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Abstract— In this paper, a fixed-time tracking control problem
is investigated for an uncertain high-order nonlinear pure-
feedback systems with practical state constraints. To this end,
a new nonlinear transformation function with lower change rate
at the state constraint boundary is first proposed, which can not
only handle both constrained and unconstrained states in a uni-
fied way, but also reduce the control magnitude at the constraint
boundary. With the help of the proposed transformation function,
the original system is transformed to a new system without state
constraints. Then, a non-singular fixed-time adaptive tracking
controller is designed by applying an adding a power integrator
technique and an adaptive neural network method. It is shown
that the practical fixed-time stability can be guaranteed for
the closed-loop system under the proposed tracking controller.
Finally, two numerical examples are presented to demonstrate
the proposed fixed-time tracking control strategy.

Index Terms— Fixed-time tracking control, nonlinear pure-
feedback system, state constraint, nonlinear transformation
function, adding a power integrator technique.

I. INTRODUCTION

IN SOME practical systems, system states are subject to cer-
tain constraints due to the physical limitations or security

requirements [1], [2]. For example, velocity and displacement
of unmanned vehicle system suffer constraints of traffic rules
and road conditions. The violation of the state constraints
may cause the deterioration of the system performance and
even the safety accidents. Therefore, it is necessary to ensure
the satisfaction of state constraints while achieving stability
control. In recent years, this significant issue has attracted
extensive attention and research.
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In the past decade, the methods of set invariance control [3],
model predictive control [4] and barrier Lyapunov function
(BLF) [5] have been developed to deal with the constrained
systems. Among them, the barrier Lyapunov function (BLF)
method has been widely used. Reference [6] employed the
BLF to deal with static symmetric full state constraints.
Reference [7] developed the integral BLF to handle static
asymmetric full state constraints. For time-varying full state
constraints, an adaptive neural network control scheme was
established by using a tangent BLF in reference [8]. However,
the above BLF-based controls produced additional feasibility
conditions, which need extra complex offline calculations
and even have no solution sometimes. To avoid this defect,
a nonlinear transformation function (NTF) method was devel-
oped in reference [9], which can transform the original
constrained system to a new one without constraints. Recently,
the NTF method has been extensively used. For example,
in reference [10], an adaptive neural dynamic control of
pure-feedback nonlinear systems with full state constraints
was designed by introducing another NTF. In reference [11],
an NTF based tracking controller was designed for uncertain
non-strict feedback systems with full state constraints.

Nevertheless, in practical systems, it is quite common that
only partial states, not full, are subject to constraints. The
above-mentioned controls were developed for the systems
with full state constraints, which will fail for the systems
with unconstrained states. To tackle this issue, reference [12]
studied the partial state constraints-based control by dividing
the full state into two parts and requiring that the first m states
of the system were constrained states and the last n −m states
were free states. However, the constrained state sequence was
not arbitrary in reference [12]. Although the sequence of par-
tial constrained states was arbitrary in references [13] and [14],
a set of artificial constraints need to be imposed on the free
states. Once the free state sequence changes, it is necessary
to reimpose artificial constraints and redesign the controller.
Therefore, a unified control way that can simultaneously deal
with the constrained and unconstrained sates without changing
the control structure is significantly to be researched.

Up to now, only a few literatures have begun to tackle
the constrained and unconstrained states in a unified way.
Reference [15] developed a unified NTF to achieve track-
ing control for non-strict-feedback nonlinear systems with or
without state constraints. Reference [16] proposed another
unified NTF for high-order strict-feedback systems and applied
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the proposed unified NTF to the tracking control of robotic
systems [17]. However, the cascade connections were affine in
the references [15], [16], [17] and therefore easier to handle.
In this paper, the so-called pure-feedback systems having
nonaffine connections between cascades will be considered.
Pure-feedback systems were introduced in [18] and thor-
oughly studied along with their more specific version - the
so-called triangular systems [19], [20], [21]. Up to now,
very few studies have been presented for the control of
pure-feedback systems with constraints in a unified way.
Although references [22] and [23] studied unified tracking
controls for pure-feedback systems with both constrained and
unconstrained states by developing the unified NTFs, but only
asymptotic convergence, not fixed-time convergence, were
achieved.

As is well known, the fixed-time convergence has faster
convergence rate and better disturbance rejection [24], [25],
[26], [27]. To achieve fixed-time convergence, the homogene-
ity method [28] and terminal sliding mode method [29] have
been proposed for linear systems and second-order systems,
respectively. For high-order systems, the modified backstep-
ping method with fractional feedback terms was proposed
and widely applied to the fixed-time tracking of nonlinear
systems with state constraints [30], [31], [32], [33]. How-
ever, the singularity problem may occur in fixed-time control
design due to the derivatives of the fractional power terms.
To overcome the singularity problem, reference [34] proposed
the switching functions and applied it into the finite-time
control. Moreover, reference [35] developed the adding a
power integrator technique to avoid the singularities in fixed-
time control. However, for uncertain nonlinear pure-feedback
systems with partial or full state constraints, the fixed-time
tracking without singularities in a unified way has not been
studied.

Motivated by above discussion, we are devoted to inves-
tigating the non-singular fixed-time tracking of uncertain
nonlinear pure-feedback systems with partial or full state
constraints. The main difficulties and challenges are: 1) To
remove the singularities in fixed-time control, the introduction
of the adding a power integrator technique will increase
the complexity and difficulty of the traditional backstep-
ping design. Especially for constrained pure-feedback systems
with nonaffine cascade characteristic, designing a non-singular
fixed-time tracking controller is more complex and challeng-
ing. 2) How to design a new unified NTF that can not only
result in a smaller control effort to pull state back from the
constraint boundary, but also be applicable to the multiple
practical constraint situations given below is another challenge.
Specifically, the considered constraint situations include:
① All states are constrained; ② All states are not constrained;
③ Some states are constrained and other states are not con-
strained. The main contributions are summarized as follows:

1) A new unified NTF is proposed to handle the constrained
and unconstrained states uniformly. Since NTF converts the
state x into a variable ξ , the variable ξ tends to infinity when
state x tends to the constraint boundary. This leads to a large
control effort to ensure the boundedness of the ξ . However,
compared with references [16] and [23], the NTF proposed in

this paper makes the ξ tend to infinity more slowly for the
same process that x tends to the constraint boundary, which
can lead to a smaller control effort than that of [16] and [23].

2) The adaptive neural network technique is applied to
deal with the uncertain nonlinearities of the pure-feedback
systems and the adding a power integrator technique is used
to overcome the singularities in fixed-time control process.

3) The non-singular fixed-time tracking controller for uncer-
tain nonlinear pure-feedback systems with or without state
constraints is first developed in a unified way in this paper,
which not only realizes the practical fixed-time tracking, but
also ensures that the constrained states satisfy the correspond-
ing constraints by a unified control structure. Compared with
asymptotic tracking of the pure-feedback systems with or
without state constraints [22], [23], this paper achieves the
fixed-time tracking. Moreover, in contrast to references [16]
and [17], there is no singularities in this paper.

The remainder of this paper is organized below. The prelim-
inaries and problem formulation are presented in Section II.
Section III gives a unified nonlinear transformation function
and an adaptive fixed-time control strategy. At the same time,
practical fixed-time convergence is analyzed for the closed-
loop system. In Section IV, numerical examples are given
to validate the proposed fixed-time control strategy. Finally,
conclusions are presented in Section V.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Preliminaries
Definition 1: Consider the system ẋ = f (t, x), x(0) = x0,

where x ∈ Rn , the nonlinear function f : R+ × Rn
→ Rn

is continuous with respect to t and Lipschitz continuous with
respect to x , and f (t, 0) ≡ 0. The equilibrium of the system
is said to be practically fixed-time stable on Rn , if it is stable
and ∀ϵ > 0 there exists a settling time T (ϵ) > 0 such that
∥x(t, x0)∥ ≤ ϵ, ∀x0 ∈ Rn , ∀t ≥ T (ϵ).

Lemma 1 ([17]): Consider the system ẋ = f (t, x), where
f : R+ × Rn

→ Rn is continuous with respect to t and
Lipschitz continuous with respect to x , and f (t, 0) ≡ 0. The
equilibrium of the system is practically fixed-time stable if
∀δ > 0 there exist a positive definite function Vδ(t, x) and
parameters k1 > 0, k2 > 0, 0 < γ < 1, β > 1, and 0 < θ <

1 such that

V̇δ(t, x) ≤ −k1Vδ(t, x)γ − k2Vδ(t, x)β + δ.

Furthermore, there exists a settling time T such that

Vδ(t, x) ≤ min
{( δ

k1θ

) 1
γ ,

( δ

k2θ

) 1
β

}
,

when t ≥ T , and the upper bound of the settling time T is
given by:

T ≤
1

k1(1 − θ)(1 − γ )
+

1
k2(1 − θ)(β − 1)

.

Lemma 2 ([36]): (Mean value theorem) If function f (x) is
continuous on a closed interval [a, b], and is differentiable on
an open interval (a, b), then there exists a ϵ (a < ϵ < b) such
that

f (b)− f (a) = f ′(ϵ)(b − a) (1)

holds.
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Lemma 3 ([37]): The following three inequalities hold.
① For arbitrary constants x1 > 0, x1 ≥ x2, and p > 1,

it holds:

(x1 − x2)
p

≥ x p
2 − x p

1 .

② For arbitrary constants p > 0, x1 ≥ 0, and x2 > 0,
it holds:

x p
1 (x2 − x1) ≤

1
1 + p

(x1+p
2 − x1+p

1 ).

③ For arbitrary constants xi ∈ R and p > 0, it holds:

(

n∑
i=1

|xi |)
p

≤ max{n p−1, 1}

n∑
i=1

|xi |
p.

Lemma 4 ([35]): For a real-valued function γ (x, y) >

0 and positive constants c, d , the following inequality holds:

|x |
c
|y|

d
≤

c
c + d

γ (x, y)|x |
c+d

+
d

c + d
γ−

c
d (x, y)|y|

c+d .

Lemma 5 ([35]): For x ∈ R, y ∈ R, and scalar p ≤ 1,
it holds:

|x p
− y p

| ≤ 21−p
|x − y|

p.

According to the radial basis function neural network
(RBFNN) technique [38], the unknown continuous function
F(x) ∈ R can be approximated by a linearly parameterized
model as follows:

F(x) = W T S(x)+ ε(x), x ∈ Rn, (2)

where W ∈ RN is the weight vector of a radial basis
function neural networks, S(x) = [S1(x), . . . , SN (x)]T

∈ RN

is the basis function vector. Particularly, the basis function is
generally given by

Si (x) = exp

[
−
(x − τi )

T (x − τi )

ψ2
i

]
, i = 1, . . . , N , (3)

where ψi ∈ R, τi ∈ Rn are the width and the center of the basis
function, respectively. ε ∈ R is the estimation error. In this
paper, the unknown weight vector W and estimation error ε
satisfy the following assumption:

Assumption 1: In the linearly parameterized model (2),
assume that ∥W∥ ≤ W̄ , |ε| ≤ ε̄, where W̄ and ε̄ are unknown
positive constants. Furthermore, define w = max{W̄, ε̄}.

B. Problem Formulation

Consider an uncertain high-order nonlinear pure-feedback
system as follows:

ẋi = fi (x̄i , xi+1), i = 1, . . . , n − 1,
ẋn = fn(x̄n, u),
y = x1,

(4)

where x = [x1, . . . , xn]
T

∈ Rn is the state; x̄i denotes
[x1, . . . , xi ]

T
∈ Ri ; y ∈ R is the output; u ∈ R is the control

input; fi (·) (i = 1, . . . , n) are unknown nonlinear functions.
The system states need to satisfy the following constraints:

−hi1(t) < xi (t) < hi2(t), i = 1, . . . , n, (5)

and we allow that hi1(t) and hi2(t) can include the following
practical situations:

1) hi1(t) and hi2(t), i = 1, . . . , n, are bounded time-varying
strictly positive smooth functions. This means that all states
are constrained all the time.

2) hi1(t) = hi2(t) ≡ +∞, i = 1, . . . , n, which means that
there is no constraint on the whole system.

3) hi1(t) = hi2(t) ≡ +∞ for partial i ∈ {1, . . . , n}, and the
other hi1(t), hi2(t) are bounded time-varying strictly positive
smooth functions. This denotes that the researched objective
is a system with partial state constraints.

4) 0 < hi j (t) ≤ +∞ for i ∈ {1, . . . , n}, j = 1, 2, which
implies that the state xi may be constrained for a period of
time and unconstrained over certain period.

Assumption 2: The initial states satisfy −hi1(0) < xi (0) <
hi2(0), i = 1, . . . , n.

Assumption 3: fi (x̄i , xi+1) (i = 1, . . . , n−1) and fn(x̄n, u)
are continuously differentiable with respect to all x ∈ Rn and
u ∈ R.

According to Assumption 3 and Lemma 2, there exists a
constant α ∈ (0, 1) such that the following equation holds:

fn(x̄n, u) = fn(x̄n, 0)+ gn(x̄n, αu)u, (6)

where gn(x̄n, αu) =
∂ fn(x̄n ,ν)

∂ν
|ν=αu .

Assumption 4: We assume that g
n

≤ gn(·) ≤ gn , where g
n
,

gn are unknown positive constants.
For the nonlinear system (4), the reference output is given

by yd(t), which is bounded and smooth, and satisfies the
constraint (5), i.e., −h11(t) < yd(t) < h12(t).

The objective of this paper is to design a fixed-time con-
troller u for the system (4) to achieve practical fixed-time
output tracking, that is,

|y(t)− yd(t)| ≤ ζ, ∀t ≥ T, (7)

where ζ and T are some positive constants, and at the same
time, the controller u guarantees that the state constraints (5)
are not violated all the time.

III. MAIN RESULTS

In this section, firstly, a unified nonlinear transformation
function is constructed to handle the cases with and without
state constraints. Thus the system (4) can be transformed to
a new unconstrained system by using the nonlinear transfor-
mation function. Secondly, a non-singular practical fixed-time
tracking controller is constructed by introducing the adding a
power integrator technique and the adaptive neural network
technique. Thirdly, the convergence analysis is given to show
that the practical fixed-time output tracking of the closed-loop
system is achieved and the state constraints are always satisfied
simultaneously.

A. Unified Nonlinear Transformation Function

In order to uniformly handle more practical systems that
meets all the constraint situations listed in (5), a unified
nonlinear transformation function is proposed as follows:

ξi (t) =
hi1(t)+ hi2(t)

4
ln

hi1(t)+ xi (t)
hi2(t)− xi (t)

. (8)
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Fig. 1. The nonlinear transformation functions (NTFs).

The nonlinear transformation (8) has the following
properties: 

(i) lim
xi (t)→−hi1(t)

ξi (t) = −∞;

(ii) lim
xi (t)→hi2(t)

ξi (t) = +∞;

(iii) lim
hi1(t)=hi2(t)→+∞

ξi (t) = xi (t).

(9)

Remark 1: According to the properties (i) and (ii), one can
obtain that if ξi (t) is bounded, then the condition −hi1(t) <
xi (t) < hi2(t) holds for any −hi1(0) < xi (0) < hi2(0).
Therefore, in order to ensure that the constraints are not
violated, we just need to ensure that ξi (t) is bounded. For
the property (iii), hi1(t) = hi2(t) = +∞ means that there is
no state constraint and thus ξi (t) = xi (t). Consequently, the
proposed transformation (8) can deal with the cases with and
without state constraints in a unified manner.

Remark 2: The transformation function (8) can be applied
to the systems with both constrained and unconstrained states.
Moreover, the transformation function (8) is also applicable
to the systems that start from an unconstrained initial state
to a constrained state space. For example, when an unmanned
vehicle drives into a narrow tunnel starting from an open area,
the state constraint is continuously changing from infinity to
a bounded region. In this case, the constraint functions can be

selected as hi j (t) = e
1

t−t0 + ki j ( j = 1, 2), where t0 is the
initial time instant, ki j is a positive constant. Thus the state
constraint decreases monotonically from infinity to 1 + ki j .

Remark 3: It is noted that when the state xi tends to the
boundary of constraint, the transformed variable ξi (t) tends to
−∞ or +∞, which often needs a large control effort to make
the ξi (t) be bounded. However, compared with the unified
NTFs in [16] and [23], the change of ξi tending to −∞

or +∞ in this paper is slower than that in [16] and [23],
respectively. When the state constraint is set as |xi | ≤ 1, the
evolution of the transformed variable ξi (t) is shown in Fig. 1.
More details can also be found in Table I. From Table I,
it can be further found that the change rates of the transformed

TABLE I
THE CHANGE RATE OF ξ IN DIFFERENT x INTERVALS

variable ξ under different x intervals near the boundary 1 are
smaller than those in references [16] and [23].

Under the unified nonlinear transformation function (8),
differentiating ξ = [ξ1, . . . , ξn]

T yields a new system as
follows:{

ξ̇i = Fi (x̄i+1, ξi+1)+ ξi+1, i = 1, . . . , n − 1,
ξ̇n = Fn(x̄n)+ ϕngnu,

(10)

where

Fi (x̄i+1, ξi+1)

= ϕi fi (x̄i , xi+1)+ φi − ξi+1, i = 1, . . . , n − 1,
Fn(x̄n) = ϕn fn(x̄n)+ φn,

ϕi =
∂ξi

∂xi
=

(
hi1(t)+ hi2(t)

)2

4
(
hi1(t)+ xi (t)

)(
hi2(t)− xi (t)

) ,
φi =

hi1(t)+ hi2(t)
4

( ḣi1(t)
hi1(t)+ xi (t)

−
ḣi2(t)

hi2(t)− xi (t)

)
+

ḣi1(t)+ ḣi2(t)
4

ln
hi1(t)+ xi (t)
hi2(t)− xi (t)

,

for i = 1, . . . , n, and fn(x̄n) = fn(x̄n, 0), gn = gn(x̄n, αu)
are defined in (6).

Obviously, the original system (4) with the state constraint
(5) is transformed to an unconstrained system (10). The
constraints on state x can be guaranteed by ensuring the
boundedness of the variable ξ . In sequel, based on the trans-
formed system (10), we need to design a fixed-time controller
to not only ensure that the state constraints are not violated,
but also realize the practical fixed-time output tracking.

According to the unified nonlinear transformation function
(8), a nonlinear transformation is given for the reference output
yd as follows:

ξd(t) =
hi1(t)+ hi2(t)

4
ln

hi1(t)+ yd(t)
hi2(t)− yd(t)

. (11)

B. Controller Design and Convergence Analysis

Define {
e1 = ξ1 − ξd ,

ek = ξ
1/qk
k − ξ

∗1/qk
k , k = 2, . . . , n,

(12)

where qk = 1 − (k − 1)τ , τ =
p
q ∈ (0, 1

n ), and p is a positive
even constant, q is a positive odd constant. It can be verified
that qn < qn−1 < . . . < q2 < 1. ξ∗

k is the virtual controller to
be designed at the step k of the following Algorithm 1.

where ψk(·) = n−(k−1)+ϵkeκk +vk−1+Gk−1+lk
√

1 + θ̂2
k >

0, the parameters ϵk , k = 1, . . . , n are positive constants,
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Algorithm 1 Power integrator based control design.
Step 1: Consider

e1 = ξ1 − ξd .
Construct the Lyapunov function as

V1 =
1
2 e2

1 +
1
2 θ̃

2
1 , (15)

then, according to the derivative of V1, design the vir-
tual controller as

ξ∗

2 = −eq2
1 ψ1(e1, θ̂1). (18)

Step k: (2 ≤ k ≤ n − 1) Consider
ek = ξ

1/qk
k − ξ

∗1/qk
k .

Construct the Lyapunov function with a power inte-
grator as

Vk = Vk−1 +
∫ ξk
ξ∗

k
(s1/qk − ξ

∗1/qk
k )2−qk ds +

1
2 θ̃

2
k ,

(35)
then, according to the derivative of Vk , design the vir-
tual controller as

ξ∗

k+1 = −eqk+1
k ψk(e1, ξ2, . . . , ξk, θ̂1, . . . , θ̂k).

Step n: Consider
en = ξ

1/qn
n − ξ

∗1/qn
n .

Construct the Lyapunov function with a power inte-
grator as

Vn = Vn−1+
∫ ξn
ξ∗

n
(s1/qn − ξ

∗1/qn
n )2−qn ds +

1
2 θ̃

2
n ,
(46)

and design the controller u as
u = −

1
ϕn g

n
eqn+1

n

(
1 + ϵneκn + vn−1

+Gn−1 + ln
√

1 + θ̂2
n

)
,

(47)

κ > 1 is an even constant. lk = ρk−1 +
∑k−1

l=1 Hk−1,l , and
ρk−1 =

2−qk−1
d , vk−1 = 21−qk qk

d (
1
2

d
2−qk−1

1
21−qk

)−(2−qk−1)/qk >

0, Hk−1,l(·) = (2 − qk)22−qk 1
dµ

d
l Ĝd

k−1,l > 0. Ĝk−1,l > 0 and

Gk−1 > 0 are C1 functions. The positive constant g
n

is the
lower bound of gn . In addition, the parameters θ̃k and θ̂k are
defined in the detailed controller design process which is given
in Appendix A.

Remark 4: It is worth noting that in the references [17],
[30], [31], [32], and [33], the fixed-time controllers suffered
from a singularity problem. Specifically, there is often a state
related term with fractional power less than 1 like x l (l < 1) in
the virtual controller αi . Thus the next virtual controller αi+1
contains the derivative of αi , which leads to a singularity at
x = 0. To overcome this drawback, this paper designs the
controller (47) by introducing the adding a power integrator
into the Lyapunov functions Vi (i = 2, . . . , n), and can
avoid the singularities caused by the derivatives of the virtual
controllers in the traditional backstepping design process.

Under the controller u in Algorithm 1, the objectives in
Theorem 1 are achieved.

Theorem 1: Consider the uncertain high-order nonlinear
pure-feedback system (4) with the state constraints given by
(5). Under Assumptions 1-4, the proposed controller (47) can
achieve the following objectives:

(1) All the states in closed-loop system (4) are bounded.

Fig. 2. The trajectories of the states x1, x2, and the reference output yd
under the case that x1, x2 are all constrained.

(2) The practical fixed-time output tracking is achieved, that
is, |z| = |y − yd | ≤ ζ =

√
2R when t ≥ T . The settling time

is estimated as

T ≤
2

01(1 − θ)(2 − d)
+

2
02(1 − θ)(d + κ − 2)

,

where R is defined in (53) in Appendix B, 01 =
ϖ1
ϖ d/2 ,

and 02 =
ϖ2

ϖ (d+κ)/2 , ϖ1 = mink=1,...,n{1, σk,1
d }, ϖ2 =

mink=1,...,n{1, σk,2
d+κ

}, ϖ = max{
1
2 , 21−qk }, θ is a constant

satisfies 0 < θ < 1, σk,1 and σk,2 are given positive constants,
κ > is an even constant.

(3) The state constraints are satisfied all the time.
Proof: The proof is shown in Appendix B.

IV. SIMULATION EXAMPLES

This section contains two examples. Example 1 shows the
relevant control results of numerical system under the three
cases respectively as: 1. all states are constrained; 2. partial
state is constrained; 3. all states are unconstrained, respec-
tively. Example 2 shows the control results of Brusselator
model.

Example 1: Consider the following pure-feedback nonlin-
ear system: 

ẋ1 = x1 + x2 + x2
2 ,

ẋ2 = x1x2 + u + 0.1 sin(u),
y = x1.

(13)

The reference output is given by yd = 0.1 sin(0.5t). The
initial state is set as x(0) = [−0.2, 0.2]

T and the parameters
in the controller (47) are selected as follows: q2 =

197
199 , q3 =

195
199 , τ =

2
199 , κ =

4
3 , ϵ1 = 0.01, ϵ2 = 0.01, σ1,1 = 0.01,

σ1,2 = 0.01, σ2,1 = 0.01, σ2,2 = 0.01, θ̂1(0) = θ̂2(0) = 0,
g

n
= 0.9, ψi = 3, τi = 0.

Case 1: All states are constrained.
The state constraint functions are given by h11(t) = 0.5 +

0.3 sin(t), h12(t) = 0.6 − 0.2 sin(t), h21(t) = 0.5 + 0.2 cos(t),
and h22(t) = 0.5 + 0.2 cos(t). Then, Fig. 2 shows the
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Fig. 3. The trajectory of the output tracking error z under the case that x1,
x2 are all constrained.

Fig. 4. The trajectory of the control input u under the case that x1, x2 are
all constrained.

trajectories of the desired output yd and the states x1, x2 under
the proposed controller (47). In Fig. 2, we can see that the
state x1 can track the reference output yd at about T = 2s.
Moreover, the states x1 and x2 are always within the given
constraints all the time. Fig. 3 shows the output tracking error
and demonstrates that the tracking error is bounded in fixed
time, that is, |z| ≤ 0.05 for t ≥ 2s. The control input u is
shown in Fig. 4.

Case 2: Partial state is constrained.
In order to verify the effectiveness of the controller (47) for

the system (12) with both constrained and unconstrained states,
we set that state x1 is constrained by h11(t) = 0.5 + 0.3 sin(t)
and h12(t) = 0.6−0.2 sin(t), while state x2 has no constraint,
that is h21(t) = h22(t) ≡ +∞. Then, the dynamics of states
x1, x2, and reference output yd are shown in Fig. 5. From
Fig. 5, it can be found that x1 and x2 are bounded while
x1 does not violate its constraint all the time. Compared with
the case that all states are constrained, the x2 in Fig. 5 exceeds
the constraints given in case 1 due to there is no constraint
on state x2. Moreover, the output tracking error |z| ≤ 0.05 for
t ≥ 2s, which is shown in Fig. 6. And the control input is
shown in Fig. 7

Fig. 5. The trajectories of the states x1, x2, and the reference output yd
under the case that x1 is constrained, x2 is unconstrained.

Fig. 6. The trajectory of the output tracking error z under the case that x1 is
constrained, x2 is unconstrained.

Case 3: All states are not constrained.
Considering that there is no constraints on states, then the

trajectories of states, tracking error, and control input are
shown in Fig. 8, Fig. 9, and Fig. 10, respectively. According
to Fig. 8 and Fig. 9, we obtain that state x1 can track the
reference output in a fixed-time. Moreover, from Fig. 8, the
maximum value of the state x2 is larger than that in case 2 due
to no constraints on neither x1 and x2.

The above simulation results illustrate that the proposed
fixed-time controller can handle the output tracking problem
for the uncertain nonlinear pure-feedback system with and
without state constraints while keeping one control structure.

Example 2: To further illustrate the applicability of the pro-
posed controller, consider the following disturbed Brusselator
model [39]:

ẋ1 = C − (D + 1)x1 + x2
1 x2 + d1,

ẋ2 = Dx1 − x2
1 x2 + (2 + cos (x1))u + d2,

y = x1,

(14)
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Fig. 7. The trajectory of the control input u under the case that x1 is
constrained, x2 is unconstrained.

Fig. 8. The trajectories of the states x1, x2, and the reference output yd
under the case that x1, x2 are all unconstrained.

where the state variables x1 and x2 denote the concentrations
of the chemical reaction intermediates, the positive numbers
C and D are the parameters of the supply of “reservoir”
chemicals, d1 and d2 denote the external disturbances. In real
cases, the concentrations of some reaction intermediates are
usually constrained within a certain range to ensure reaction
effectiveness. Thus, we assume that the state x1 is constrained
by h11(t) = 0.5 + 0.3 sin(t) and h12(t) = 0.6 − 0.2 sin(t),
and the state x2 has no constraint. We choose C = 1, D = 3,
d1 = 2 cos (x1)x2, d2 = 2 sin (x2)x1, and the initial states and
the other parameters are same as those in Example 1.

Then the states x1, x2 and the reference output yd are
shown in Fig. 11. The tracking error and control input are
shown in Fig. 12 and Fig. 13, respectively. From Fig. 11,
we can see that the states are bounded and the constraint is
not violated. In Fig. 12, it is shown that the tracking error
|z| ≤ 0.05 for t ≥ 2s. Therefore, the proposed controller (47)

Fig. 9. The trajectory of the output tracking error z under the case that x1,
x2 are all unconstrained.

Fig. 10. The trajectory of the control input u under the case that x1, x2 are
all unconstrained.

Fig. 11. The trajectories of the states x1, x2, and the reference output yd of
Brusselator system.

not only achieves the practical fixed-time output tracking of the
Brusselator system (14), but also ensures that the constrained
state satisfy its constraint condition.
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Fig. 12. The trajectory of the output tracking error z of Brusselator system.

Fig. 13. The trajectory of the control input u of Brusselator system.

V. CONCLUSION

This paper has solved the fixed-time output tracking prob-
lem for uncertain high-order nonlinear pure-feedback systems
with partial state constraints in a unified way. A new nonlinear
transformation function has been proposed to deal with the
constrained and unconstrained states. Based on the unified
nonlinear transformation, the original partially constrained
systems have been transformed to the systems without con-
straints. The adding a power integrator technique has been
introduced and delicately combined with the adaptive neural
network technique to facilitate the fixed-time controller design.
Thus, an adaptive neural network based fixed-time tracking
controller has been constructed for the uncertain high-order
nonlinear pure-feedback systems, which needs only one struc-
ture to ensure not only practical fixed-time tracking but also
state constraints. Moreover, the effectiveness of the proposed
controller has been validated by numerical simulations.

APPENDIX A
DESIGN PROCESS OF THE CONTROLLER u

Step 1: Construct a Lyapunov function as

V1 =
1
2

e2
1 +

1
2
θ̃2

1 , (15)

where θ̃1 = θ1 − θ̂1, θ̂1 is the estimation of θ1. θ1 and θ̂1 will
be given later. According to

ė1 = F1(x̄2, ξ2)+ ξ2 − ξ̇d

= F̄1(x̄2, ξ2, ξ̇d)+ ξ2,

where F̄1(x̄2, ξ2, ξ̇d) = F1(x̄2, ξ2) − ξ̇d , then we can derive
that

V̇1 = e1(F̄1(x̄2, ξ2, ξ̇d)+ ξi2)+ θ̃1
˙̃
θ1

= e1 F̄1(x̄2, ξ2, ξ̇d)+ e1ξ
∗

2 + e1(ξ2 − ξ∗

2 )+ θ̃1
˙̃
θ1. (16)

Using the neural network approximation (2), we have
F̄1(x̄2, ξ2, ξ̇d) = W T

1 S(X1) + ε1(X1), where X1 =

[x1, x2, ξ2, ξ̇d ]
T , W1 ∈ RM , S(X1) ∈ RM and ε1(X1) are

weight vector, basis function vector, and estimation error,
respectively. According to Assumption 1, ||W1|| ≤ W̄1,
|ε1| ≤ ε̄1, where W̄1 and ε̄1 are unknown positive constants.
Define w1 = max{W̄1, ε̄1}, we obtain that F̄1(x̄2, ξ2, ξ̇d) ≤

w1µ1(X1), where µ1(X1) = 1 + ||S(X1)||. Then, according
to Lemma 4, we get

e1 F̄1(x̄2, ξ2, ξ̇d) ≤ |e1|w1µ1 · 1q2 ≤ ρ1θ1ed
1 + c1, (17)

where ρ1 =
1
dµ

d
1 , d = 1 + q2, c1 =

q2
d and θ1 = wd

1 .
Design the virtual controller ξ∗

2 and the adaptive law of θ̂1
as follows:

ξ∗

2 = −eq2
1 (n + ϵ1eκ1 + l1

√
1 + θ̂2

1 )

= −eq2
1 ψ1(e1, θ̂1), (18)

˙̂
θ1 = −σ1,1θ̂

q2
1 − σ1,2θ̂

q2+κ
1 + ł1ed

1 , (19)

where ϵ1, σ1,1, σ1,2 are positive constants, κ > 1 is an even

constant, l1 = ρ1, ψ1(e1, θ̂1) = n + ϵ1eκ1 + l1
√

1 + θ̂2
1 > 0 is

a C1 function.
Substituting (17)-(19) into (16), we get

V̇1 ≤ −ned
1 − ϵ1ed+κ

1 + σ1,1θ̃1θ̂
q2
1 + σ1,2θ̃1θ̂

q2+κ
1

+ C1 + e1(ξ2 − ξ∗

2 ), (20)

where C1 = c1.
By employing the second term of Lemma 3, we have

σ1,1θ̃1θ̂
q2
1 = σ1,1θ̂

q2
1 (θ1 − θ̂1)

≤ σ1,1
1
d
(θd

1 − [θ1 − θ̂1]
d).

According to the adaptive law (19), we can verify that
θ̂1(t) ≥ 0 for any given initial value θ̂1(0) ≥ 0 if ˙̂

θ1(t) ≥ 0.
If ˙̂

θ1(t) < 0, then θ̂1(t) will decrease until θ̂1(t) = 0 at a
certain time td . Due to the fact that l1ed

1 ≥ 0, it can be found
that ˙̂

θ1(t) ≥ 0 when θ̂1(t) = 0. Thus, θ̂1(t) ≥ 0 after t ≥ td .
Therefore, if we choose an initial value θ̂1(0) ≥ 0, then we
have θ̂1(t) ≥ 0, which means that θ1(t) − θ̃1(t) = θ̂1(t) ≥ 0.
Next, according to θ1 = wd

1 > 0 and the first term of Lemma 3,
the following inequality can be obtained:

σ1,1θ̃1θ̂
q2
1 ≤

2σ1,1

d
θd

1 −
σ1,1

d
θ̃d

1 . (21)
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Similarly, it can be obtained that:

σ1,2θ̃1θ̂
q2+κ
1 ≤

2σ1,2

d + κ
θd+κ

1 −
σ1,2

d + κ
θ̃d+κ

1 . (22)

With the help of inequalities (21), (22), the inequality (20)
can be further derived as

V̇1 ≤ −ned
1 − ϵ1ed+κ

1 −
σ1,1

d
θ̃d

1 −
σ1,2

d + κ
θ̃d+κ

1

+ e1(ξ2 − ξ∗

2 )+ C1 +31, (23)

where 31 =
2σ1,1

d θd
1 +

2σ1,2
d+κ

θd+κ
1 .

Step 2: Take the following Lyapunov function:

V2 = V1 +

∫ ξ2

ξ∗

2

(s1/q2 − ξ
∗1/q2
2 )2−q2ds +

1
2
θ̃2

2 , (24)

where θ̃2 = θ2 − θ̂2, θ̂2 is the estimation of θ2. In addition, θ2,
θ̂2 will be given later. Differentiating V2 yields:

V̇2 ≤ −ned
1 − ϵ1ed+κ

1 −
σ1,1

d
θ̃d

1

−
σ1,2

d + κ
θ̃d+κ

1 + e1(ξ2 − ξ∗

2 )+ C1 +31

+ e2−q2
2 (F2(x̄3, ξ3)+ ξ3)+ θ̃2

˙̃
θ2

+ (2 − q2)
d(−ξ∗1/q2

2 )

dt

∫ ξ2

ξ∗

2

(s1/q2 − ξ
∗1/q2
2 )1−q2ds.

(25)

Employing the neural network approximation (2), we have
F2(X2) = W T

2 S(X2) + ε2, where X2 = [x̄3, ξ3]
T , W2 ∈

RM , S(X2) ∈ RM and ε2(X1) are weight vector, basis
function vector, and estimation error, respectively. According
to Assumption 1, ||W2|| ≤ W̄2, |ε2| ≤ ε̄2, where W̄2 and ε̄2
are unknown positive constants. Define w2 = max{W̄2, ε̄2},
we obtain that F2(X2) ≤ w2µ2(X2), where µ2(X2) = 1 +

||S(X2)||.
Using Lemma 4, it can be obtained that

e2−q2
2 F2(x̄3, ξ3) ≤ |e2|

2−q2w2µ2 · 1q3

≤ ρ2w
d/(2−q2)
2 ed

2 + m2, (26)

where ρ2 =
2−q2

d µ
d/(2−q2)
2 , m2 =

q3
d .

Using Lemma 5, we get

e1(ξ2 − ξ∗

2 ) ≤ |e1|
∣∣(ξ1/q2

2 )q2 − (ξ∗

2
1/q2)q2

∣∣
≤ 21−q2 |e1|

∣∣ξ1/q2
2 − ξ∗

2
1/q2

∣∣q2

= 21−q2 |e1||e2|
q2

≤
1
2

ed
1 + v1ed

2 , (27)

where v1 = 21−q2 q2
d (

1
2 2q2−1d)−1/q2 > 0.

Since e2 = ξ
1/q2
2 − ξ

∗1/q2
2 and ξ∗

2 = −eq2
1 ψ1(·), then |ξ2| ≤

(|e2| + |ξ∗

2 |
1/q2)q2 ≤ |e2|

q2 + |ξ2| = |e2|
q2 + |e1|

q2ψ1, which
will be applied to the following second inequality.∣∣∣∣d(−ξ∗1/q2

2 )

dt

∣∣∣∣
≤

(
ψ

1/q2
1 +

1
q2
ψ

1
q2

−1

1 ϵ1κeκ1

)
(|F̄1| + |ξ2|)

+
1
q2
ψ

1
q2

−1

1 e1l1
θ̂1√

1 + θ̂2
1

(
− σ1,1θ̂

q2
1

− σ1,2θ̂
q2+κ
1 + l1ed

1
)

≤ (|e1|
q2 + |e2|

q2)(1 + ψ1)

(
ψ

1
q2

1 +
1
q2
ψ

1
q2

−1

1 ϵ1κeκ1

)
+ w1µ1

(
ψ

1
q2

1 +
1
q2
ψ

1
q2

−1

1 ϵ1κeκ1

)
+

1
q2
ψ

1
q2

−1

1

√
1 + e2

1 l1

(
σ1,1

θ̂d
1√

1 + θ̂2
1

+ σ1,2
θ̂d+κ

1√
1 + θ̂2

1

+ l1ed
1

1
2

√
1 + θ̂2

1

)
≤ (|eq2

1 | + |e2|
q2)G̃1(e1, θ̂1)+ w1µ1Ĝ1(e1, θ̂1)

+ Ǧ1(e1, θ̂1), (28)

where G̃1(e1, θ̂1) > 0, Ĝ1(e1, θ̂1) > 0, and Ǧ1(e1, θ̂1) > 0
are C1 functions, and

G̃1(e1, θ̂1) = (1 + ψ1)(ψ
1

q2
1 +

1
q2
ψ

1
q2

−1

1 ϵ1κeκ1 ),

Ǧ1(e1, θ̂1) =
1
q2
ψ

1
q2

−1

1

√
1 + e2

1 l1

(
σ1,1

θ̂d
1√

1 + θ̂2
1

+ σ1,2
θ̂d+κ

1√
1 + θ̂2

1

+ l1ed
1

1
2

√
1 + θ̂2

1

)
.

Ĝ1(e1, θ̂1) = ψ

1
q2

1 +
1
q2
ψ

1
q2

−1

1 ϵ1κeκ1 .

In addition, we can derive that∣∣∣∣(2 − q2)

∫ ξ2

ξ∗

2

(s1/q2 − ξ
∗1/q2
2 )1−q2ds

∣∣∣∣
≤ (2 − q2)|e2|

1−q2 |ξ2 − ξ∗

2 |

≤ (2 − q2)|e2|
1−q2

∣∣(ξ1/q2
2 )q2 − (ξ∗

2
1/q2)q2

∣∣
≤ (2 − q2)|e2|

1−q2 21−q2 |e2|
q2

≤ (2 − q2)21−q2 |e2|. (29)

According to (28) and (29) and Lemma 4, we obtain that∣∣∣∣(2 − q2)
d(−ξ∗1/q2

2 )

dt

∫ ξ2

ξ∗

2

(s1/q2 − ξ
∗1/q2
2 )1−q2ds

∣∣∣∣
≤ (2 − q2)21−q2 |e2|

[
(|e1|

q2 + |e2|
q2)G̃1

+ w1µ1Ĝ1 + Ǧ1

]
≤

1
2

ed
1 + G1ed

2 + (2 − q2)21−q2
1
d
µd

1w
d
1 Ĝd

1ed
2 + g2, (30)

where G1 = (2 − q2)21−q2 [
1
d (

1
2

d
q2

1
21−q2 (2−q2)

)−q2 G̃d
1 + G̃1 +

1
d Ǧd

1 ] > 0 is a C1 function, g2 = (2 − q2)21−q2 2q2
d > 0 is a

constant.
Substituting (26), (27), (30) into (25) yields

V̇2 ≤ −(n − 1)ed
1 − ϵ1ed+κ

1 −
σ1,1

d
θ̃d

1

−
σ1,2

d + κ
θ̃d+κ

1 +31 + (v1 + G1)ed
2
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+ l2θ2ed
2 + C2 + θ̃2

˙̃
θ2

+ e2−q2
2 ξ∗

3 + e2−q2
2 (ξ3 − ξ∗

3 ), (31)

where θ2 = max{w
d/(2−q2)
2 , wd

1 } > 0, l2 = ρ2 + (2 −

q2)21−q2 1
dµ

d
1 Ĝd

1 > 0, C2 = C1+m2+g2 is a positive constant.
Next, we design the virtual controller ξ∗

3 as follows:

ξ∗

3 = −eq3
2

(
n − 1 + ϵ2eκ2 + (v1 + G1)+ l2

√
1 + θ̂2

2

)
= −eq3

2 ψ2(e1, ξ2, θ̂1, θ̂2), (32)

and the adaptive law is given as follows:
˙̂
θ2 = −σ2,1θ̂

q2
2 − σ2,2θ̂

q2+κ
2 + l2ed

2 , (33)

where ψ2(·) = n − 1 + ϵ2eκ2 + (v1 + G1)+ l2
√

1 + θ̂2
2
)
> 0 is

a C1 function, σ2,1, σ2,2 are positive constants.
Substituting (32) and (33) into (31), and according to the

similar analysis of (21), (22), we get

V̇2 ≤ −(n − 1)(ed
1 + ed

2 )− (ϵ1ed+κ
1 + ϵ2ed+κ

2 )

−
σ1,1

d
θ̃d

1 −
σ1,2

d + κ
θ̃d+κ

1 + C2 +32

−
σ2,1

d
θ̃d

2 −
σ2,2

d + κ
θ̃d+κ

2 + e2−q2
2 (ξ3 − ξ∗

3 ), (34)

where 32 = 31 + (
2σ2,1

d θd
2 +

2σ2,2
d+κ

θd+κ
2 ).

Step k: (3 ≤ k ≤ n − 1) Assume that for the Lyapunov
function

Vk = Vk−1 +

∫ ξk

ξ∗
k

(s1/qk − ξ
∗1/qk
k )2−qk ds +

1
2
θ̃2

k , (35)

there exist virtual controllers and adaptive laws ξ∗

k+1 =

−eqk+1
k ψk(·),

˙̂
θk = −σk,1θ̂

q2
k − σk,2θ̂

q2+κ
k + lked

k , where
k = 3, . . . , n − 1, ψk(e1, ξ2, . . . , ξk, θ̂1, . . . , θ̂k) > 0 is a
C1 function, such that

V̇k ≤ −(n − k + 1)(ed
1 + ed

2 + . . .+ ed
k )

− (ϵ1ed+κ
1 + ϵ2ed+κ

2 + . . .+ ϵked+κ
k )

− (
σ1,1

d
θ̃d

1 +
σ2,1

d
θ̃d

2 + . . .+
σk,1

d
θ̃d

k )

− (
σ1,2

d + κ
θ̃d+κ

1 +
σ2,2

d + κ
θ̃d+κ

2 + . . .+
σk,2

d + κ
θ̃d+κ

k )

+ Ck +3k + e2−qk
k (ξk+1 − ξ∗

k+1).

Then, we prove that there is a similar conclusion at step k +1.
Construct the following Lyapunov function:

Vk+1 = Vk +

∫ ξk+1

ξ∗

k+1

(s1/qk+1 − ξ
∗1/qk+1
k+1 )2−qk+1ds +

1
2
θ̃2

k+1.

(36)

Then, we have

V̇k+1 ≤ V̇k + e2−qk+1
k+1 Fk+1 + e2−qk+1

k+1 ξ∗

k+2

+ e2−qk+1
k+1 (ξk+2 − ξ∗

k+2)+ (2 − qk+1)
d(−ξ∗1/qk+1

k+1 )

dt

·

∫ ξk+1

ξ∗

k+1

(s1/qk+1 − ξ
∗1/qk+1
k+1 )1−qk+1ds

+ θ̃k+1
˙̃
θk+1.

For Fk+1, by employing neural network approximation (2),
it can be estimated as Fk+1 = W T

k+1S(Xk+1) + εk+1, where
Xk+1 = [x̄k+2, ξk+2]

T , ||Wk+1|| ≤ W̄k+1, |εk+1| ≤ ε̄k+1,
and wk+1 = max{W̄k+1, εk+1}. Then, according to Lemma 4,
we obtain that

e2−qk+1
k+1 Fk+1 ≤ |ek+1|

2−qk+1 |Fk+1| · 1qk+2

≤ ρk+1w
d
k+1µ

d
k+1ed

k+1 + mk+1, (37)

where ρk+1 =
2−qk+1

d , mk+1 =
qk+2

d .
In addition, according to Lemma 4 and Lemma 5, we obtain

e2−qk
k (ξk+1 − ξ∗

k+1) = |ek |
2−qk

∣∣(ξ1/qk+1
k+1 )qk+1 − (ξ

∗1/qk+1
k+1 )qk+1

∣∣
≤

1
2

ed
k + vked

k+1, (38)

where vk = 21−qk+1 qk+1
d ( 1

2
d

2−qk
1

21−qk+1
)−(2−qk )/qk+1 > 0 is a

constant.
Similar to the derivation of (28), we have∣∣∣∣d(−ξ∗1/qk+1

k+1 )

dt

∣∣∣∣
≤

∣∣∣∣∂
(
− ξ

∗1/qk+1
k+1

)
∂e1

∣∣∣∣(|F̄1| + |ξ2|
)

+

∣∣∣∣∂
(
− ξ

∗1/qk+1
k+1

)
∂ξ2

∣∣∣∣(|F2| + |ξ3|
)
+ . . .

+

∣∣∣∣∂
(
− ξ

∗1/qk+1
k+1

)
∂ξk

∣∣∣∣(|Fk | + |ξk+1|
)

+

∣∣∣∣∂
(
− ξ

∗1/qk+1
k+1

)
∂θ̂1

(
− σ1,1θ̂

q2
1 − σ1,2θ̂

q2+κ
1 + l1ed

1
)∣∣∣∣

+ . . .+

∣∣∣∣∂
(
− ξ

∗1/qk+1
k+1

)
∂θ̂k

(
− σk,1θ̂

q2
k − σk,2θ̂

q2+κ
k + lked

k
)∣∣∣∣.

Since ek = ξ
1/qk
k − ξ

∗1/qk
k , then |ξk | ≤ (|ek | + |ξ∗

k |
1/qk )qk ≤

|ek |
qk +|ξ∗

k | = |ek |
qk +|ek−1|

qkψk−1. Further, according to the
Proposition B.5 in reference [35], we can obtain that∣∣∣∣d(−ξ∗1/qk+1

k+1 )

dt

∣∣∣∣ ≤
(
|e1|

q2 + |e2|
q2 + . . .+ |ek+1|

q2
)
G̃k(ēk,

¯̂
θk)

+

k∑
l=1

wlµl Ĝk,l(ēk,
¯̂
θk)+ Ǧk(ēk,

¯̂
θk),

(39)

where ēk = [e1, . . . , ek]
T , ¯̂
θk = [θ̂1, . . . , θ̂k]

T , G̃k(·) > 0,
Ĝk,l(·) > 0, Ǧk(·) > 0 are C1 functions.

Moreover, the following inequality can also be derived:

(2 − qk+1)

∫ ξk+1

ξ∗

k+1

(s1/qk+1 − ξ
∗1/qk+1
k+1 )1−qk+1ds

≤ (2 − qk+1)21−qk+1 |ek+1|. (40)

Then, according to Lemma 4, we have

(2 − qk+1)
d(−ξ∗1/qk+1

k+1 )

dt

∫ ξk+1

ξ∗

k+1

(s1/qk+1 − ξ
∗1/qk+1
k+1 )1−qk+1ds
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≤

k∑
l=1

1
2

ed
l + Gk(·)ed

k+1 +

k∑
l=1

wd
l Hk,l(·)ed

k+1 + gk+1, (41)

where Gk(·) = (2 − qk+1)21−qk+1
[ 1

d

( 1
2

d
q2

2qk+1−1

2−qk+1

)−q2kG̃d
k +

G̃k +
1
d Ǧd

k
]
> 0 and Hk,l(·) = (2 − qk+1)22−qk+1 1

dµ
d
l Ĝd

k,l >

0 are C1 functions, gk+1 = (2 − qk+1)22−qk+1 (k+1)q2
d is a

positive constant.
Combining the inequalities (37), (38) and (41), we obtain

V̇k+1 ≤ −(n − k)(ed
1 + ed

2 + . . .+ ed
k )

− (ϵ1ed+κ
1 + ϵ2ed+κ

2 + . . .+ ϵked+κ
k )

+
(
vk + Gk

)
ed

k+1

+
(
ρk +

k∑
l=1

Hk,l
)
θk+1ed

k+1

+ e2−qk+1
k+1 (ξk+2 − ξ∗

k+2)+ e2−qk+1
k+1 ξ∗

k+2

+ θ̃k+1
˙̃
θk+1 + Ck+1 +3k, (42)

where θk+1 = max{w
d/(2−qk+1)
k+1 , wd

k , . . . , w
d
1 }, Ck+1 = Ck +

mk+1 + gk+1. Design ξ∗

k+2 as follows:

ξ∗

k+2 = −eqk+2
k+1

(
n − k + ϵk+1eκk+1

+ vk + Gk + lk+1

√
1 + θ̂2

k+1

)
= −eqk+2

k+1 ψk+1(·), (43)

and
˙̂
θk+1 = −σk+1,1θ̂

q2
k+1 − σk+1,2θ̂

q2+κ
k+1 + lk+1ed

k+1, (44)

where the C1 function ψk+1(·) = n−k +ϵk+1eκk+1 +vk +Gk +

lk+1

√
1 + θ̂2

k+1 > 0, and σk+1,1, σk+1,2 are positive constants,

lk+1 = ρk +
∑k

l=1 Hk,l .
Substituting (43) and (44) into (42), we can derive that

V̇k+1 ≤ −(n − k)(ed
1 + ed

2 + . . .+ ed
k )

− (ϵ1ed+κ
1 + ϵ2ed+κ

2 + . . .+ ϵked+κ
k )

− (
σ1,1

d
θ̃d

1 +
σ2,1

d
θ̃d

2 + . . .+
σk+1,1

d
θ̃d

k+1)

− (
σ1,2

d + κ
θ̃d+κ

1 + . . .+
σk+1,2

d + κ
θ̃d+κ

k+1 )

+ Ck+1 +3k+1 + e2−qk+1
k+1 (ξk+2 − ξ∗

k+2), (45)

where 3k+1 = 3k + (
2σk+1,1

d θd
k+1 +

2σk+1,2
d+κ

θd+κ
k+1 ).

Step n: Construct the Lyapunov function Vn as follows:

Vn = Vn−1 +

∫ ξn

ξ∗
n

(s1/qn − ξ
∗1/qn
n )2−qn ds +

1
2
θ̃2

n , (46)

where θ̃n = θn − θ̂n , θ̂n is the estimation of θn , ξ∗
n = ϕngnu.

Set k = n − 1, then Vn = Vk+1. Thus, θn = θk+1, which is
given in (42). Based on the analysis of (42), we have

V̇n ≤ −(ed
1 + . . .+ ed

n−1)− (ϵ1ed+κ
1 + . . .+ ϵn−1ed+κ

n−1 )

− (
σ1,1

d
θ̃d

1 +
σ2,1

d
θ̃d

2 + . . .+
σn−1,1

d
θ̃d

n−1)

− (
σ1,2

d + κ
θ̃d+κ

1 +
σ2,2

d + κ
θ̃d+κ

2 + . . .+
σn−1,2

d + κ
θ̃d+κ

n−1 )

+ (vn−1 + Gn−1)ed
n + e2−qn

n (ξ∗
n )

+ (ρn−1 +

n−1∑
l=1

Hn−1,l)θned
n + θ̃n

˙̃
θn

+ Cn +3n−1.

According to (42) and (43), we design the controller u and
the adaptive law ˙̂

θn as follows:

u = −
1

ϕng
n

eqn+1
n

(
1 + ϵneκn + vn−1 + Gn−1 + ln

√
1 + θ̂2

n

)
,

(47)
˙̂
θn = −σn,1θ̂

q2
n − σn,2θ̂

q2+κ
n + lned

n , (48)

where κ > 1 is an even constant, σn,1, σn,2 are positive
constants, ln = ρn−1 +

∑n−1
l=1 Hn−1,l , and ρn−1 =

2−qn−1
d ,

vn−1 = 21−qn qn
d (

1
2

d
2−qn−1

1
21−qn )

−(2−qn−1)/qn > 0, Hn−1,l(·) =

(2 − qn)22−qn 1
dµ

d
l Ĝd

n−1,l > 0. Ĝn−1,l > 0 and Gn−1 > 0

are C1 functions. The positive constant g
n

is the lower bound
of gn .

According to (47) and (48), we can obtain

V̇n ≤ −(ed
1 + . . .+ ed

n )− (ϵ1ed+κ
1 + . . .+ ϵned+κ

n )

− (
σ1,1

d
θ̃d

1 + . . .+
σn,1

d
θ̃d

n )

− (
σ1,2

d + κ
θ̃d+κ

1 +
σn,2

d + κ
θ̃d+κ

n )+ Cn +3n, (49)

where 3n = 3n−1 + (
2σn,1

d θd
n +

2σn,2
d+κ

θd+κ
n ).

APPENDIX B
PROOF OF THE THEOREM 1

Proof: According to Lemma 5, Vn can be analyzed as
follows:

Vn ≤
1
2

e2
1 +

n∑
k=2

21−qk e2
k +

n∑
k=1

1
2
θ̃2

k

≤ ϖ

( n∑
k=1

e2
k +

n∑
k=1

θ̃2
k

)
, (50)

where ϖ = max{
1
2 , 21−qk }.

We have derived that

V̇n ≤ −(ed
1 + . . .+ ed

n )− (ϵ1ed+κ
1 + . . .+ ϵned+κ

n )

− (
σ1,1

d
θ̃d

1 + . . .+
σn,1

d
θ̃d

n )

− (
σ1,2

d + κ
θ̃d+κ

1 +
σn,2

d + κ
θ̃d+κ

n )+�

= −

n∑
k=1

ed
k −

n∑
k=1

ϵked+κ
k −

n∑
k=1

σk,1

d
θ̃d

k

−

n∑
k=1

σk,2

d + κ
θ̃d+κ

k +�, (51)

where � = Cn + 3n . Then, according to the third term of
Lemma 3, we can continue to obtain that

V̇n ≤ −ϖ1

n∑
k=1

(ed
k + θ̃d

k )−ϖ2

n∑
k=1

(ed+κ
k + θ̃d+κ

k )+�

Authorized licensed use limited to: UTIA. Downloaded on August 30,2023 at 13:05:21 UTC from IEEE Xplore.  Restrictions apply. 



GUO et al.: NON-SINGULAR FIXED-TIME TRACKING CONTROL 3757

≤ −
ϖ1

ϖ d/2

(
ϖ

n∑
k=1

(e2
k + θ̃2

k )
) d

2
+�

−
ϖ2

ϖ (d+κ)/2 2n1−
d+κ

2

(
ϖ

n∑
k=1

(e2
k + θ̃2

k )
) d+κ

2

= −01V
d
2

n − 02V
d+κ

2
n +�, (52)

where ϖ1 = mink=1,...,n{1, σk,1
d }, ϖ2 = mink=1,...,n{1, σk,2

d+κ
},

01 =
ϖ1
ϖ d/2 , and 02 =

ϖ2
ϖ (d+κ)/2 .

Then, using Lemma 1, we obtain that there exists a time T ,
such that

Vn ≤ R := min
{( �

01θ

) 2
d
,
( �

02θ

) 2
d+κ

}
, (53)

when t ≥ T , where

T ≤
2

01(1 − θ)(2 − d)
+

2
02(1 − θ)(d + κ − 2)

,

and 0 < θ < 1 is a constant. This implies that the closed-
loop system (12) is practically fixed-time stable. Moreover,
because Vn ∈ L∞, thus ek ∈ L∞, θ̃k ∈ L∞, k = 1, . . . , n.
Then, we can derive that ξ∗

k is bounded. Thus ξk = ek + ξ∗

k ,
k = 2, . . . , n are bounded, and ξ1 = e1 + ξd is bounded.
Therefore, all states of system (10) are bounded.

Due to Vn ≤ R when t ≥ T , thus, we have |e1| ≤
√

2R
when t ≥ T . Define the output tracking error z = y −

yd . Recalling the transformation functions (8) and (11) and
applying the mean value theorem, we get that there exists a
constant ξ̂ such that

|z| =

∣∣∣∣h11(t)+ h12(t)
2

tanh
(

2ξ1

h11(t)+ h12(t)

)
−

h11(t)+ h12(t)
2

tanh
(

2ξd

h11(t)+ h12(t)

)∣∣∣∣
=

h11(t)+ h12(t)
2

∣∣∣∣ 1

cosh2(ξ̂ )
×

2(ξ1 − ξd)

h11(t)+ h12(t)

∣∣∣∣
≤

h11(t)+ h12(t)
2

×
2

h11(t)+ h12(t)

∣∣ξ1 − ξd
∣∣

= |ξ1 − ξd |

= e1,

where ξ̂ ∈

(
2ξ1

h11(t)+h12(t)
,

2ξd
h11(t)+h12(t)

)
. Therefore, |z| = |y −

yd | ≤ |e1| ≤
√

2R when t ≥ T , which means that the practical
fixed-time output tracking objective (7) is achieved, that is,

|y(t)− yd(t)| ≤ ζ =
√

2R, ∀t ≥ T .

Moreover, since it has been obtained that ξk , k = 1, . . . , n
are bounded, thus −hk1(t) < xk < hk2(t) is satisfied for
−hk1(0) < xk(0) < hk2(0). Therefore, all the state constraints
are not violated all the time.

This completes the proof.
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