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Abstract: The paper deals with Bayesian state estimation using the point-mass filter with a particular
focus on the prediction step involving the convolution of two grids of points. To reduce the computational
costs of the step, a functional decomposition-based convolution was proposed by Tichavský et al. (2022),
which approximates the transient probability density function over an approximation region. This paper
addresses the problem of having spacious grids of points due to state uncertainty while the approximation
region is kept small to preserve low computational complexity. A two-level convolution is proposed based
on splitting the grids into subgrids and processing the convolution in the upper level for the subgrids and
in the lower level for their points. An example demonstrates the proposed technique efficiency.
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1. INTRODUCTION

The state estimation of nonlinear discrete-time stochastic dy-
namic systems from noisy measurements is vital for many do-
mains, such as tracking and navigation, optimal and adaptive
control, signal processing, and fault detection.

A solution to the state estimation problem formulated as an
inference of the probability density functions (PDFs) of the
state conditioned by the available measurements is given by the
Bayesian recursive relations (BRRs). The BRRs are intractable
in general, with the exception of a few special cases, such
as linear models with Gaussian distributed noises. Hence, for
nonlinear models with non-Gaussian uncertainties, the BRR
solution is typically subject to approximations. Gaussian ap-
proximations of the conditional densities lead to popular com-
putationally cheap solutions (Arasaratnam and Haykin, 2009).
However, for highly nonlinear models they offer limited esti-
mate accuracy (Särkkä, 2013). High-quality estimates are pro-
vided in these cases by methods representing the posterior
PDF of the state by particle-based approximations (Doucet
et al., 2001), Gaussian mixture approximations (Sorenson and
Alspach, 1971), or point-mass approximations (Šimandl et al.,
2002; Duník et al., 2019). High quality, however, comes with
substantial computational demands.

This paper focuses on the point-mass filter (PMF) (Šimandl
et al., 2006; Matoušek et al., 2019) that calculates the point-
mass approximations of the conditional PDFs. The PMF uses
deterministic grid-based numerical integration rules and com-
putes the conditional PDFs only at the grid points. A suitable
specification of the number of grid points is critical as it af-
fects the estimate accuracy and computational complexity. The

⋆ The work was supported by the Czech Science Foundation under grant 22-
11101S.

computational bottleneck of the standard filter implementation,
which limits the number of the grid points from above, is the
predictive step. This step involves an evaluation of a convolution
called the Chapman-Kolmogorov equation, where the grids for
conditional PDFs at two consecutive time instants are combined
through the transient PDF. The convolution complexity thus
grows quadratically with the number of the grid points 𝑁 .

Many techniques for PMF computational complexity reduction
were proposed, often at the cost of extra approximations, the
need for user-defined parameters, or only for particular models.
The techniques are based on:

∙ Rao-Blackwellization: The techniques assume the condi-
tionally linear models with Gaussian noises, where the
expensive PMF estimates the nonlinearly modeled part of
the state whereas the remaining linearly modeled part is
estimated by computationally cheap Kalman filters (Duník
et al., 2019; Lim and Park, 2019).

∙ Separable prediction: These techniques assume a partic-
ular model and Gaussian noise and evaluate the transient
PDF off-line. They do not use the convolution theorem,
and the complexity depends on the state noise variance. In
the worst-case scenario, it is still (𝑁2) (Bergman, 1999).

∙ Copula prediction: Instead of propagating the conditional
PDF, these techniques propagate the marginal PDFs and a
copula (Nelsen, 2006), capturing the correlation. An op-
timal copula cannot generally be found; thus, its selection
is a designer decision leading to an extra approximation
error (Duník et al., 2022).

The PMF grid can also be designed using adaptive or sparse
layouts (Kalender and Schottl, 2013). This leads to a reduction
of the total number of grid point𝑁 , the order of the complexity
is still 

(

𝑁2).
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Tichavský et al. (2022) proposed an entirely different approach
based on functional tensor decomposition (FTD) to tackle to
issue. The decomposition is based on the non-negative matrix
factorization 1 (NNMF) and symmetric NNMF (Huang et al.,
2014). The technique decomposes the transient PDF into a sum
of 𝑅 products of functions of current and future states, where
𝑅 is the FTD rank. The complexity induced by the FTD-based
technique is ((2𝑁 + 1)𝑅).

The FTD-based technique approximates the transient PDF on
a selected region, inducing approximation error that can be
adjusted by the rank 𝑅. Besides the error-related adjustment,
the rank depends on the size of the region. When preserving a
fixed error, the rank proliferates (Tichavský et al., 2022) with
increasing state dimension. To keep low complexity, the rank
should be kept as small as possible. While ensuring fixed error,
the rank can be decreased by reducing the size of the approx-
imation region. On the other hand, the proposed FTD-based
technique requires the grids representing the conditional PDF of
the state to fit into the region, which hampers the size reduction.
The paper aims to address these conflicting requirements by
introducing a two-level convolution that facilitates using small
approximation regions with spacious grids.

The paper is structured as follows: Section 2 briefly intro-
duces Bayesian inference for state estimation of nonlinear non-
Gaussian models by the PMF and describes the FTD of the
transient PDF. The problem related to the approximation region
is analyzed, and the two-level convolution is proposed in Sec-
tion 3. A numerical illustration of the two-level convolution is
presented in Section 4, and Section 5 gives concluding remarks.

2. STATE ESTIMATION BY POINT-MASS METHOD

2.1 State Estimation

Consider the following discrete-time state-space model of a
nonlinear stochastic dynamic system with additive noises

𝐱𝑘+1 = 𝐟𝑘(𝐱𝑘,𝐮𝑘) + 𝐰𝑘, 𝑘 = 0, 1, 2,… , 𝑇 , (1)
𝐳𝑘 = 𝐡𝑘(𝐱𝑘) + 𝐯𝑘, 𝑘 = 0, 1, 2,… , 𝑇 , (2)

where 𝐱𝑘 ∈ ℝ𝑛𝑥 , 𝐮𝑘 ∈ ℝ𝑛𝑢 , and 𝐳𝑘 ∈ ℝ𝑛𝑧 represent the
unknown state of the system, known input, and measurement at
time instant 𝑘, respectively. The state and measurement func-
tions 𝐟𝑘 ∶ ℝ𝑛𝑥 × ℝ𝑛𝑢 → ℝ𝑛𝑥 and 𝐡𝑘 ∶ ℝ𝑛𝑥 → ℝ𝑛𝑧 are known
vector transformations. The state and measurement noises 𝐰𝑘 ∈
ℝ𝑛𝑥 and 𝐯𝑘 ∈ ℝ𝑛𝑧 are described by known PDFs, i.e., the state
noise PDF 𝑝(𝐰𝑘) and the measurement noise PDF 𝑝(𝐯𝑘). The
initial state is characterized by known PDF 𝑝(𝐱0). The noises𝐰𝑘,
𝐯𝑘, and the initial condition 𝐱0 are independent. The model (1)
and (2) can equivalently be described by the state transient PDF
𝑝(𝐱𝑘+1|𝐱𝑘) = 𝑝𝐰𝑘

(

𝐱𝑘+1 − 𝐟𝑘(𝐱𝑘,𝐮𝑘)
)

and the measurement
PDF 𝑝(𝐳𝑘|𝐱𝑘) = 𝑝𝐯𝑘

(

𝐳𝑘 − 𝐡𝑘(𝐱𝑘)
)

, respectively.

The goal of the state estimation is to infer the posterior PDF
𝑝(𝐱𝑘|𝐳𝑘),∀𝑘 conditioned on all measurements up to the time
instant 𝑘, which are denoted as 𝐳𝑘 ∶= [𝐳⊤0 , 𝐳

⊤
1 ,… , 𝐳⊤𝑘 ]

⊤. The
BRRs give general solution to the state estimation in the form
of conditional PDFs 2 (Särkkä, 2013)
1 The NNMF originally known as non-negative rank factorization or positive
matrix factorization has been subject to intensive research for more than three
decades (Chen, 1984), (Paatero and Tapper, 1994).
2 Considering the model (1), (2), the BRRs (3), (4) should also be condi-
tioned on the available sequence of the inputs 𝐮𝑘. However, for the sake of

𝑝(𝐱𝑘|𝐳𝑘) =
𝑝(𝐱𝑘|𝐳𝑘−1)𝑝(𝐳𝑘|𝐱𝑘)

𝑝(𝐳𝑘|𝐳𝑘−1)
, (3)

𝑝(𝐱𝑘+1|𝐳𝑘) = ∫ 𝑝(𝐱𝑘+1|𝐱𝑘)𝑝(𝐱𝑘|𝐳𝑘)𝑑𝐱𝑘, (4)

where 𝑝(𝐱𝑘+1|𝐳𝑘) is the one-step predictive PDF computed by
the Chapman-Kolmogorov equation (CKE) (4) and 𝑝(𝐱𝑘|𝐳𝑘) is
the filtering PDF computed by the Bayes rule (3). The PDF
𝑝(𝐳𝑘|𝐳𝑘−1) = ∫ 𝑝(𝐱𝑘|𝐳𝑘−1)𝑝(𝐳𝑘|𝐱𝑘)𝑑𝐱𝑘 is the one-step predic-
tive PDF of the measurement. The recursion (3), (4) starts from
𝑝(𝐱0|𝐳−1) = 𝑝(𝐱0).

2.2 Point-mass Method

The PMF approximates the conditional PDF 𝑝(𝐱𝑘|𝐳𝑚), (𝑚 ∈
{𝑘−1, 𝑘}) by a weighted set of𝑁 grid points Ξ𝑘 = {𝝃(𝑖)𝑘 }𝑁𝑖=1 as

𝑝(𝐱𝑘|𝐳𝑚) ≈
𝑁
∑

𝑖=1
𝜔(𝑖)
𝑘|𝑚𝑆{𝐱𝑘; 𝝃

(𝑖)
𝑘 ,𝚫𝑘}, (5)

with 𝑆{𝐱𝑘; 𝝃
(𝑖)
𝑘 ,Δ𝑘} being the selection function defined as

𝑆{𝐱𝑘; 𝝃
(𝑖)
𝑘 ,Δ𝑘}=

{

1, if |

|

|

[𝐱𝑘]𝑗−[𝝃
(𝑖)
𝑘 ]𝑗

|

|

|

≤ [𝚫𝑘]𝑗
2 , 𝑗 = 1,… , 𝑛

0, otherwise,
(6)

where the notation [⋅]𝑗 stands for the 𝑗-th element of the in-
volved vector. Thus, the selection function is uniform over the
𝚫𝑘-neighborhood of the grid point 𝝃(𝑖)𝑘 ∈ ℝ𝑛𝑥 . The correspond-
ing weight 𝜔(𝑖)

𝑘|𝑚 ∈ ℝ0+ is then given as

𝜔(𝑖)
𝑘|𝑚 = 𝑐𝑘|𝑚�̃�

(𝑖)
𝑘|𝑚, (7)

where �̃�(𝑖)
𝑘|𝑚 = 𝑝𝐱𝑘|𝐳𝑚 (𝝃

(𝑖)
𝑘 |𝐳𝑚) is the conditional PDF 𝑝(𝐱𝑘|𝐳𝑚)

evaluated at the 𝑖-th grid point 𝝃(𝑖)𝑘 , and 𝑐𝑘|𝑚 = (𝛿𝑘
∑𝑁
𝑖=1 �̃�

(𝑖)
𝑘|𝑚)

−1

is a normalization constant, 𝛿𝑘 ∶=
∏

𝑖[𝚫𝑘]𝑖. The basic algo-
rithm of the PMF can be summarized as (Šimandl et al., 2006):

Algorithm 1: Point-Mass Filter
(1) Initialization: Set 𝑘 = 0, construct the initial grid of points
Ξ𝑘, and define the initial point-mass PDF �̂�(𝐱𝑘|𝐳𝑘−1) of the form
(5) approximating the initial PDF.

(2) Meas. update: Compute the filtering point-mass PDF �̂�(𝐱𝑘|𝐳𝑘)
of the form (5) where the PDF value at 𝑖-th grid point is

𝜔(𝑖)
𝑘|𝑘 =

𝑝(𝐳𝑘|𝑥𝑘=𝜉
(𝑖)
𝑘 )𝜔(𝑖)

𝑘|𝑘−1
∑𝑁
𝑖=1 𝑝(𝐳𝑘|𝑥𝑘=𝜉

(𝑖)
𝑘 )𝜔(𝑖)

𝑘|𝑘−1𝛿𝑘
. (8)

(3) Grid construction: Construct the new 3 grid Ξ𝑘+1.
(4) Time update: Compute the predictive point-mass PDF of the
form (5) at the new grid of points, 𝜔(𝑗)

𝑘+1|𝑘 = 𝑐−1𝑘+1�̃�
(𝑗)
𝑘+1|𝑘, where

�̃�(𝑗)
𝑘+1|𝑘 =

𝑁
∑

𝑖=1
𝑝𝑥𝑘+1|𝑥𝑘 (𝜉

(𝑗)
𝑘+1|𝑥𝑘 = 𝜉(𝑖)𝑘 )𝜔(𝑖)

𝑘|𝑘𝛿𝑘, (9)

and 𝑐𝑘+1 is a normalization given by 𝑐𝑘+1 =
∑𝑁
𝑗=1 �̃�

(𝑗)
𝑘+1|𝑘.

(5) Set 𝑘 = 𝑘 + 1 and go to Step 2.
convenience, the input signal is assumed to be implicitly part of the condition
and it is not explicitly stated, i.e., 𝑝(𝐱𝑘+1|𝐱𝑘) = 𝑝(𝐱𝑘+1|𝐱𝑘;𝐮𝑘), 𝑝(𝐱𝑘|𝐳𝑘) =
𝑝(𝐱𝑘|𝐳𝑘;𝐮𝑘−1), and 𝑝(𝐱𝑘+1|𝐳𝑘) = 𝑝(𝐱𝑘+1|𝐳𝑘;𝐮𝑘).
3 Usually, the number of grid points 𝑁 is kept constant ∀𝑘 to ensure constant
(and predictable) computational complexity of the PMF.
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Standard PMF computes the weights 𝜔(𝑗)
𝑘+1|𝑘 by evaluating the

transient PDF 𝑝(𝐱𝑘+1|𝐱𝑘) for all combinations of the grid points
Ξ𝑘+1 and Ξ𝑘. This gives 𝑁2 evaluations leading to high com-
putational complexity, particularly for large 𝑛𝑥 as 𝑁 is chosen
as 𝑁 = (𝑁𝑎)𝑛𝑥 , where 𝑁𝑎 is the number of grid points per an
axis. Such a procedure will be called full convolution (FC). To
address this issue, Šimandl et al. (2002) proposed a technique
called thrifty convolution (TC) based on calculating �̃�𝑗𝑘+1|𝑘 as

�̃�(𝑗)
𝑘+1|𝑘 =

∑

𝜉𝑖𝑘∈Λ𝑘

𝑝𝑥𝑘+1|𝑥𝑘 (𝜉
(𝑗)
𝑘+1|𝑥𝑘 = 𝜉(𝑖)𝑘 )𝜔(𝑖)

𝑘|𝑘𝛿𝑘, (10)

where Λ𝑘 ⊆ Ξ𝑘 is a subset of Ξ𝑘 such that its elements lie within
a neighborhood of 𝜉(𝑗)𝑘+1.

2.3 Functional Decomposition of Transient Density

Using the FTD of the transient PDF (Tichavský et al., 2022) is
another approach to address the issue. The approach approxi-
mates the transient PDF by a functional decomposition 4 as

𝑝(𝐱𝑘+1|𝐱𝑘) ≈ �̂�(𝐱𝑘+1|𝐱𝑘) =
𝑅
∑

𝑟=1
 𝑟
1(𝐱𝑘+1)

𝑟
2(𝐱𝑘), (11)

where  𝑟
1(⋅),

𝑟
2(⋅), 𝑟 = 1,… , 𝑅 are suitable (non-negative)

functions, designed in advance, and 𝑅 is the order of the ap-
proximation called a rank.

Given (11), the CKE (4) can be written as

𝑝(𝐱𝑘+1|𝐳𝑘) ≈
𝑅
∑

𝑟=1
 𝑟
1(𝐱𝑘+1)∫  𝑟

2(𝐱𝑘)𝑝(𝐱𝑘|𝐳
𝑘)𝑑𝐱𝑘. (12)

The simplification of using (12) in (9) is that 𝑅 integrals in (4)
can be computed at the grid points Ξ𝑘 only, without the need to
consider the combination of all grid points Ξ𝑘+1 for 𝐱𝑘+1 and all
grid points Ξ𝑘 for 𝐱𝑘.

For the point-mass approximation (5) of 𝑝(𝐱𝑘|𝐳𝑘) the integral
in (12) is 5

∫  𝑟
2(𝐱𝑘)𝑝(𝐱𝑘|𝐳

𝑘)𝑑𝐱𝑘 ≈
𝑁
∑

𝑖=1
 𝑟
2(𝝃

(𝑖)
𝑘 )𝜔(𝑖)

𝑘|𝑘𝛿𝑘 =∶ 𝑟𝑘. (13)

The values of the predictive PDF (12) are then given as

�̃�(𝑗)
𝑘+1|𝑘 =

𝑅
∑

𝑟=1
 𝑟
1(𝝃

(𝑗)
𝑘+1)

𝑁
∑

𝑖=1
 𝑟
2(𝝃

(𝑖)
𝑘 )𝜔(𝑖)

𝑘|𝑘𝛿𝑘 =
𝑅
∑

𝑟=1
 𝑟
1(𝝃

(𝑗)
𝑘+1)

𝑟
𝑘.

(14)

3. TWO-LEVEL CONVOLUTION

3.1 Analysis of Functional Decomposition

The model (1) with additive noise 6 is advantageous for the
FTD as the transient PDF depends only on the difference of
𝐱𝑘+1 − 𝐟𝑘(𝐱𝑘,𝐮𝑘) as
4 Relation (11) can be seen as a particular case of the functional tensor-based
decomposition (Gorodetsky et al., 2018) where the functions  𝑟

1 and  𝑟
2 are not

decomposed further to functions of single elements of 𝐱𝑘+1 and 𝐱𝑘.
5 For convenience, the constant number 𝑁 of grid points of Ξ𝑘+1 and Ξ𝑘 is
considered.
6 Note that the FTD can be used in principle even for models with non-additive
noises. It may however require construction of the decomposition over a larger
area, which is connected with higher rank and higher computational costs.

Ω𝑘

Φ𝑘

Ξ𝑘+1

𝑓𝑘

𝑥𝑘+1

Fig. 1. Illustration of the Gaussian transient PDF 𝑝(𝑥𝑘+1|𝑓𝑘) =
𝑝𝑤𝑘 (𝑥𝑘+1 − 𝑓𝑘) (colored background)), the approximation
region Ω, and the grids Ξ𝑘+1 and Φ𝑘 for 𝑥𝑘+1 and 𝑓𝑘,
respectively.

𝑝(𝐱𝑘+1|𝐱𝑘) = 𝑝𝐰𝑘 (𝐱𝑘+1 − 𝐟𝑘), (15)
where the notation 𝐟𝑘 ∶= 𝐟𝑘(𝐱𝑘,𝐮𝑘) is introduced for conve-
nience. Expressing the transient PDF (15) in terms of 𝐱𝑘+1
and 𝐟𝑘 is substantially simpler 7 than expressing the PDF
𝑝(𝐱𝑘+1|𝐱𝑘) = 𝑝𝐰𝑘 (𝐱𝑘+1 − 𝐟𝑘(𝐱𝑘,𝐮𝑘)) in terms of 𝐱𝑘+1 and 𝐱𝑘,
especially for highly nonlinear 𝐟𝑘(⋅, ⋅). Thus, the approximate
transient PDF will be further expressed in terms of 𝐱𝑘+1 and 𝐟𝑘
as follows

�̂�(𝐱𝑘+1|𝐱𝑘) = �̂�(𝐱𝑘+1|𝐟𝑘) =
𝑅
∑

𝑟=1
 𝑟
1(𝐱𝑘+1)

𝑟
2(𝐟𝑘), (16)

The grid Ξ𝑘 for 𝐱𝑘 can then be transformed to a grid Φ𝑘 ∶=
{𝝓(𝑖)

𝑘 }𝑁𝑖=1 for 𝐟𝑘, where 𝝓(𝑖)
𝑘 = 𝐟𝑘(𝝃

(𝑖)
𝑘 ,𝐮𝑘). Remark that the grid

Φ𝑘 serves as a foundation for designing the grid Ξ𝑘+1. The
approximation (16) is calculated in an approximation region
Ω𝑘 ⊂ ℝ𝑛𝑥 for 𝐱𝑘+1 and 𝐟𝑘. For 𝑛𝑥 = 1 and standard Gaussian
PDF 𝑝(𝑤𝑘), the transient PDF 𝑝(𝑥𝑘+1|𝑥𝑘) = 𝑝𝑤𝑘 (𝑥𝑘+1−𝑓𝑘), the
grids Ξ𝑘+1, Φ𝑘 and the approximation region Ω𝑘 are illustrated
in Figure 1.

The approximation region should cover the space, where the
PDF 𝑝𝐰𝑘 is non-negligible. Its size affects the rank 𝑅 of the
approximation. Enlarging the region while keeping the approx-
imation error fixed leads to an increase in the rank, which
should be avoided, especially for higher dimensions 𝑛𝑥. When
the PDF 𝑝𝐰𝑘 is time-invariant, the region can be fixed, Ω𝑘 =
Ω, ∀𝑘. Hence, if either gridpoints of Ξ𝑘+1 or gridpoints of Φ𝑘
do not fit into the fixed region Ω, they can be conveniently
shifted by some 𝜻 ∈ ℝ𝑛𝑥 to the region as 𝑝𝐰𝑘 (𝝃

(𝑗)
𝑘+1 − 𝝓(𝑖)

𝑘 ) =

𝑝𝐰𝑘
(

(𝝃(𝑗)𝑘+1 − 𝜻) − (𝝓(𝑖)
𝑘 − 𝜻)

)

. Shifting each pair of the grid-

points 𝝃(𝑗)𝑘+1 and 𝝓(𝑖)
𝑘 , 𝑖, 𝑗 = 1,… , 𝑁 individually by some 𝜻 𝑖,𝑗

(i.e., each pair 𝝃(𝑗)𝑘+1 and 𝝓(𝑖)
𝑘 takes a different shift 𝜻 𝑖,𝑗) is highly

inefficient as there are 𝑁2 different pairs, and the number of
shifts would also be 𝑁2. The aim of the FTD to avoid such
combinations when calculating the predictive PDF values (9).
Hence, in (Tichavský et al., 2022), the entire grids Ξ𝑘+1 and Φ𝑘
are shifted by a single value 𝜻 calculated as a mean of all points
in both grids
7 Note that 𝐟𝑘 is a random variable obtained by transforming the random
variable 𝐱𝑘 through 𝐟𝑘(⋅,𝐮𝑘).
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Ω𝑘

Φ1
𝑘 Φ2

𝑘 Φ3
𝑘

Ξ1
𝑘+1

Ξ2
𝑘+1

Ξ3
𝑘+1

𝑓𝑘

𝑥𝑘+1

Fig. 2. Illustration of the Gaussian transient PDF 𝑝(𝑥𝑘+1|𝑓𝑘) =
𝑝𝑤𝑘 (𝑥𝑘+1 − 𝑓𝑘) (colored background)), the approximation
region Ω, and the grids Ξ𝑘+1 and Φ𝑘 for 𝑥𝑘+1 and 𝑓𝑘,
respectively, each split into three subgrids.

𝜻 = 1
2𝑁

( 𝑁
∑

𝑖=1
𝝓(𝑖)
𝑘 +

𝑁
∑

𝑗=1
𝝃(𝑖)𝑘+1

)

. (17)

Using this value to shift both grids places the centers of the
grids as close as possible to the origin where the center of
approximation region Ω is placed.

3.2 Idea of Two-level Convolution

This paper addresses the situation when the grids Ξ𝑘+1 and Φ𝑘
after the shifting cover space larger than Ω and enlarging Ω is
to be avoided. For convenience, the time index subscripts will
be dropped in the following part, e.g., Ξ ∶= Ξ𝑘+1. The idea is
to split the grids Ξ and Φ into subgrids and treat each subgrid
individually. In particular, when 𝑛𝑥 = 1, the grid Ξ is split into
𝑁Ξ subgrids {Ξ𝑗}𝑁Ξ

𝑗=1 such that

𝝃′ < 𝝃′′, ∀ 𝝃′ ∈ Ξ𝑖, ∀ 𝝃′′ ∈ Ξ𝑗 , 𝑖 < 𝑗

and by analogy, the grid Φ is split into 𝑁Φ subgrids {Φ𝑗}𝑁Φ
𝑗=1.

Each subgrid should fit into the approximation region Ω. The
splitting is illustrated in Figure 2 for 𝑛𝑥 = 1. Note that the
splitting for 𝑛𝑥 > 1 will be described later.

The non-normalized predictive PDF value (14) for a point 𝝃 ∈
Ξ𝑗 can then be written as

�̃�𝑘+1|𝑘(𝝃) =
𝑅
∑

𝑟=1
 𝑟
1(𝝃)

𝑁Φ
∑

𝑖=1

∑

𝝓∈Φ𝑖
 𝑟
2(𝝓)𝜔𝑘|𝑘(𝝓)𝛿𝑘

=
𝑁Φ
∑

𝑖=1

( 𝑅
∑

𝑟=1
 𝑟
1(𝝃)

∑

𝝓∈Φ𝑖
 𝑟
2(𝝓)𝜔𝑘|𝑘(𝝓)𝛿𝑘

)

, (18)

where �̃�𝑘+1|𝑘(𝝃) and 𝜔𝑘|𝑘(𝝓) denote the weights corresponding
to 𝝃 and 𝝓, respectively. Note that the sums

∑𝑁Φ
𝑖=1

∑

𝝓∈Φ𝑖  𝑟
2(𝝓)

(summing over subgrids Φ𝑖 and the points in each) are equiva-
lent to the sum

∑𝑁
𝑖=1 

𝑟
2(𝝓

(𝑖)) (summing over all points in Φ).
Then, for each combination of the subgrids Ξ𝑗 and Φ𝑗 , 𝑗 =
1,… , 𝑁Ξ, 𝑖 = 1,… , 𝑁Φ a single shift vector 𝜻 𝑖,𝑗 is calculated
similarly to (17).

The computation of the predictive PDF value (18) can be seen as
convolutions proceeding in two levels. The upper-level convolu-
tion combines each subgrid Φ𝑖, 𝑖 = 1,… , 𝑁Φ with all subgrids

Ξ𝑗 , 𝑗 = 1,… , 𝑁Ξ by computing the values 𝜻 𝑖,𝑗 for shifting these
subgrids. The lower-level convolution employs the functional
decomposition (the parenthesis in (18)) by processing the grid-
points of Ξ𝑗 and the gridpoints of Φ𝑖:

�̃�𝑘+1|𝑘(𝝃) =
𝑁Φ
∑

𝑖=1
( 𝑅
∑

𝑟=1
 𝑟
1(𝝃 − 𝜻 𝑖,𝑗)

∑

𝝓∈Φ𝑖
 𝑟
2(𝝓 − 𝜻 𝑖,𝑗)𝜔𝑘|𝑘(𝝓)𝛿𝑘

)

, (19)

where 𝝃 ∈ Ξ𝑗 .

As the construction of Ξ𝑘+1 proceeds from Φ𝑘 as 𝐱𝑘+1 = 𝐟𝑘 +
𝐰𝑘, the grids usually have significant overlap. This can increase
efficiency in the predictive PDF calculation by assessing the
closeness of individual subgrids. Here the closeness relates to
the covariance matrix of 𝐰𝑘 and associated confidence sets. If
the norm ‖𝝃 − 𝝓‖(Σ𝐰𝑘 )−1 with Σ𝐰

𝑘 = var[𝐰𝑘] is large ∀𝝃 ∈ Ξ𝑗

and ∀𝝓 ∈ Φ𝑖, then the value of the transient PDF (15) is close
to zero and this combination of subgrids can be omitted from
the calculation. Thus, some combinations of subgrids Ξ𝑗 , 𝑗 =
1,… , 𝑁Ξ and Φ𝑖, 𝑖 = 1,… , 𝑁Φ can be dropped in (19).
This approach is similar to the thrifty convolution proposed
in (Šimandl et al., 2006) with the difference of proceeding in
the upper-level convolution for the whole subgrids.

3.3 Subgrid Size and Complexity

As mentioned, the subgrids of Ξ and Φ should be designed so
that they fit (after the shifting) into the approximation region Ω.
This ensures that the processing of subgrids Ξ𝑗 and Φ𝑖 by the
lower-level convolution (involving the functional decomposi-
tion) does not lead to zero prediction PDF caused the limited
size of the approximation region. Decreasing the subgrids’ size
increases their number 𝑁Ξ and 𝑁Φ, respectively, resulting in
more shifts and increased computational complexity. As 𝑁Ξ →
𝑁 and 𝑁Φ → 𝑁 , the complexity of this two-level convolution
approaches that of the FC.

In terms of a function evaluation, the FC requires (𝑁2) evalu-
ations of the transient PDF. Using the FTD of the transient PDF
requires  ((2𝑁 + 1)𝑅) evaluations of the function  . Thus, the
savings due to the decomposition can be expected for 𝑁 ≫
𝑅. Assuming that subgrids {Ξ𝑗}𝑁Ξ

𝑗=1 have an equal number of

gridpoints 𝑁∕𝑁Ξ and subgrids {Φ𝑗}𝑁Φ
𝑗=1 have an equal number

of gridpoints 𝑁∕𝑁Φ, then the proposed two-level convolution
requires


(

𝑁Ξ𝑁Φ

(

𝑁
𝑁Ξ

𝑅 + 𝑁
𝑁Φ

𝑅 + 𝑅
))

= ((𝑁Φ𝑁 +𝑁Ξ𝑁 + 1)𝑅)

(20)
operations. The complexity thus depends on the number of
subgrids 𝑁Ξ and 𝑁Φ. Note that when the subgrids have only
a single grid point (i.e., 𝑁Ξ = 𝑁 , 𝑁Φ = 𝑁), then the
number of  evaluations is ((2𝑁2+1)𝑅), which means higher
computational complexity than the FC. If, on the other hand,
there are only single subgrids (i.e., 𝑁Ξ = 1 , 𝑁Φ = 1), then
the number of  evaluations is ((2𝑁 +1)𝑅), which means the
same computational complexity as the FTD-based convolution
proposed by Tichavský et al. (2022). While the complexity (20)
of the proposed two-level convolution will always be higher
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than the complexity of the original FTD-based convolution for
the same rank 𝑅, the two-level convolution allows to use a
small approximation region Ω, which leads to smaller rank and
reduced complexity as a result.

3.4 Algorithm of PMF with two-level convolution

The algorithm of the PMF with the proposed two-level convo-
lution (with full combination of the subgrids) is as follows.

Algorithm 2: Point-Mass Filter with Two-level Convolution

(1) Initialization: (same as in Algorithm 1)
(2) Meas. update: (same as in Algorithm 1)
(3) Grid construction: Construct the new grid Ξ𝑘+1 and split it

into 𝑁Ξ𝑘+1 subgrids Ξ𝑗𝑘+1, 𝑗 = 1,… , 𝑁Ξ𝑘+1 .
(4) Time update:

(a) Propagate the gridpoints 𝝃(𝑖)𝑘 of Ξ𝑘 through the dynamics
function 𝐟𝑘(𝝃

(𝑖)
𝑘 ,𝐮𝑘) to obtain the gridpoints 𝝓(𝑖)

𝑘 of Φ𝑘.
(b) Split Φ𝑘 into 𝑁Φ𝑘 subgrids Φ𝑖

0, 𝑖 = 1,… , 𝑁Φ𝑘 .
(c) For each pair of subgrids Φ𝑖

𝑘 and Ξ𝑗𝑘+1, 𝑖 = 1,… , 𝑁Φ𝑘 and
𝑗 = 1,… , 𝑁Ξ𝑘 calculate the shift value 𝜻 𝑖,𝑗 .

(d) Compute the predictive point-mass PDF of the form (5) at
gridpoints of 𝐗𝑘+1 according to (19).

(e) Normalize the values as 𝜔(𝑗)
𝑘+1|𝑘 = 𝑐−1𝑘+1�̃�

(𝑗)
𝑘+1|𝑘, where

𝑐𝑘+1 =
∑𝑁
𝑗=1 �̃�

(𝑗)
𝑘+1|𝑘.

(5) Set 𝑘 = 𝑘 + 1 and go to Step 2.

Note that using the thrifty combination of the subgrids as de-
scribed in Section 3 would affect step (4d).

3.5 Subgrid Design in Multiple Dimensions

Section 3.2 described the construction of the subgrids for the
scalar state, 𝑛𝑥 = 1, which will now be generalized to case 𝑛𝑥 >
1. The usual approach to design the grid 8 Ξ is to (I) specify a
grid for each axisΨ(𝑖) = {𝜓 (𝑗𝑖)(𝑖)}, 𝑗𝑖 = 1,…𝑁Ψ(𝑖) 𝑖 = 1,… 𝑛𝑥
(further called axis grid) and (II) combine the points of the
axis grids as 𝝃(𝓁) = [𝜓 (𝑗1)(1), 𝜓 (𝑗2)(2),… , 𝜓 (𝑗𝑛𝑥 )(𝑛𝑥)]⊤, 𝑗𝑖 =
1,…𝑁Ψ(𝑖), 𝑖 = 1,… 𝑛𝑥. The number of points of Ξ is then
𝑁 =

∏𝑛𝑥
𝑖=1𝑁Ψ(𝑖).

Designing a new grid Ξ𝑘+1 in step (3) of Algorithm 2 and its
subsequent splitting can be conveniently replaced by a straight
construction of the subgridsΞ𝑗𝑘+1, 𝑗 = 1,…𝑁Ξ. First, each axis
grid Ψ(𝑖) is split into 𝑀(𝑖) subgrids. Combining these subgrids
(one for each dimension) will lead to a subgrid Ξ𝓁 and the
total number of these subgrids will be 𝑁Ξ =

∏𝑛𝑥
𝑖=1𝑀(𝑖). The

procedure is illustrated in Fig. 3 for 𝑛𝑥 = 2.

4. NUMERICAL ILLUSTRATION

The performance of the proposed two-layer convolution is il-
lustrated in this section for 𝑛𝑥 = 2 in terms of computational
time and accuracy of the prediction PDF (4) computation. For
convenience, the state dynamics was chosen as 𝐟𝑘(𝐱𝑘,𝐮𝑘) = 𝐱𝑘.
Note that the choice of 𝐟 has no effect on the proposed de-
composition. For the performance analysis, the process noise
8 The time index is again dropped here for convenience.

Ψ1(1) Ψ2(1) Ψ3(1) Ψ4(1)

Ψ1(2)

Ψ2(2)

Ψ3(2)

Ξ1 Ξ2 Ξ3 Ξ4

Ξ5 Ξ6 Ξ7 Ξ8

Ξ9 Ξ10 Ξ11 Ξ12

𝐱(1)

𝐱(2)

Fig. 3. Illustration of construction of subgrids Ξ𝓁 for 𝑛𝑥 =
2 from axis subgrids Ψ𝑖(1) and Ψ𝑗(2). The symbol 𝐱(𝑖)
denotes 𝑖-th element of 𝐱.

PDF was assumed standard Gaussian 9 𝑝(𝐰𝑘) =  {𝐰𝑘, 𝟎, 𝐈𝑛𝑥},
where 𝐈𝑛𝑥 is the 𝑛𝑥 × 𝑛𝑥 dimensional identity matrix. The
grids Φ𝑘 and Ξ𝑘+1 were constructed using 𝑁 = 100𝑛𝑥 =
10 000 points for each grid regularly spread in the region
[−20, 20] × [−20, 20] The weights of the gridpoints Φ𝑘 were
equal 𝜔𝑘|𝑘(𝝓(𝑖)) = 1

𝑁 , ∀𝑖. Two approximation regions were
considered Ω′ = [−5, 5] × [−5, 5] (see Fig. 2 for illustration)
and Ω′′ = [−10, 10] × [−10, 10] (see Fig. 1 for illustration).
The parameters for the functional decomposition were adopted
from (Tichavský et al., 2022) for 𝑛𝑥 = 2 in the form

 𝑟
1(𝐱) =  𝑟

2(𝐱) = 𝛽𝑛𝑥 ⋅ 𝑒−
‖𝐱−𝝁𝑟‖2

2𝜎2

= 𝛽2 ⋅ 𝑒−
1

2𝜎2
[

(𝐱(1)−𝝁𝑟(1))2+(𝐱(2)−𝝁𝑟(2))2
]

,
with the parameters 𝜎 = 0.7088 and 𝛽 = 0.1008 and location
parameters 𝝁𝑟 forming regular orthogonal lattices covering Ω′

and Ω′′ with distance 𝑑 = 1 between adjacent location pa-
rameters. These values were obtained by optimization 10 and
led to ranks 𝑅′ = 100 for Ω′ and 𝑅′′ = 400 for Ω′′. Four
approaches 11 calculating the predictive PDF (4) were used:

∙ Full convolution (FC) given by (9),
∙ Thrifty convolution (TC) (Šimandl et al., 2002),
∙ FTD-based convolution (Tichavský et al., 2022) (FTDC)

for Ω′ and Ω′′,
∙ Two-level convolution (2LC) that split both Ξ𝑘+1 and Φ𝑘

into 𝑁Ξ𝑘+1 = 𝑁Φ𝑘 = 16 subgrids of equal size.

The approaches are compared in terms of computational time
and relative error, defined as

RERR = 100
|

|

𝑝(𝐱𝑘+1|𝐳𝑘) − �̂�(𝐱𝑘+1|𝐳𝑘)||
𝑝(𝐱𝑘+1|𝐳𝑘)

,

where 𝑝(𝐱𝑘+1|𝐳𝑘) denotes the PDF calculated by FC and
�̂�(𝐱𝑘+1|𝐳𝑘) is the PDF calculated by TC, FTDC, or 2LC.

The values of relative error in [%] for TC, FTDC(Ω′), FTDC(Ω′′),
and 2LC(Ω′) are depicted in Figure 4. The computational time
and integral of RERR over the state space are given in Table 1.

The results show that the FC is the most computationally de-
manding approach, while the FTDCs are the cheapest. However,
when the relative error is compared, the largest value is achieved
by FTDC(Ω′) because of too small Ω′ in comparison with the
9 Note that the decomposition can be computed for any noise distributions such
as the Student-t, generalized Gaussian, or Cauchy PDF (Tichavský et al., 2023).
10 For details on the optimization, see (Tichavský et al., 2023).
11 The Rao-Blackwellization and separable prediction techniques were not in-
cluded in the comparison as they assume a special form of the transient PDF.
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Fig. 4. Relative error in [%] for TC, FTDC, and 2LC.

Table 1. Computational time and integral of RERR
(IRERR) for the different calculations of predic-

tive PDF.

FC TC FTDC(Ω′) FTDC(Ω′′) 2LC(Ω′)

⦰𝑇 [s] 2.23 1.94 0.11 0.32 0.39
IRERR [%] — 0.54 75.47 2.69 0.43

grids Ξ𝑘+1 and Φ𝑘. Enlarging the approximation region four
times reduces the error FTDC(Ω′′). However, the proposed 2LC
achieves the smallest error even for the small region Ω′. RERR
of TC is close to that of 2LC but at the cost of almost five times
higher costs. Note that the differences in performance would be
more pronounced for higher state dimensions 𝑛𝑥.

5. CONCLUSION

The paper dealt with the prediction step of the point mass filter
that involves convolving two grids. The functional decomposition-
based convolution was elaborated for the cases when the ap-
proximation region is smaller than the grids leading to large
errors. The aim was to keep the size of the approximation re-
gion and, consequently the rank of the decomposition small to
keep computational complexity small. The proposed solution
involves splitting the grids into a set of subgrids and convolving
the subgrid pairs using functional decomposition. This leads
to a two-level convolution that processes the subgrids at the
upper level and their gridpoints at the lower level. The numerical
example demonstrated a small relative error achieved by the
proposed technique while keeping the computational cost low.
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