As the graphical outputs
for various tests often lie close to one another, each plot displays at most three of them to
prevent confusion.

Basically, Figure A1 focuses on the comparison with Tsup, Figure A2 on the comparison
with TC, Figure A3 on the use of different score functions, Figure A4 on small samples,
Figure A5 on elliptical distributions with finite sixth moments, Figure A6 on elliptical dis-
tributions with infinite sixth moments and on the comparison with TR, Figure A7 on the
influence of outliers, Figure A8 on large large-dimensional samples, and Figure A9 on the
difference between using �̂ and �̂0.

Usually n = 100, although n = 25 is used in the small-sample study of Figure A4 and
n = 1000 is employed in the large-sample study of Figure A8. Similarly, m = 3 as a rule
althoughm = 100 is used in the large-dimensional (and large-sample) study of Figure A8
and m = 10 is employed in Figure A3 to show what happens when the dimension is
changed from small to moderate.

To sum up the results:

• Figure A1 compares Tsup, TN , and TW on random samples containing n = 100
three-dimensional observations (Y1, 2Y2, 3Y3)

� whose distribution has independent
marginals. In particular, Yi’s, i = 1, . . . , 3, are standard normal, uniform on (0, 1),
standard exponential, or standard logistic.

• Figure A2 compares TC, Tsup, and TN on random samples containing n = 100 three-
dimensional elliptically distributed observations (Y1, 2Y2, 3Y3)

� where the distribution
of (Y1,Y2,Y3)

� ismultivariate standard normal,multivariate canonical Laplace, ormul-
tivariate canonical Student with 7 degrees of freedom. The use of Tsup is justified only
for the normal distribution.

• Figure A3 compares TN , TS, and TW on random samples containing n = 100
observations (Y1, 2Y2, . . . , 10Y10)

� of dimension m = 10 where the distribution of
(Y1, . . . ,Y10)

� is multivariate standard normal.
• Figure A4 compares TC, TR, and TN on small samples containing n = 25 three-

dimensional observations (Y1, 2Y2, 3Y3)
� where the distribution of (Y1,Y2,Y3)

� is
multivariate standard normal.
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• Figure A5 compares TC, TN , and TW on random samples containing n = 100 three-
dimensional elliptically distributed observations (Y1, 2Y2, 3Y3)

� where the distribution
of (Y1,Y2,Y3)

� is multivariate standard normal, multivariate canonical Student with
7 degrees of freedom, multivariate canonical Laplace, or multivariate canonical power
exponential with kurtosis parameter κ = 0.2.

• Figure A6 compares TR, TN , and TW on random samples containing n = 100 three-
dimensional elliptically distributed observations (Y1, 2Y2, 3Y3)

� where the distribution
of (Y1,Y2,Y3)

� is heavy-tailed, namely multivariate canonical Student with 3 or 5
degrees of freedom.

• FigureA7 comparesTC,Tsup,TN ,TS, andTW on contaminated normal random samples
containing n = 100 three-dimensional observations (Y1, 2Y2, 3Y3)

� where the distri-
bution of (Y1,Y2,Y3)

� is multivariate standard normal but each coordinate of the first
two observations is increased by 3.

• Figure A8 compares TN , TS, and TW on large high-dimensional random samples con-
taining n = 1000 observations (Y1, 2Y2, . . . , 100Y100)

� of dimension m = 100 where
the distribution of (Y1, . . . ,Y100)

� is multivariate standard normal.
• Figure A9 compares TN0 and TN on random samples containing n = 100 three-

dimensional observations (Y1, 2Y2, 3Y3)
� where the distribution of (Y1, . . . ,Y3)

� is
multivariate standard normal or multivariate canonical Student with 7 degrees of
freedom.

All the results can be summarised as follows:

• TN , TS and TW are usually better sized than Tsup,
• TN and TW are usually more powerful than Tsup,
• TN behaves like TC for elliptical distributions,
• TR outperforms TN in terms of power only for heavy-tailed elliptical distributions,
• TN , TS and TW can be used even for samples of small length such as n = 25,
• TN and TW often behave similarly in terms of size and power, though TW seems more

powerful for heavy-tailed distributions and less powerful otherwise,
• TS is often less powerful than TN and TW ,
• TS is more robust to shift outliers than TW , TN , TC and Tsup,
• TN , TS and TW are applicable and correctly sized even in case of large samples of high-

dimensional observations
• the tests of (5) using �̂ are only very marginally worse than those using �̂0 in the rare

cases when both estimators can be used.

To sum up, TN can be recommended as a general test of multivariate axial symmetry
for all distributions with finite third-order moments. Test TS appears suitable only in the
presence of outliers. The tests using other score functions may be useful if more informa-
tion about the underlying distribution is available. For example, TW seems preferable for
heavy-tailed distributions.

Even in case of elliptical distributions, TN is virtually as powerful as TC. Furthermore,
TN is significantly outperformed byTR only in case of very heavy-tailed distributions when
a special trimmed score function (such as one derived from the quantile function of a
heavy-tailed Student distribution) could easily remove the handicap.
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5. Power comparison in the bivariate case

Section 4 demonstrates that the proposed test (5) generally outperforms the benchmark
tests employed. Hudecová and Šiman (2021a) and Hudecová and Šiman (2021b) show in
the bivariate case that the benchmarks are generally superior to the RRk test of axial sym-
metry of Rao and Raghunath (2012) that was ibidem also compared to a few comparable
bivariate tests in some small sample experiments. Therefore, it seems safe to conclude that
the test based on (5) performs well even with respect to the bivariate competitors.

Recently, Riahi and Patil (2021) proposed a test of symmetry around the x-axis in the
bivariate case. In their simulation study, the authors considered also the following null
hypotheses HUNI

0 and HBVN(0)
0 :

HUNI
0 : X ∼ U[−1, 1] independent of Y ∼ U[−1, 1], and

HBVN(0)
0 : X ∼ N(0, 1) independent of Y ∼ N(0, 1),

and four alternatives HBVN(0.3)
1 , HBVN(0.6)

1 , HUXM
1 , and HHAM

1 , where

HBVN(ρ)
1 : (X,Y)� is bivariate normal with correlation ρ,X ∼ N(0, 1), and Y ∼ N(0, 1),

HUXM
1 : X ∼ U[0, 1] independent of Y ∼ Exp(1) − ln(2), and

HHAM
1 : X ∼ Exp(1) − 1 independent of Y ∼ Exp(1) − ln(2).

The test statistics TN0, TN , TS0, TS, TW0, and TW were applied to the same setting and
their empirical sizes and powers, based on 100, 000 independent replications, can be found
in Tables A1 and A2 for various sample sizes n = 50, 60, 75, 100 and 150. Table A1 also
includes the empirical sizes and powers of tests RRk=2, RRk=5 and EG from Riahi and
Patil (2021), computed therein from 1000 replications.

Table A1 confirms that the test of (5) is generally superior to any of the bivariate tests
RRk=2,RRk=5 and EG both in terms of size and power. Table A2 then illustrates Remark 3.4
by presenting the results for two alternatives with respect to which the test of (5) is not
consistent.

6. Concluding remarks

This article introduced some tests of axial symmetry based on integrated rank scores. The
test based on the van derWaerden scores appears the best for general testing ofmultivariate
axial symmetry out of all the tests currently available. It is usually quite powerful, correctly
sized, reasonably invariant and applicable to all multivariate distributions under very mild
conditions.
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Appendices

Appendix 1. Proofs

Proof of Proposition 3.1: It follows from (2), (3), and the definition of â(τ ) that Ŝn =∫ 1
0 −φ(τ) dV̂n(τ ) for

V̂n(τ ) = 1√
n

n∑
i=1

��
u (Yi − Y)(̂ai(τ ) − 1 + τ).

Furthermore, it is proved in Hudecová and Šiman (2021a) that V̂n(τ ) = V0
n(τ ) + Rn(τ ), where

V0
n(τ ) = 1√

n

n∑
i=1

��
u (Yi − EY)(I[u�Yi > F−1

u (τ )] − 1 + τ),

F−1
u (τ ) is the τ -quantile of u�Y, and ‖Rn(τ )‖ → 0 uniformly in τ ∈ [ε, 1 − ε].
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Consequently, Ŝn = ∫ 1
0 −φ(τ)dV0

n(τ ) + oP(1) and∫ 1

0
−φ(τ) dV0

n(τ ) = 1√
n

n∑
i=1

��
u (Yi − EY)

[∫ 1

0
φ(τ) dI[u�Yi < F−1

u (τ )] − φ̄

]

= 1√
n

n∑
i=1

��
u (Yi − EY)

[
φ(Fu(u�Yi)) − φ̄

]
= 1√

n

n∑
i=1

Zi

where Zi := ��
u (Yi − EY)[φ(Fu(u�Yi)) − φ̄], i = 1, . . . , n, are independent and identically dis-

tributed random vectors.
Vectors (u�(Y − EY), (Y − EY)��u)

� and (u�(Y − EY),−(Y − EY)��u)
� are equally dis-

tributed under HS
0(u), and thus

EZi = E��
u (Y − EY)[φ(Fu(u�Y)) − φ̄] = −E��

u (Y − EY)[φ(Fu(u�Y)) − φ̄],

which implies EZi = 0. Furthermore,

VarZ1 = EZ1Z�
1 = E

{
[φ(Fu(u�Y)) − φ̄]2��

u (Y − EY)(Y − EY)��u

}
,

and the rest follows from the central limit theorem. �
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Appendix 2. Figures

Figure A1. Comparison between Tsup, TN and TW for distributions with independent marginals. The
figure shows the averages of sample p-values coming from the tests Tsup (black), TN (dark gray) and TW
(light gray) of axial symmetry around a line in direction u = (cos(α), sin(α), 0)� for α ∈ [0,π/6]. The
plots have been obtained from 1000 independent samples containing n = 100 independent observa-
tions (Y1, 2Y2, 3Y3)�with independent marginals where Yi ’s, i = 1, . . . , 3, are (a) standard normal, (b)
uniform on (0, 1), (c) standard exponential, and (d) standard logistic.
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Figure A2. Comparison between TC , Tsup and TN for elliptical distributions. The figure shows the aver-
ages of sample p-values coming from the tests TC (black), Tsup (dark gray) and TN (light gray) of axial sym-
metry around a line in directionu = (cos(α), sin(α), 0)� forα ∈ [0,π/6]. The plots have been obtained
from 1000 independent samples containing n = 100 independent observations (Y1, 2Y2, 3Y3)� where
the distribution of (Y1, Y2, Y3)� is (a) multivariate standard normal, (b)multivariate canonical Laplace, or
(c) multivariate canonical Student with 7 degrees of freedom. Note that Tsup is formally justified only in
(a) and that the results for TC and TN almost coincide.
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Figure A3. Comparison between TN , TS and TW for multivariate normal distribution. The figure shows
theaveragesof samplep-values coming fromthe tests TN (black), TS (darkgray) and TW (lightgray) of axial
symmetry around a line in direction u = (cos(α), sin(α), 0�)� for α ∈ [0,π/6]. The plots have been
obtained from 1000 independent samples containing n = 100 independent ten-dimensional observa-
tions (Y1, 2Y2, . . . , 10Y10)� where the distribution of (Y1, . . . , Y10)� ismultivariate standard normal. The
results for TN and TW almost coincide.

Figure A4. Comparison between TC , TR and TN for small normal samples. The figure shows the averages
of sample p-values coming from the tests TC (black), TR (dark gray) and TN (light gray) of axial symme-
try around a line in direction u = (cos(α), sin(α), 0)� for α ∈ [0,π/6]. The plots have been obtained
from 1000 independent samples containing n = 25 independent observations (Y1, 2Y2, 3Y3)�where
the distribution of (Y1, Y2, Y3)� is multivariate standard normal.
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Figure A5. Comparison between TC , TN and TW for elliptical distributions with finite sixth moments.
The figure shows the averages of sample p-values coming from the tests TC (black), TN (dark gray) and
TW (light gray) of axial symmetry around a line in direction u = (cos(α), sin(α), 0)� for α ∈ [0,π/6].
The plots have been obtained from 1000 independent samples containing n = 100 independent obser-
vations (Y1, 2Y2, 3Y3)�where the distribution of (Y1, Y2, Y3)� is (a) multivariate standard normal, (b)
multivariate canonical Student with 7 degrees of freedom, (c) multivariate canonical Laplace, or (d)
multivariate canonical power exponential with kurtosis parameter κ = 0.2.
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Figure A6. Comparison between TR, TN and TW for heavy-tailed elliptical distributions. The figure
shows the averages of sample p-values coming from the tests TR (black), TN (dark gray) and TW (light
gray) of axial symmetry around a line in direction u = (cos(α), sin(α), 0)� for α ∈ [0,π/6]. The plots
have been obtained from 1000 independent samples containing n = 100 independent observations
(Y1, 2Y2, 3Y3)�where the distribution of (Y1, Y2, Y3)� is multivariate canonical Student with (a) 3 or (b)
5 degrees of freedom.

Figure A7. Sensitivity of TC , Tsup, TN , TS and TW to outliers for contaminated normal distribution. The
figure shows the averages of sample p-values coming from the tests (a) TN (black), TS (dark gray) and
TW (light gray) or (b) TC (black), Tsup (dark gray), TN (light gray) of axial symmetry around a line in
direction u = (cos(α), sin(α), 0)� for α ∈ [0,π/6]. The plots have been obtained from 1000 indepen-
dent samples containing n = 100 independent three-dimensional observations (Y1, 2Y2, 3Y3)� where
the distribution of (Y1, Y2, Y3)� is multivariate standard normal but each coordinate of the first two
observations is increased by 3.
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Figure A8. Comparison of TN, TS and TW for large large-dimensional normal samples. The figure shows
the averages of sample p-values coming from the tests TN (black), TS (dark gray) and TW (light gray)
of axial symmetry around a line in direction u = (cos(α), sin(α), 0�)� for α ∈ [0,π/6]. The plots
have been obtained from 1000 independent samples containing n = 1000 independent observations
(Y1, 2Y2, . . . , 100Y100)� of dimensionm = 100where the distribution of (Y1, . . . , Y100)� is multivariate
standard normal. The results for TN and TW virtually coincide.

Figure A9. Comparison of TN0 and TN using different variance matrix estimators. The figure shows the
averages of sample p-values coming from the tests TN0 (black) and TN (dark gray) of axial symme-
try around a line in direction u = (cos(α), sin(α), 0)� for α ∈ [0,π/6]. The plots have been obtained
from 1000 independent samples containing n = 100 independent three-dimensional observations
(Y1, 2Y2, 3Y3)� where the distribution of (Y1, Y2, Y3)� is (a) multivariate standard normal or (b) multi-
variate canonical Student with 7 degrees of freedom.
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Appendix 3. Tables

Table A1. Test comparison in the bivariate case.

Testing bivariate symmetry around the x-axis I

HUNI0 HBVN(0)
0

n = 50 60 75 100 150 50 60 75 100 150

TN0 0.051 0.051 0.050 0.049 0.050 0.051 0.051 0.051 0.051 0.050
TN 0.053 0.052 0.052 0.050 0.051 0.050 0.051 0.051 0.051 0.050
TS0 0.052 0.052 0.049 0.050 0.050 0.052 0.051 0.050 0.052 0.050
TS 0.054 0.054 0.049 0.051 0.051 0.054 0.053 0.050 0.053 0.051
TW0 0.052 0.051 0.051 0.051 0.050 0.051 0.051 0.052 0.052 0.050
TW 0.051 0.050 0.051 0.050 0.050 0.049 0.050 0.051 0.051 0.050
RRk=2 0.04 0.05 0.04 0.04 0.06 0.04 0.05 0.04 0.05 0.05
RRk=5 0.06 – 0.04 0.04 0.03 0.05 – 0.03 0.03 0.05
EG 0.03 0.04 0.04 0.04 0.05 0.04 0.03 0.03 0.04 0.04

HBVN(0.3)
1 HBVN(0.6)

1

TN0 0.566 0.646 0.746 0.861 0.963 0.997 0.999 1.000 1.000 1.000
TN 0.536 0.621 0.725 0.847 0.959 0.995 0.999 1.000 1.000 1.000
TS0 0.395 0.461 0.553 0.679 0.847 0.963 0.985 0.996 1.000 1.000
TS 0.402 0.467 0.553 0.682 0.849 0.964 0.986 0.996 1.000 1.000
TW0 0.553 0.632 0.732 0.848 0.957 0.996 0.999 1.000 1.000 1.000
TW 0.523 0.607 0.711 0.835 0.953 0.994 0.999 1.000 1.000 1.000
RRk=2 0.18 0.27 0.29 0.39 0.55 0.73 0.86 0.94 0.97 1.00
RRk=5 0.17 – 0.25 0.36 0.56 0.74 – 0.93 0.98 1.00
EG 0.07 0.08 0.011 0.16 0.24 0.36 0.47 0.61 0.80 0.95

Notes: Six variants of the test of (5), namely TN0, TN , TS0, TS , TW0, and TW , are compared in terms of empirical size and power
to the RRk test (with bin parameter k = 2 or k = 5) of Rao and Raghunath (2012) and to the central symmetry EG test of
Einmahl and Gan (2016) used for testing axial symmetry as described in Riahi and Patil (2021). All cases use sample sizes
n = 50, 60, 75, 100 and 150, two null hypotheses (HUNI0 and HBVN(0)

0 ) of symmetry around the x-axis and two alternatives

(HBVN(0.3)
1 and HBVN(0.6)

1 ). The results for RRk=2, RRk=5 and EG tests, based on 1000 replications, are copied directly from
Riahi and Patil (2021) for maximum reliability. The other figures were obtained from 100, 000 simulation experiments.

Table A2. Consistency.

Testing bivariate symmetry around the x-axis II

HUXM1 HHAM1

n = 50 60 75 100 150 50 60 75 100 150

TN0 0.051 0.049 0.050 0.050 0.051 0.050 0.050 0.052 0.050 0.051
TN 0.046 0.045 0.047 0.047 0.049 0.045 0.046 0.047 0.048 0.048
TS0 0.048 0.048 0.048 0.049 0.050 0.050 0.049 0.048 0.050 0.050
TS 0.051 0.050 0.048 0.050 0.051 0.053 0.051 0.048 0.051 0.051
TW0 0.050 0.049 0.049 0.050 0.051 0.050 0.049 0.049 0.050 0.050
TW 0.046 0.046 0.047 0.048 0.050 0.045 0.046 0.047 0.048 0.049

Notes: The tests TN0, TN , TS0, TS , TW0, and TW need not be consistent against all possible alternatives, which is illustrated (for
various sample sizes n) with their empirical powers against two special alternatives (HUXM1 andHHAM1 ) taken from Riahi and
Patil (2021).
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