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Abstract: Some dynamical systems are characterized by more than one time-
scale, e.g. two well separated time-scales are typical for quasiperiodic systems.
The aim of this paper is to show how singular perturbation methods based on
the slow-fast decomposition can serve for an enhanced parameter estimation
when the slowly changing features are rigorously treated. Although the ulti-
mate goal is to reduce the standard error for the estimated parameters, here we
test two methods for numerical approximations of the solution of associated
forward problem: (i) the multiple time-scales method, and (ii) the method
of averaging. On a case study, being an under-damped harmonic oscillator
containing two state variables and two parameters, the method of averaging
gives well (theoretically predicted) results, while the use of multiple time-scales
method is not suitable for our purposes.
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1. Introduction

In this study, we present a development and testing of suitable methods for the
numerical simulation of the forward problem associated with the inverse problem of
model parameter estimation. The key feature of a process under study is that two
well separated time-scales are present, which is typical for quasiperiodic systems,
i.e. there is a periodic behavior in a fast time-scale and some other phenomenon,
evolving in much slower time-scale, to be identified.

Although the ultimate goal is to quantify and reduce the standard error (confi-
dence interval) for the model parameter estimates, an accurate and fast numerical

DOI: 10.21136/panm.2022.15

163

http://dx.doi.org/10.21136/panm.2022.15


approximation of the forward problem associated with the inverse problem is wanted.
Here, we test two methods: (i) the multiple time-scales method, and (ii) the method
of averaging. In summary, we highlight how singular perturbation methods serve
the corresponding problem of model parameter estimation. On a (linear) model of
an under-damped harmonic oscillator containing two state variables and two param-
eters, we demonstrate both the known pitfalls of the multiple time-scales method
and the feasibility of the averaging method (the first order averaging) employed for
a numerical simulation of the associated forward problem.

2. Preliminaries

2.1. State variables, model parameters, and governing equations

As follows, we present an ODE system in general (linearized) form describing
the first order dynamics of a process depending on model parameters p1, . . . , pm and
evolving in continuous time. A general form of a linear first order ODE system
describing the dynamics of state variable vector x ∈ Rn is

dx(t; p)

dt
= A(p)x(t; p) (1)

with the square matrix A(p) of order n. Vector p ∈ Rm contains all model parameters
defining the system under study. Finally, there are the initial conditions x0 = x(t0; p)
which can be taken as system inputs.

Although our motivation for studying first order dynamical systems (1) dwells
on a prospect to study inverse problems of parameter estimation arising from phar-
macokinetics models, here, as a case study, we shall consider the governing dynamic
equations for a weakly damped linear (harmonic) oscillator. In branch of mechanics,
a mechanical oscillator under the influence of a linear restoring force and friction is
described (using the Newton second law) by the ODE

m ÿ = −k y − b ẏ +mg, (2)

where y is the vertical position of the center of mass (the positive direction is upside
down), m > 0 is the mass, k > 0 is the spring force constant, and b > 0 measures the
strength of the damping. Setting the origin of y-axis at the equilibrium (i.e. at the
position y = 0 the force of gravity is acting on the mass equalized by an adequate
spring force), the governing equation of the system becomes

ÿ + 2δ ẏ + ω 2
0 y = 0, (3)

where δ ≡ b
2m

and ω0 ≡
√
k/m are a usual damping constant and an undamped

oscillation frequency, respectively [cf., Equation (8) for δ = 0 below].

We shall refer to the preceding equation (3) as the damped harmonic oscillator
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equation. Let the initial conditions be1

y(0) = 1, ẏ(0) = 0. (4)

Further, inspired by [6], let us introduce the following transformation of state
variables

x1 = y, x2 =
ẏ

ω0

, (5)

then the single ODE of the second order (3) can be described in the form of (1),
where the state variables vector is

x(t) =

(
x1(t)
x2(t)

)
,

the corresponding form of matrix A is

A(p) =

(
0 ω0

−ω0 −2δ

)
= ω0

(
0 1
−1 −2 δ

ω0

)
, (6)

and the initial conditions are

x(0) =

(
x1(0)
x2(0)

)
=

(
1
0

)
. (7)

2.2. Exact solution of the system (3)-(4)

Assuming that δ < ω0 and setting ω :=
√
ω0

2 − δ2, the exact solution of system
(3) with initial conditions (4) is given by

yex(t) = e−δt
(

cosωt+
δ

ω
sinωt

)
. (8)

Remark 2.1. If we define a scalar dimensionless quantity ε := δ
ω0
� 1, then ω =

ω0

√
1− ε2. Furthermore, employing a usual scaling of time t, i.e. tscaled := ω0 t,

then the exact solution (8) has the form

yex(tscaled) = e−ε tscaled
(

cos
√

1− ε2 tscaled +
ε√

1− ε2
sin
√

1− ε2 tscaled

)
. (9)

As follows, the above single parameter form (9) is used and the scaled time is
(in seek of simplicity) expressed as t, which in fact is fulfilled for the value ω0 = 1.
Moreover, given the transformation of state variables (5), it holds x2 = dx1

dtscaled
.

Remark 2.2. Let us underline that the expression (9) is employed in Section 4.3
for the quantification of errors corresponding to different numerical approximation
methods.

The numerical values of two (only) model parameters used in equations (3)–(9)
within some other related quantities are summarized in Table 1.

1This is done without loss of generality because the y coordinate can be scaled or normalized
by the maximum value of y(t), i.e. y(0) value. Another usual setting of initial conditions for
Equation (3) is y(0) = 0, ẏ(0) = 1.
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Parameter Formula Value Meaning

ω0

√
k/m 1.0 [s−1] undamped oscillation frequency

δ b
2m

10−3 [s−1] damping constant

ε δ
ω0

10−3 [−] dimensionless damping constant

Table 1: Description and values of model parameters used in (3)–(9).

3. Perturbation theory and the averaging principle

Some dynamical systems can be represented by differential equations that are
a small perturbation of an integrable problem.2 Therefore, methods that allow to ap-
proximate the solutions of a perturbed problem, like ẋ = f(t, x; ε), where 0 < ε� 1,
starting from the solutions of the unperturbed one (for ε = 0), are forming the
perturbation theory, see e.g. [1, 2]. Instead of providing a detailed theoretical de-
scription of the singular perturbation (SP) techniques and their variants, for a class
of systems defined by (1) we mention only two of them: (i) the method of multiple
scales (MMS),3 and (ii) the first order averaging.

3.1. Failure of the naive implementation of the MMS technique

Consider a first order expansion of a solution vector x, i.e. x(t, ε) = x(0)(t) +
εx(1)(t) +O(ε2). Then (1) reads

d
(
x(0)(t) + εx(1)(t)

)
dt

= A(ε)
(
x(0)(t) + εx(1)(t)

)
.

For our weakly damped oscillator (1), with matrix A as (6), and after applying
the scaling for both state variables and time, we have

dx(t)

dt
=

(
0 1
−1 0

)
x(t) +

(
0 0
0 −2ε

)
x(t) (10)

with initial conditions (4), i.e.

x(0)(0) =

(
1
0

)
, x(1)(0) =

(
0
0

)
.

Then we find for the leading order problem that

dx(0)(t)

dt
=

(
0 1
−1 0

)
x(0)(t) (11)

2We say that a system of ODEs is integrable if its solutions can be expressed by analytic formulas
up to inversions (by the implicit function theorem) or quadratures; we call the system non-integrable
if this is not possible.

3Because of the inconvenience of method of multiple scales for numerical solution of a class of
pharmacokinetic models, the setting of solvability conditions in frame of MMS is omitted here, for
more details see Remark 3.2.
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with a solution

x(0)(t) =

(
cos t
− sin t

)
.

At next order (for ε1), we find that

dx(1)(t)

dt
=

(
0 1
−1 0

)
x(1)(t) +

(
0 0
0 −2

)
x(0)(t), (12)

which is in fact the ODE for a resonantly forced oscillator, and the solution for the
first component is

x
(1)
1 (t) = sin t− t cos t.

Therefore, a two-term (first order) approximate solution for the component x1 is

x1(t) = x
(0)
1 (t) + ε x

(1)
1 (t) = cos t+ ε sin t− ε t cos t = (1− ε t) cos t+ ε sin t. (13)

Remark 3.1. The above example clearly shows the failure when the naive implemen-
tation of the regular expansion is employed. On the result (13) it can be observed
that the weakly damping system undergoes small changes of the amplitude of the os-
cillation (as (1− ε t)) which cannot be longer negligible on a time scale ε−1 ∼ 1 000,
i.e. when the so-called secular terms invalidate the expansion, see Fig. 1.
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Figure 1: Comparison of the exact solution (9) (solid black curve) with the naive
MMS approximation (13) (dotted curve).

Remark 3.2. The correct employement of the MMS techniques resides in the use of
what are known as solvability conditions in the formal derivation. It can be seen as
a trick to avoid secular terms, and actually it is. Here, we reject this method because
it poses big problem for the numerical implementation of the method.
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Remark 3.3. There is some similarity of MMS to the Poincaré-Lindstedt method
which provides a way to construct asymptotic approximations of periodic solutions.
Nevertheless, the Poincaré-Lindstedt method cannot be used to obtain solutions that
evolve aperiodically on a slow time-scale. Thus, the method of multiple scales, and
mainly its WKB variant (WKB method requires the sate variable x to be 2π-periodic
function of the “fast” time variable θ, see e.g. [2] and references within), is a more
general approach.

3.2. Averaging principle

The averaging principle consists in solving averaged equations, obtained by an
integral average of the original equations (which can be put into a periodic standard
form) over some angular variables; then we consider the solutions of the averaged
equations as representative of the solutions of the original equations for a long time
span (of the order 1/ε). A review of the classical results on averaging methods
in perturbation theory can be found in [2, 6]. Further, in sake of completeness, we
announce (without proofs) two theorems dealing with approximation error estimation
(published in [4]) and we present the approximate solution to (3)–(4) using the first
order averaging (see Section 4.1).

Theorem 3.4. Consider a system of ODEs for x(t) ∈ Rn which can be written in
the standard form

ẋ = εf(x, t; ε). (14)

Here, f : Rn × R× R→ Rn is a smooth function, 2π-periodic in “fast” variable t:

f(x, t+ 2π, ε) = f(x, t, ε).

For R > 0 let BR(x0) = {x(t) ∈ Rn; |x−x0| < R} and M = supx∈BR(x0), t∈T |f(x, t)|.
Then there is a unique solution of the IVP,

x : (−T/ε, T/ε)→ BR(x0) ⊂ Rn

that exists for |t| < T/ε, where T = R
M
.

Theorem 3.5 (Krylov-Bogoliubov-Mitropolski). With the same notation as in the
previous theorem: There exists a unique solution

x̄ : (−T/ε, T/ε)→ BR(x0) ⊂ Rn

of the averaged equation
˙̄x = εf̄(x̄), x̄(0) = x0, (15)

where f̄(x) = 1
2π

∫
T
f(x, t)dt. Moreover, there exist constants ε0 > 0 and C > 0 such

that for all 0 ≤ ε ≤ ε0

|x(t)− x̄(t)| ≤ C ε for |t| ≤ T/ε. (16)
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4. Numerical example

On the ODE system (3)–(4) we now perform some numerical experiments. As
mentioned, the MMS method produces naive numerical results, and thus we use
the averaging principle and compare it with the backward Euler method. First, we
introduce approximate solutions for both approaches.

4.1. Approximate solution to (3)–(4) using the first order averaging

Consider the ODE system (3)–(4) in the following form:

ÿ + y = −2ε ẏ, y(0) = 1, ẏ(0) = 0.

Using the transformation

y = r sin(t− φ), ẏ = r cos(t− φ), (17)

the new variables r, φ satisfy the system

ṙ = ε cos(t− φ)(−2r cos(t− φ)) ≡ εfr(t),

φ̇ = ε1
r

sin(t− φ)(−2r cos(t− φ)) ≡ εfφ(t).

Applying the averaging principle to the above equations leads to solving the system

˙̄r = εf̄r,
˙̄φ = εf̄φ, (18)

where

f̄r =
1

2π

∫ 2π

0

fr(t) dt, f̄φ =
1

2π

∫ 2π

0

fφ(t) dt. (19)

Remark 4.1. Clearly it holds f̄r = −r and f̄φ = 0 but unlike our simple case
study, the integrals of functions fr, fφ in (19) cannot be usually computed easily.
For this purpose we compute it numerically using the trapezoidal rule at points
0 = t0, t1, . . . , tn = 2π.

Let Fr, Fφ be the values of integrals of functions fr, fφ computed numerically, i.e.

Fr ≈
∫ 2π

0

cos2(t) dt, Fφ ≈
∫ 2π

0

sin(t) cos(t) dt.

Then

f̄r = − r
π
Fr, f̄φ = − 1

π
Fφ

and substituting into (18), the system of equations which approximates (3)–(4) is

˙̄r = −εFr
π
r̄, ˙̄φ = −εFφ

π
.
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The solution is

r̄ = Cr exp

(
−εFr

π
t

)
, φ̄ = −εFφ

π
t+ Cφ,

where Cr and Cφ are some constants. Substituting into (17), the approximate aver-
aging solution is then

y(t) = r̄ sin(t− φ̄) = Cr exp

(
−εFr

π
t

)
sin

(
t+ ε

Fφ
π
t− Cφ

)
,

ẏ(t) = r̄ cos(t− φ̄) = Cr exp

(
−εFr

π
t

)
cos

(
t+ ε

Fφ
π
t− Cφ

)
.

The constants Cr and Cφ will be obtained from initial conditions:

y(0) = Cr sin(−Cφ) = 1, ẏ(0) = Cr cos(−Cφ) = 0,

which implies

cos(−Cφ) = 0 ⇒ Cφ = 3
2
π and Cr = 1.

Finally, the approximate solution using the first order averaging has the form

yav(t) = exp

(
−εFr

π
t

)
sin

(
t+ ε

Fφ
π
t− 3

2
π

)
= exp

(
−εFr

π
t

)
cos

(
(1 + ε

Fφ
π

)
t). (20)

4.2. Approximate solution to (3)–(4) using the backward Euler method

Transformation

x1 = y, x2 = ẏ

leads to a system

ẋ = Ax, x =

(
x1

x2

)
, A =

(
0 1
−1 −2ε

)
,

cf. (6), with initial conditions (7). The implicit backward Euler method leads to
solving a linear system

(I −∆tA)x(t+ ∆t) = x(t).

The numerical solution to (3)-(4) is the first component, i.e.

ybe(tj) = x1(tj), j = 0, . . . ,m, tj = j∆t, tm = T. (21)
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Figure 2: Errors of averaging solution and the backward Euler method from the
exact solution, t ∈ [0, 10 000].
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Figure 3: Zoom of errors. Left: t ∈ [0, 100], Right: t ∈ [9 900, 10 000].

4.3. Comparison of solution errors

Consider problem (3)–(4) and take the exact solution (9), the approximate aver-
aging solution (20), and the solution obtained using the backward Euler method (21).
Define the errors of computed solutions from the exact solution as follows:

errorav(tj) = yex(tj)− yav(tj), errorbe(tj) = yex(tj)− ybe(tj), (22)

where tj = j∆t, j = 0, . . . ,m, tm = T (final time). For our numerical computations
we consider the values

ε = 1.0E-3 (see Table 1), ∆t = 1.0E-5, T = 10 000.

Figure 2 shows the errors (22) of averaging solution and the backward Euler method
from the exact solution for t ∈ [0, 10 000]. Figures 3 show zooms. On the left there
are errors for the initial time interval t ∈ [0, 100], while on the right there are errors
for the final time interval t ∈ [9 900, 10 000].
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The results show that the solution obtained using the averaging principle is really
of order C ε as stated in Theorem 3.5 (here for ε = 10−3 we have C ≈ 1) and the error
envelope is decreasing from the beginning. On the other hand, the error envelope of
the Euler method grows at the beginning until the time t reaches the value 1/ε, i.e.
t ≈ 1 000. This maximum value is even for a relatively small step ∆t = 10−5 twice
the maximum value of averaging envelope (C ≈ 2). For t > 1/ε the error envelope
of the Euler method finally tends to zero. Thus, the averaging principle outperforms
the Euler method.

5. Conclusion

We showed the behavior of the Method of Multiple (time)Scales (MMS) and
mainly the Averaging method to approximate the solutions of perturbation prob-
lems. The Naı̈ve implementation of MMS generates wrong results due to presence
of secular terms which cannot be avoided when using a numerical approach. On the
other hand, the averaging method gives satisfactory results, the error is of order C ε
(as predicted by the KBM theorem), and the results are better than those using the
Euler method.
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