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ABSTRACT

Tensor Chain (TC) decomposition represents a given ten-
sor as a chain (circle) of order-3 tensors (wagons) con-
nected through tensor contractions. In this paper, we show
the link between the TC decomposition and a structured
Tucker decompositions, and propose a variant of the Krylov-
Levenberg-Marquardt optimization, tailored for this problem.
Many extensions can be considered, here we only mention
decomposition of tensor with missing entries, which en-
ables the tensor completion. Performance of the proposed
algorithm is demonstrated on tensor decomposition of the
sampled Rosenbrock function. It can be better modeled both
as TC and canonical polyadic (CP) decomposition, but with
TC, the reconstruction is possible with a lower number of
function values.

Index Terms— Multilinear models; canonical polyadic
decomposition; tensor train

1. INTRODUCTION

In the most recent three decades, low-rank tensor approxima-
tion has been established as a new tool in scientific computing
to address large-scale linear and multilinear algebra problems
appearing in many applications [1, 2]. The most popular ten-
sor decompositions are the canonical polyadic decomposition
(CPD) and the Tucker decomposition, and, more recently, ten-
sor train (TT) [3, 4] and Tensor Chain (TC) [5, 6]. The rela-
tionship between CPD and TT is discussed in [7, 8].

The TC is an extension of the earlier tensor train (TT) [3].
It is also known under the name of tensor ring [9]. It was
designed to remove problems occurring in TT decomposition
with dimensions of the core tensors in the middle of the chain,
which need to be quite high sometimes. Connecting the first
and the last core tensors in the model makes it more balanced
because then there are no first and last core tensors.

Recently, TC decomposition was used as a tool for tensor
completion [10] and for compression of convolutive layers in
neural networks [11].
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In Section II, we show a relationship between the TC/TT
decompositions and a Tucker decomposition. The link has al-
ready been mentioned in [12], but not in full generality, which
we do apply here.

Both tensor models, TT and TC, are linear functions of
their building blocks (core tensors, wagons) one by one, but
not jointly. It follows that the TT/TC decomposition can be
sought by an Alternating Least Squares (ALS) technique sim-
ilar to ALS in the CP decomposition. It consists of a series of
partial optimization, where all but one wagon are fixed, and
optimization with respect to the remaining wagon is found in
a closed form, see [5, 13].

As the CP decomposition can apply to incomplete tensors,
so the TC decomposition. Once a TC model of the incomplete
data is built, it provides an estimate of the missing tensor ele-
ments. It is just a way of tensors completion. Various princi-
ples of tensor completion are discussed and compared in [16].

The tensor decompositions can be used for a function in-
terpolation, see e.g. [14] and [15]. Multivariate functions
can be sampled and treated as tensors. If these tensors can
be well approximated by a low-rank decomposition of some
kind, e.g., CP, TT, or TC with low bond dimensions, then rel-
atively low number function evaluation (tensor elements) are
sufficient to identify the model. For some functions, the CP
decomposition is useful, but for some other functions TT or
TC is better, see, e.g., [24], and the references therein. The
decomposition model can induce an accurate interpolation of
the function (missing tensor elements).

The main novelty of this paper is the design of of the
Krylov-Levenberg-Marquardt algorithm, originally proposed
for computing the CP decomposition [18, 21]. We modify the
KLM algorithm for the TC decomposition and TC decom-
position of incomplete tensors, and show that the TC model
is better than CP in the case of important nonlinar functions
such as the Rosenbrock function.

This paper is organized as follows. Section 2 explains
the connection between the structured Tucker decomposition
(STD) and Tensor Chain (TC) Decomposition. Section 3
summarizes the Krylov-Levenberg-Marquardt algorithm. In
Section 4, an application of the algorithm in the function
interpolation is shown. Section 5 concludes the paper.
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Fig. 1. Illustration of tensor chain.

2. TC AND TT AS CASES OF TUCKER
DECOMPOSITION

Assume that we are given an order-N tensor T of the size
I1 × I2 × . . . × IN with elements T (i1, . . . , iN ). The
Tucker decomposition of the tensor of the multilinear rank
(R1, . . . , RN ) is represented by a core tensor K of the size
R1 × . . . × RN and N factor matrices A(n) of the sizes
In ×Rn, n = 1, . . . , N such that

T (i1, . . . , iN ) =
∑

r1,...,rN

K(r1, . . . , rN )A
(1)
i1,r1

. . . A
(N)
iN ,rN

(1)
Symbolically, we shall write

T = [[K;A(1), . . . ,A(N)]] . (2)

The tensor chain decomposition is determined as a contrac-
tion of N order-3 tensors G(1), . . . ,G(N), where G(n) has the
size Rn × In × Rn+1, n = 1, . . . , N , and RN+1 = R1,
see Fig. 1. Here, there are N free indices, and the con-
tractions, denoted by the connecting lines, representing sum-
mations over auxiliary (bond) indices rn = 1, . . . , Rn, n =
1, . . . , N . In other words, elements of the tensor are given as

T (i1, . . . , iN ) =

R1∑
r1=1

R2∑
r2=1

. . .

RN∑
rN=1

G(1)(r1, i1, r2)

·G(2)(r2, i2, r3) . . .G(N)(rN , iN , r1) .(3)

The equation (3) can be also written as

T (i1, . . . , iN ) = tr(G(1)
i1

G
(2)
i2
. . .G

(N)
iN

) (4)

where G
(n)
in

= G(n)(:, in, :) is the in−th lateral slice of G(n),
n = 1, . . . , N , having the size Rn ×Rn+1. Symbolically we
shall write

T = {{G(1), . . . ,G(N)}} . (5)

The tensor train [3] can be viewed as a special case of the
tensor chain with R1 = RN+1 = 1.

It was shown in [12] that the tensor chain model (5) can
be viewed as a special case of the Tucker model (1). To see

this fact in full generality, consider a multi-linear function φ
of N real-valued matrices X1, . . . ,XN , where Xn has the
size Rn ×Rn+1, n = 1, . . . , N such that

φ(X1, . . . ,XN ) = tr(X1X2 . . .XN ) . (6)

It is the trace of the product of the matrices, similar to (4).
The function is linear in each of its arguments, and its output
is scalar. Such a function is represented by a tensor, M, of
the size R1R2 ×R2R3 × . . .×RNR1 such that

φ(X1, . . . ,XN )

=
∑

i1,...,iN

M(i1, . . . , iN )(vecX1)i1 . . . (vecXN )iN(7)

for all X1, . . . ,XN , where M(i1, . . . , iN ) is the element of
M in the position (i1, . . . , iN ). The summation in (7) pro-
ceeds through all in = 1, . . . , In, n = 1, . . . , N . It can easily
be seen that the elements ofM are only zeros and ones.

Once we know the core tensorM, it is possible to design
a KLM for the tensor chain decomposition through the struc-
tured Tucker model with a fixed core tensor [12]. In this pa-
per, however, we propose a much simpler way, without even
evaluating the core tensorM, becauseM is usually large in
size.

3. KRYLOV-LEVENBERG-MARQUARDT
ALGORITHM

The Levenberg-Marquardt algorithm to minimize the Frobe-
nius (L2) norm of the fitting error consists of iterations

θ ← θ′ = θ − (H+ µI)−1g (8)

where Jacobi matrix J, an error gradient g, and an approxi-
mate Hessian H are defined as

J =
∂vec(T )
∂θ

(9)

g = JT vec(T − T̂ ) (10)
H = JTJ (11)

µ is a damping parameter that is updated through the itera-
tions, see [20] for more details.

In the Krylov-Levenberg-Marquardt algorithm, the ex-
pression (H+ µI)−1g is replaced by its approximation

(H+ µI)−1g ≈ 1

µ
g− 1

µ
U(µS−1 +UTU)−1(UTg) (12)

where columns of U form an orthogonal basis of the so-called
Krylov subspace, which is the linear hull of

[g,Hg,H2g, . . . ,HM−1g] (13)

and S = UTHU. The integer M is a design parameter
controlling accuracy of the approximation. The matrix U
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is obtained through a Gramm-Schmidt orthogonalization pro-
cess, and S is received as a side product of this process. See
[18, 21] for more details.

The total complexity of computing (12) depends on the
complexity of the products Hx and on the order of the ap-
proximation M . If the complexity of the product Hx is C
flops, and θ has Np elements, then the complexity of the up-
date (12) is O(MC +M2Np +M3), see [12] for details; but
if M is not large, then the complexity is about O(MC).

It now remains to explain the fast implementation of com-
puting the product Hx without even evaluating the Hessian
H. The arbitrary vector x of the appropriate length can be
written as composed of N parts,

x = [vecX1; . . . ; vecXN ] (14)

where Xn is a matrix of the shape of G(n), i.e., In ×
(RnRn+1) for n = 1, . . . , N . Similarly, the outcome
y = Hx shares the same structure,

y = [vecY1; . . . ; vecYN ] (15)

where the matrices Yn have the same sizes as Xn, n =
1, . . . , N . Now, it can be shown that

Yn = Z(n)U
T
n (16)

where Z(n) is the mode-n matrization of the tensor

Z = {{X1,G(2), . . . ,G(N)}}
+{{G(1),X2,G(3), . . . ,G(N)}}
+ . . .+ {{G(1), . . . ,G(N−1),XN}} . (17)

The tensor Z is written as a sum of N tensor chains. It fol-
lows that the product (16) can be computed through N tensor
contractions without actually evaluating the tensor, see Fig. 2.
The result (17) is obtained by considering TC decomposition
as a structured Tucker decomposition, see the analysis in [12].

Fig. 2. Computing the product Z(n)U
T
n through tensor con-

tractions. Here, the wagons H(n) are equal to G(n) up to one
in position m which is replaced by Xm, m = 1, . . . , N .

We can see that computation of neither the product y =
Hx does not require any large tensors to be stored in the com-
puter memory. The complexity of the product Hx then equals
C = O(N2R4I) .

Finally, the error gradient g can be computed as

g = [g1; . . . ;gN ] (18)

with blocks

gn = vec [E(n)U
T
n ] . (19)

where E(n) is the mode-nmatricization of the tensor E , which
is the difference between the given tensor and the model,

E = T − {{G(1), . . . ,G(N)}} . (20)

Assume now that we are given a weight tensorW which
should have the same size as the data, T , and is filled with
nonnegative elements. The criterion to be minimized is
changed to

εW(T ,θ) = ‖W1/2 ∗ (T − {{G(1), . . . ,G(N)}})‖2F .

Here, the square root is taken elementwise, and ”*” denotes
the Hadamard (elementwise) product.

Ideally, in probabilistic setting, the weight of each tensor
element should be inversely proportional to variance of the el-
ement. In the case of tensor with missing elements, the weight
tensor should have zeros in the corresponding positions.

As in [12], it can be easily seen that the KLM algorithm
can be modified for the use in the weighted scenario. Let
W denote a diagonal matrix containing all weight tensor ele-
ments along its main diagonal. The equations (10), (11), (20)
and (17) are replaced with

g = JTWvec(E) = JT vec(W ∗ E) (21)
H = JTWJ (22)
E = W ∗ (T − {{G(1), . . . ,G(N)}}) (23)
Z = W ∗ ({{X1,G(2), . . . ,G(N)}}

+{{G(1),X2,G(3), . . . ,G(N)}}
+ . . .+ {{G(1), . . . ,G(N−1),XN}}) . (24)

The other equations relate to the algorithm remain unchanged.
The only difference is that one cannot use the tensor contrac-
tions to compute the product Z(n)U

T
n , because the weighted

tensor Z is not of the simple form any more. The weighted
KLM algorithm will be thus somewhat slower than the un-
weighted one.

4. FUNCTION INTERPOLATION

Some multivariate functions can be well approximated by a
low-rank decomposition TT, or TC with low bond dimen-
sions, see [22]. One example of such function is a Rosen-
brock function [23]. It is a non-convex function used as a
performance test problem for optimization algorithms intro-
duced by Howard H. Rosenbrock in 1960.
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The simplest case of the Rosenbrock function is two-
dimensional,

f2(x, y) = (a− x)2 + b(y − x2)2 (25)

where a, b are constants, typically a = 1 and b = 100. Let
this function be sampled in some rectangle it can be easily
verified that the rank of the resultant matrix is always 3. The
proof is easy: the function can be written as a sum of three
terms, and each of them has, after the sampling, rank one:

f2(x, y) = (a− x)2 + bx4︸ ︷︷ ︸
term1

− 2byx2︸ ︷︷ ︸
term2

+ by2︸︷︷︸
term3

. (26)

We can see that arbitrary three columns and three rows of
the matrix are sufficient to interpolate the whole matrix. In
dimension two, CP decomposition is equivalent to TT, TC, or
ordinary SVD decomposition. The rank is 3.

A multidimensional generalization of the Rosenbrock
function is defined as [23]

fN (x1, . . . , xN ) =

N−1∑
i=1

b(xi+1 − x2i )2 + (a− xi)2 . (27)

The function can be rewritten as a sum of (2N − 1) rank-
one terms: There are N terms, each a function of a single
variable, and (N − 1) products 2bxi+1x

2
i . It follows that the

CP decomposition of the sampled tensor has rank of (2N −
1). The function can be interpolated through incomplete CP
model with this rank.

We think that the tensor can be decomposed as a TT with
bond dimension at most (1, 3, . . . , 3). We can prove this con-
jecture for N = 3 and N = 4. For example, for N = 3, it
holds

f3(x, y, z) = A(x)B(y)C(z) (28)

where A(x) = [bx4 − 2ax, x2, 1], C(z) = [z2, z, 1]T , and

B(y) =

 0 0 1
0 0 1− 2by
b −2by2 by4 + (b+ 1)y2 + 2a(a− y)

 .

The conjecture follows. The bond dimension is (1, 3, 3). (A
similar decomposition exists for N = 4.) A TC decompo-
sition of the tensor is also possible. For N = 3, we can
have decomposition f3(x, y, z) = tr[A(x)B(y)C(z)] where
A(x),B(y),C(z) are suitable univariate matrix functions of
dimensions 2 × 2, 2 × 3 and 3 × 2, respectively. It means
that the bond dimensions are (2, 3, 2). We show that the TT
and TC decompositions are easier to fit than CP in the case of
incomplete tensor.

In our numerical experiment, we sample the Rosenbrock
function of N = 3 variables in the grid 〈−2, 2〉 × 〈−2, 2〉 ×
〈−1, 3〉 with the step 0.05, to create a tensor T of the size
81 × 81 × 81. First, we decomposed the full tensor with no
added noise. The learning curves of ALS and KLM with var-
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Fig. 3. Learning curves for modeling sampled Rosenbrock
function through TC model with bond dimensions (2, 3, 2).

ious Krylov orders M are shown in Fig. 3. We can see the
superlinear convergence of KLM in contrast to the ALS. Also,
we can see how the Krylov order M influences the rate of the
convergence.

Next, we aim to reconstruct the tensor using randomly
chosen p% tensor elements that are, in addition, corrupted by
additive white Gaussian noise with zero mean and variance
0.0001. The reconstruction is done by incomplete TC model-
ing with bond dimensions (2, 3, 2), (1, 3, 3), (3, 3, 3), and CP
model with rank R = 5, both with weighted KLM algorithms
and M = 20. The average computational times of the TCs
and CP (Tensorlab [17] with 10 random initializations) were
25s, 27s, 58s and 1.0s×10, respectively. The resultant recon-
struction error (median of 70 independent trials) is plotted in
Fig.4. We can see that the best reconstruction is obtained by
the TC model with the bond dimensions (1, 3, 3) and (2, 3, 2).

1 2 3 4 5 6 7 8

p [%]

10
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10
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5

10
10
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R
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R

TC [2,3,2]

TC [1,3,3]

TC [3,3,3]

CP (5)

Fig. 4. Reconstruction error on the missing values of the
order-3 Rosenbrock function versus percentage of the ob-
served entries.

We can see that simpler models (TCs) can reconstruct
the function from less measurements/observations than more
complex models (CP). The reconstruction is not much sensi-
tive to the rank selection.

5. CONCLUSIONS

We have presented improved algorithms for the tensor chain
modeling. The TC model can be used a function interpo-
lation, similarly to CP based interpolation. For some func-
tions, the TC model is more suitable than CP. The matlab
codes of the respective algorithms and the data sets are avail-
able on the Internet at https://github.com/Tichavsky/tensor-
decomposition.
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