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Abstract— The stabilization of the real laboratory model of
the underacuated double inverted pendulum having the actua-
tor placed between its links and a realizable mass distribution
adjustment is presented here. More specifically, this laboratory
model is to be stabilized at its upper equilibrium with both links
being stretched along a single line and pendulum achieving the
maximal possible length. This paper presents various methods
to design the stabilizing feedback for the double inverted pendu-
lum actuated between its links and then performs optimization
of the model with respect to masses distributions to minimize
the controller torques. First, the open-loop control taking the
double pendulum to the upper equilibrium is computed from
various positions using the optimization tool FMINCON to
minimize the torque energy with respect to the mass distribution
parameters. Then the optimized parameters are used to test
both the LQ feedback for local approximate linearization
and the partial exact feedback linearization based nonlinear
controller. Both simulations and laboratory experiments using
a single leg of the walking-like four link experimental model
are presented. The optimized mass distribution will be used in
the future four-link development to facilitate its walking design.

I. INTRODUCTION

The main contribution of this paper consists in the real-
time implementation study for the various stabilization meth-
ods of the double inverted pendulum with a single actuator
placed between its links. More specifically, the respective
laboratory model is to be stabilized at its upper equilibrium
with both links being stretched along a single line and pen-
dulum achieving the maximal possible length. Furthermore,
the laboratory model provides realizable mass distribution
adjustment used for the actuator torque minimization. The
torque efforts will be optimized first with respect to open-
loop control to determine the optimal mass distribution. Then
various feedback design methods will be applied to the
optimized mass distribution model.

The underactuated double inverted pendulum is one of the
simplest underactuated mechanical systems consisting of two
rigid links and one actuator, which is either placed between
the links, or at the contact point with supporting surface.
While both actuator placements allow double pendulum
stabilization in upper position both with overlapping and
upright links, the placement between links allow a simple
movement resembling a human walk as well. In the latter
case, alternative names, like Acrobot, Compass gait walker
or biped, are often used. To control the Acrobot walking, the
partial exact feedback linearization method was developed
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along with rather special and complex procedures of the
residual nonlinearity adjustement [1], [2], [3], [4], [5]. The
reason for that complexity was that the nonlinearity influence
can not be neglected when nontrivial walking-like trajectory
is to be tracked. Yet, for a local stabilization at an equilib-
rium, a linear feedback based on approximate linearization
model might be sufficient while global stabilization still may
need a more sophisticated treatment.

Even though the double pendulum with a single actuator
placed between the links is the classical mechanical system
with many applications, it can also serve as a simple test bed
for verifications of feedback control algorithms for under-
actuated walking robots. Consider a different posture of the
inverted pendulum, specifically, the free unconnected ends of
each link touch the ground and the mutually connected ends
equipped with an actuator are above the ground. Indeed the
Acrobot is perhaps the simplest underactuated mechanical
system capable to move (at least theoretically) in a way
resembling a human walk. However, from practical point of
view, an additional movable joint serving as a knee equipped
with an actuator has to be added into each link in order
to bend the link during the step. This mechanical system
is in the literature usually called as the four-link, some
approaches on its walking-like movement were presented
in [6], [7], [8]. The experimental model of the underactuated
walking-like mechanical system was built in our laboratory,
first as the four-link, later with added torso to have five
degrees of freedom, see [3], [4], [5] for description and
simple experiments.

In spite of the fact that the Spong’s papers on the Acrobot
feedback linearization [9], [10], [11] were published almost
thirty years ago, the Acrobot control still belongs in active
resarch field. In [12] the swing-up and stabilization problem
for the Acrobot is solved via the stable manifold method for
optimal control, which numerically solves Hamilton-Jacobi
equations. The posture control problem of a two-link free
flying Acrobot with nonzero initial angular momentum is
studied in [13]. An optimal control system design for the
Acrobot using inverse linear quadratic design method is
proposed in [14].

Due to the nonlinearities of the respective Acrobot model,
partial exact feedback linearization, fuzzy based control [15],
[16] or sliding mode based control [17], [18] methods (to
name a few) were used to analyze them and to design
the respective controllers at its whole range of movement
except stabilization. The partial exact feedback linearization
of the Acrobot was presented first in [9], [10], where
two application examples of partial feedback linearization
applied to the Acrobot were presented. The first one, called



as the collocated linearization, is based on the linearizing
output being the actuated angle, whereas the second one,
called as the non-collocated linearization, corresponds to
the linearizing output being the unactuated angle. Yet, both
linearizations have only 2-dimensional linear part and 2-
dimensionalresidual nonlinear dynamics. In [19] a special
normal form of the Acrobot with linear part having di-
mension 3 and 1-dimensional residual nonlinear dynamics
was presented. Based on that, [1], [2] the respective partial
exact feedback linearization of order 3 of the Acrobot was
presented and used in [2] to stabilize exponentially the
Acrobot, moreover, a large region of attraction was obtained .
In [20], [21], [6] the approach from [2] was further extended.

As already mentioned briefly before, the aim of the current
paper is to study possibly optimal mass distribution of the
legs of walking-like four-link laboratory model which will
be used in the future four-link development to facilitate
its walking design. To do so, the torque efforts will be
optimized first with respect to open-loop control to determine
the optimal mass distribution, optimization will use the
FMINCON package. This optimization requires yet another
approximate linearization of the residual nonlinear dynamics
of the respective partial exact feedback linearization, tenta-
tively called the linearization in linearized coordinates.
Various feedback design methods will be then applied to
the respective optimized mass distribution model. Indeed,
this paper either newly presents, or repeats various methods
to design the stabilizing feedback for the double inverted
pendulum actuated between its link, aka Acrobot. More
specifically, by virtue of the partial exact feedback lineariza-
tion and corresponding linearized coordinates and virtual
inputs, yet another control method to stabilize the double
inverted pendulum in its upper position is proposed in the
current paper. For comparision, the LQ controller fo the
Acrobot approximate linearization will be applied as well.
All studies are performed both in simulations and using a
single leg of the walking like four-link built in our laboratory.

The rest of the paper is organized as follows. The next
section contains some preliminaries, namely, the derivation
of the Acrobot model, its partial exact feedback linearization
and approximate linearized model around the upper equilib-
rium, description of the laboratory model is also included
here. Section III numerically optimizes the Acrobot me-
chanical parameters to minimize the actuator torque during
its open loop steering to the upper equilibrium. Section IV
presents feedback stabilization and tests it both in simula-
tions and laboratory experiment for the previously obtained
optimal values of mechanical parameters, various feedback
designs are compared here. Conclusions are drawn in the
final section.

II. PRELIMINARIES
A. Dynamical model of the Acrobot

The well-known Euler-Lagrange approach, see [22], [23]
will be used here. First, for the mechanical system to be
modelled, define generalized coordinates q and generalized
velocities q̇ and their function - Lagrangian L (q, q̇) given
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Fig. 1. Geometry of Acrobot

by the difference between the system kinetic energy K (q, q̇)
and its potential P(q) energy, namely

L (q, q̇) = K (q, q̇)−P(q). (1)

The kinetic energy is typicaly given using the so-called
inertia (aka mass) matrix as

K (q, q̇) = q̇>D(q)q̇, D(q)> = D(q)> 0.

Euler-Lagrange formalism then provides ordinary differen-
tial equations (ODE) describing the time evolution of the
modelled mechanical system as follows

d
dt

∂L

∂ q̇
− ∂L

∂q
= τ

where τ are respective external forces acting along general-
ized coordinates q.

For the Acrobot, schematically depicted in Fig. 1, Euler-
Lagrange formalism is applied as follows. Let the gener-
alized coordinates be the angles q1,q2 shown in Fig. 1
and τ2 actuates directly the angle q2, while the angle q1
is unactuated. Then, after straightforward, though laborious
computation of the respective kinetic and potential energies
(detailed are ommited, cf. [22]), the following second-order
ODE is obtained[

d
dt

∂L
∂ q̇1
− ∂L

∂q1
d
dt

∂L
∂ q̇2
− ∂L

∂q2

]
= u =

[
0
τ2

]
, (2)

where u stands for the vector of the external controlled
forces. System (2) is the so-called underactuated mechanical
system having the degree of the underactuation equal to one.
Equation (2) leads to the second-order ODE in the form

D(q)q̈+C(q, q̇)q̇+G(q) = u = [0,τ2]
>, (3)

where D(q) is the mentioned before inertia matrix, D(q) =
D(q)T > 0, matrix C(q, q̇) contains Coriolis and centrifugal
terms, vector G(q) = ∂P

∂q contains gravity terms. For the
simplicity, friction is not considered here.

In the real laboratory model, the links have mass dis-
tributed over the length of the link with some extra added



concentrated masses. This setting can be equivalently repre-
sented as in Figure 1 where links are mass-less, their overall
masses are placed at their centres of mass (COM) and they
have some moments of inertia with respect to those COM.
Introduce the following parameters

θ1 = m1l2
c1 +m2l2

1 + I1zz, θ2 = m2l2
c2 + I2zz,

θ3 = m2l1lc2, θ4 = m1lc1 +m2l1, θ5 = m2lc2,
(4)

where m1, m2 is the mass of the link #1, #2, respectively,
l1, l2 is length of the link #1, #2, respectively, lc1, lc2 is the
distance to the center of mass of the link #1, #2, respectively,
I1zz, I2zz is the moment of inertia about center of mass of the
link #1, #2, respectively, g is gravity acceleration, q1 is the
angle that link #1 makes with the vertical, q2 is the angle
that link #2 makes with the link #1, τ2 is torque applied at
the joint between links #1 and #2. The matrices D(q), C(q, q̇)
and vector G(q) from dynamical equation (3) with material
parameters θ1,2,3,4,5 (4) are then determined as follows

D(q) =
[

θ1 +θ2 +2θ3 cosq2 θ2 +θ3 cosq2
θ2 +θ3 cosq2 θ2

]
, (5)

C(q, q̇) =
[
−θ3 sinq2q̇2 −(q̇1 + q̇2)θ3 sinq2
θ3 sinq2q̇1 0

]
, (6)

G(q) =
[
−θ4gsinq1−θ5gsin(q1 +q2)

−θ5gsin(q1 +q2)

]
. (7)

Summarizing, throughout the rest of the paper, the model
(3), (5), (6), (7) will be analyzed and used.

B. Approximate linearization of the Acrobot

For the second-order ODE (3) denote

D̃(π/2,0) =
[

θ1 +θ2 +2θ3 θ2 +θ3
θ2 +θ3 θ2

]
, (8)

C̃(π/2,0,0,0) =
[

0 0
0 0

]
, (9)

G̃(π/2,0) =
[
−θ4g−θ5g
−θ5g

]
. (10)

Straightforward computations show that the standard Acrobot
model representation as the four-dimensional first-order ODE
has locally around its upper equilibrium q1 = π/2, q2 = 0,
q̇1 = q̇2 = 0 the following approximate linearization (AL)

ẋ = Ax+Bū, x = [x1,x2,x3,x4]
> := [q1,q2, q̇1, q̇2]

>,

ū = [0,0,0,τ2]
>,

A=


[

0 0
0 0

] [
1 0
0 1

]
D̃−1G̃

[
0 0
0 0

]
 , B=


[

0
0

]
D̃−1

[
0
1

]
 , (11)

and LQR τ2 = K1 q1 + K2 q̇1 + K3 q2 + K4 q̇2, where
K1,K2,K3,K4 are easily computable gains, stabilizes the
Acrobot locally exponentially around its upper equilibrium.

C. Partial exact feedback linearization of the Acrobot

Unlike the above derived AL, the exact feedback lin-
earization (EFL), if available, attenuates the nonlinearities
exactly, providing thereby better performance of the subse-
quent controller design. For the Acrobot, only the so-called
partial EFL is available. More specifically, the largest EFL
linearizable part is three dimensional, while the residual
nonlinear part is almost linear and simple, for details see [2].
This property goes back to normal forms obtained in [19].

The well-known and convenient concept to obtain partial
EFL is the auxiliary output function called as the lineariz-
ing output. The Acrobot model provides two independent
functions enabling to define variety of the relative degree 3
linearizing outputs, namely the functions denoted σ , p:

σ =
∂L

∂ q̇1
= (θ1 +θ2 +2θ3 cosq2)q̇1 + (12)

(θ2 +θ3 cosq2)q̇2,

p = q1 +
q2

2
+

2θ2−θ1−θ2√
(θ1 +θ2)2−4θ 2

3

arctan

(√
θ1 +θ2−2θ3

θ1 +θ2 +2θ3
tan

q2

2

)
. (13)

Indeed, straightforward computations show that for any real
constants c1,c2, the output defined as c1σ + c2 p has well-
defined relative degree equal to three. Moreover, by (12,13)
and some straightforward, though laborious computations,
the following relation holds

ṗ = d11(q2)
−1

σ , (14)

where d11(q2) = (θ1 +θ2 + 2θ3 cosq2) is the corresponding
element of the inertia matrix D in (3).

Using the above favorable properties it was shown in [2]
that defining the following state space transformation

ξ = T (q, q̇) : ξ1 = p, ξ2 = σ , ξ3 = σ̇ , ξ4 = σ̈ (15)

and applying (15), (14)to (3), the Acrobot model is trans-
formed into the following dynamics partial EFL form

ξ̇1 = d11(q2)
−1

ξ2, ξ̇2 = ξ3, ξ̇3 = ξ4,

ξ̇4 = α(q, q̇)τ2 +β (q, q̇) = w (16)

with the new coordinates ξ and the input w being well
defined wherever α(q, q̇)−1 6= 0. The new input w is a virtual
input in ξ coordinates. As a result of this, it is necessary to
recompute the virtual input w in ξ coordinates to the real
input u in q, q̇ coordinates before applying the virtual input
on the real model of the Acrobot.

Assume that an open loop control wr(t), generates a suit-
able reference trajectory in partial exact linearized coordi-
nates (16). In other words, our task is to track the following
reference system

ξ̇
r
1 = d−1

11 (qr
2)ξ

r
2 , ξ̇

r
2 = ξ

r
3 , ξ̇

r
3 = ξ

r
4 , ξ̇

r
4 = wr. (17)



Denoting e := ξ − ξ r and subtracting (17) from (16) one
obtains

ė1 = d−1
11 (φ2(ξ1,ξ3))ξ2−d−1

11 (φ2(ξ
r
1 ,ξ

r
3))ξ

r
2 ,

ė2 = e3, ė3 = e4, ė4 = w−wr. (18)

Straightforward computations based on the Taylor expan-
sions give

ė1 = µ2(t)e2 +µ1(t)e1 +µ3(t)e3 +o(e),

ė2 = e3, ė3 = e4, ė4 = w−wr, (19)

where µ1(t),µ2(t),µ3(t) are known smooth time functions
bounded from bellow and above, see [2]. Using these prop-
erties [20], [2] provide feedback to stabilize the above error
dynamics.

D. Description of the real laboratory model

A simple model of the underactuated walking-like me-
chanical system was built and developed in our laboratory,
see Fig. 2 for a brief idea. [3] provides a detailed description
with simple leg movement experiment. Sensors of angular
positions, velocities and input current measurements for DC
motors are used. In contrast to simulation only, the real
measured signals are corrupted with noise and therefore its
filtering is, indeed, necessary. To do so, in [4] the Extended
Kalman Filter was proposed and off-line verified using data
obtained during a simple movement of one leg. In [5] the
EKF was implemented using operations available on a low
cost hardware and successfully verified in an application of
on-line data processing.

Fig. 2. Real four link walking robot. The left leg is equipped with an
additional weight such that the controllability condition is fulfilled. The
second leg is not in use here, therefore it is disconnected.

Physical quantities that describe the model of the robot leg
together with its values are summed up in Table I. The values
were either measured, especially length or mass of a link, or

TABLE I
IDENTIFIED PARAMETERS OF THE DOUBLE PENDULUM MODEL

l1, l2 length of each link 0.27 [m]
lc1 center of gravity of upper link 0.23 [m]
lc2 center of gravity of bottom link 0.24 [m]
m1 mass of upper link 0.50 [kg]
m2 mass of bottom link 0.12 [kg]
I1 inertia of upper link 0.00256 [m2 Kg]
I2 inertia of bottom link 0.00255 [m2 Kg]

madded added mass at the end of the bottom link 0.54 [kg]

calculated especially center of mass or inertia of each link.
In Figure 3 one can see a comparison of real links movement
(dotted black line) from an initial point without any control
input with a simulation of two link movement (blue solid
line) with parameters given in Table I from the same initial
point. As one can see the identified mechanical parameters
fit the real model very well. The inertial of bottom link takes
into the account the mass of bottom link with the added mass
and their displacement.
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Fig. 3. Comparision of real movement with simulations.

III. PENDULUM MODEL PARAMETERS TUNING

The focus in this section is on pendulum model parameters
tuning such that the following controllability condition is
fulfilled

θ5(θ1 +θ3) 6= θ4(θ2 +θ3), (20)

where θ1,2,3,4,5 are given by (4). The controllability condi-
tions is given as the full rank condition of the controllability
matrix of the linearized system (11). The mechanical param-
eters of the real model except the added mass madded given
in Table I do not fulfill the controllability condition resulting
in simulations of the double inverted pendulum stabilization
in the upper equilibrium as depicted in Figure 4. Numerical
optimization of the mechanical parameter is performed here
in order to (20) is fulfilled and, moreover, the required torque
of the attached actuator is minimal such that the actuator



is capable to stabilize the real Acrobot model in the upper
equilibrium even after small deflection. The real pendulum
model and its control is taken into the account, therefore the
opportunities to any change of the mechanical parameters are
limited to putting an additional mass on the pendulum link
in a specific position. The FMINCON solver is used to find
the optimal value of the additional mass with respect to the
controllability condition (20) and minimal torque. Due to a
design requirements and limitations, the additional mass is
placed at the end of the second link. To do so, yet another
coordinates are introduced in the next subsection in order
to the FMINCON solver can be used. Nevertheless, in the
case of the double inverted pendulum with unrealistic mass
displacement, i.e. the almost massless links with the mass
placed in the ends of each link including mass and length
given in Table I, the controllability condition (20) is fulfilled
and therefore its stabilization in the upper equilibrium is
sufficient, see Figure 5.

In Figures 4,5,7 the blue courses correspond in (a) to
angular positions q1 and in (b) to angular velocities q̇1
whereas the red courses correspond in (a) to angular positions
q2 and in (b) to angular velocities q̇2.
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Fig. 4. Stabilization response for (a) angular positions q1,2, (b) angular
velocities q̇1,2 for double inverted pendulum with real mass distribution
according to the real laboratory model.
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Fig. 5. Stabilization response for (a) angular positions q1,2, (b) angular
velocities q̇1,2 with unreal mass distribution, i.e. massless links with mass
in the end of the link.

A. Linearization in linearized coordinates

In [24] the FMINCON solver was used to numerical tuning
of mechanical parameters of a five-link walking biped. In
[25] the numerical tuning of mechanical parameters of an
Acrobot with a torso was performed in ξ coordinates (15)
using the FMINCON solver by virtue of linear Acrobot
dynamics caused by the torso, i.e. ξ̇1 = ξ2, ξ̇2 = ξ3, ξ̇3 =
ξ4, ξ̇4 = α(q, q̇)τ2 +β (q, q̇) = w.

The linearized Acrobot dynamics (16) in ξ coordinates
(15) also represents the double inverted pendulum dynam-
ics with the actuator between the links and therefore the
FMINCON solver can be used here as well as in [25]. In
contrast to linear dynamics of the Acrobot with torso in [25],
the linearized Acrobot dynamics (16) has a nonlinear therm
d11(q2) (5) in the first line to be linearized in the upper
equilibrium.

The linearized form in upper equilibrium is straightfor-
ward dlin

11 = θ1 +θ2 +2θ3 and results in following linearized
system in the linearized coordinates (16)

˜̃A =


0 1/dlin

11 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 , ˜̃B =


0
0
0
1

 , (21)

˜̃C = diag(1,1,1,1), ˜̃D = [0,0,0,0]
′

(22)

according to the state vector [ξ lin
1 ,ξ lin

2 ,ξ lin
3 ,ξ lin

4 ]
′
. Resulting

in the following linearized Acrobot’s dynamics (16) in an
neighbourhood of the upper equilibrium corresponding to the
double inverted pendulum dynamics

ξ̇
lin
1 = (dlin

11 )
−1

ξ
lin
2 , ξ̇

lin
2 = ξ

lin
3 , ξ̇

lin
3 = ξ

lin
4 , ξ̇

lin
4 = wlin. (23)

B. Mechanical parameters optimization

To find the optimal value of the added mass, denoted here
as parameter x, the nonlinear programming solver FMINCON
was used as follows

x = fmincon(costFunction,x0,[],[],[],[],lb,ub,nonlConstr),
where cost f unction(x) is the criterion to optimize:

∑
k−1
i=0 w2

i , w is virtual input in ξ coordinates (16), x0 is some
initial parameter guess, lb,ub are lower and upper bounds
type constraints lb ≤ x0 ≤ ub and nonlConstr is the nonlinear
constraints represents controllability condition (20). The op-
timization problem also depends on the boundary conditions
ξ (0)= ξin,ξ (T )= ξ f in corresponding to the initial pendulum
states q(0), q̇(0) and final pendulum states q(T ), q̇(T ) at time
t = T .

In Figure 6 (a) one can see the course of open loop
control wlin whereas in (b) one can see courses of cor-
responding linearized coordinates ξ lin

1,2,3,4 as an output of
the FMINCON solver for initial pendulum states q1(0) =
0,q2(0) = 0, q̇1(0) = 0.05, q̇2(0) = 0 and final pendulum
states q1(T ) = 0,q2(T ) = 0, q̇1(T ) = 0.05, q̇2(T ) = 0 for total
time T = 1s. Corresponding courses in q, q̇ coordinates are
depicted in Figure 7 (a) and (b) also obtained as an open loop
control of the double inverted pendulum from the initial state
using wlin recomputed into τ2, i.e. τ2 = (w−β (q, q̇))/α(q, q̇)
(16). Moreover, the value of additional mass founded by
the FMINCON solver as x = 0.4513Kg was considered in
the open loop simulations. Several runs of the optimizing
solver was consider with different initial pendulum states
and different initial value of x0, nevertheless, the value of
additional mass equal to x = 0.4513Kg is a local minimum
of the optimization problem.

The linearized coordinates and corresponding dynamics
(23) are also applicable to a feedback stabilization of the
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Fig. 6. Stabilization response for (a) open loop control wlin, (b) linearized
coordinates ξ lin

1,2,3,4.
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Fig. 7. Open loop control of double inverted pendulum (a) angular positions
q1,2, (b) angular velocities q̇1,2 with real mass distribution and added mass
at the end of the upper link.

double inverted pendulum in the upper equilibrium design.
To do so, consider the feedback in ξ lin coordinates as follows
w=K1ξ lin

1 +K2ξ lin
2 +K3ξ lin

3 +K4ξ lin
4 with gains K1,2,3,4 given

by the Linear-Quadratic Regulator approach. The simulation
of stabilization of the double inverted pendulum with real
mass distribution according to the real laboratory model and
with added mass m = 0.4513Kg to the end of the upper
link is depicted in Figures 8 (a), (b). The blue courses
correspond in (a) to angular positions q1 and in (b) to angular
velocities q̇1 whereas the red courses correspond in (a) to
angular positions q2 and in (b) to angular velocities q̇2. To
be clear, the feedback gains were design using the linearized
pendulum’s dynamics (23) and applied on the pendulum
model via virtual input w recomputed to the real input τ to
be applied on the pendulum model in q, q̇ coordinates (16).
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Fig. 8. Stabilization response for (a) angular positions q1,2, (b) angular
velocities q̇1,2 for double inverted pendulum with real mass distribution
according to the real laboratory model and added mass m = 0.4513Kg in
the end of the upper link.

IV. SIMULATIONS AND EXPERIMENTS
In this section simulation and experimental results of the

double inverted pendulum control in the upward position

are presented. The value of the additional mass used in
simulations or in experiment is slightly different from the
value fouded by the FMINCON solver because the additional
mass is composed of two high-strength bolts together with
a frame as can be seen in Figure 2. Nevertheless, the
controllability condition is fulfilled.

A. Simulations

The proposed feedback control methods were applied on
the Acrobot model in the upper equilibrium to stabilize it
with an initial error in angular position q2. In the simulations,
the mechanical parameters of the Acrobot model from Table I
together with the additional mass at the end of the upper
link were used. The results are depicted in Figures 9 and
10 for LQR control based on linearized Acrobot model
and the partial exact feedback linearization based feedback,
respectively. In Figure 11 are depicted corresponding courses
of torques.
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Fig. 9. Simulations: Stabilization response (a) angular positions q1,2,
(b) angular velocities q̇1,2 for the control approach based on the Acrobot
linearization in upper equilibrium and LQ controller based design.
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Fig. 10. Simulations: Stabilization response (a) angular positions q1,2, (b)
angular velocities q̇1,2 for the control approach based on the partial feedback
linearization.

B. Experiments

The feedback control method based on the linearized form
of the Acrobot in the upper equilibrium with added mass was
also verified in the simple real application of stabilization of
the Acrobot featuring as the double inverted pendulum in the
upper equilibrium. The courses of angular positions q1 and
q2 are depicted in Figure 12(a), (b).

Certain stabilization in the upper equilibrium without any
external disturbances was achieved. Nevertheless, improve-
ment of signals filtering and/or DC motor controller tuning
is necessary before performing another experiments.
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Fig. 11. Simulations: (a) torque for the control approach based on
the Acrobot linearization in upper equilibrium and LQ controller based
design, (b) torque for the control approach based on the partial feedback
linearization.
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Fig. 12. Experiment: Stabilization response for angular positions (a) q1
and (b) q2.

V. CONCLUSIONS

To analyze future optimal mass distributions of the four-
link walking-like system, the stabilization of its single leg,
as if being the double inverted pendulum actuated between
links (aka Acrobot), at its upper equilibrium with added mass
at the end of the upper link was tested both in simulations
and in the real-time experiments. The LQ feedback control
based on the AL around its upper equilibrium, together with
partial EFL based control methods, were completed by the
method using further linearization of the residual nonlinear
dynamics of the partial EFL.

The last method also provides possiblity to optimize the
Acrobot mass distribution using FMINCON solver, which is
capable to find the optimal additional mass to be placed at
the end of the upper link. Respective parameters comply with
required constraints and provide minimization of the actuator
open-loop control efforts. The optimal parameters are then
used in all previously mentioned feedback controllers tests.
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