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1 Introduction

This study presents an application of one special technique, further called as Bohl-Marek decom-
position, related to the mathematical modeling of biochemical networks with mass conservation
properties. We continue in direction of papers devoted to inverse problems of parameter esti-
mation for mathematical models describing the drug-induced enzyme production networks [3].
However, being aware of the complexity of general physiologically based pharmacokinetic (PBPK)
models, here we focus on the case of enzyme-catalyzed reactions with a substrate transport chain
[5]. Although our ultimate goal is to develop a reliable method for �tting the model parame-
ters to given experimental data, here we study certain numerical issues within the framework of
optimal experimental design [6]. Before starting an experiment on a real biochemical network,
we formulate an optimization problem aiming to maximize the information content of the corre-
sponding experiment. For the above-sketched optimization problem, the computational costs re-
lated to the two formulations of the same biochemical network, being (i) the classical formulation
ẋ(t) = Ax(t) + b(t) and (ii) the 'quasi-linear' Bohl-Marek formulation ẋM (t) = M(x(t))xM (t),
can be determined and compared.

2 Problem formulation

The system of di�erential equations describing the processes under study is described in Tab. 1.
It can be systematically derived using the so-called stoichiometric matrix S ∈ Rn×q, where q is
the number of reactions (including the transport of species).

Table 1: Description of the transport and reaction processes de�ning the network.

Description of the related process Chem. notation Param.

R0: Substrate Xext dosing (model input) ∅ → Xext u(t)
R1: Substrate transport between compartments Xext ⇌ Xint k0
R2: Enzyme E binds to substrate, Xint + E ⇌ C k1
formation of a complex C
R3: Reverse reaction to R2 k−1

R4: Complex breaks down into E plus C → E + P k2
a product P � altered substrate molecule

The vector of changes in species concentrations x ∈ Rn is then described as a linear transforma-
tion of the reaction rate vector ν ∈ Rq:

ẋ(t) = S ν(x, p), (1)
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where

S =

R1 R2 R3 R4


−1 0 0 0
1 −1 1 0
0 −1 1 1
0 1 −1 −1
0 0 0 1

, ν =


k0 (x1 − x2)
k1 x2 x3
k−1 x4
k2 x4

 , p =


k0
k1
k−1

k2

 . (2)

Reaction networks frequently possess subsets of reactants that remain constant at all times, i.e.,
they are referred to conserved species. Generally, there exists a conservation matrix Γ (with
dimension h× n), where the rows represent the linear combination of species (reactants), which
are constant in time. It can be solved explicitly for large systems (0 = Γ S). For our case of S
in form (2), the conservation property reads

x3 + x4 = e0, x1 + x2 + x4 + x5 = u0. (3)

Consequently, here

Γ =

(
0 0 1 1 0
1 1 0 1 1

)
. (4)

The existence of two relations (3) signi�es not only the possibility to reduce the number of state
variables, but also induces the reformulation of the governing equations for species concentration
using negative M-matrices, see (9). For instance, using (2), we get the resulting ODE system in
the usual form

ẋ(t) = Ax(t) + b(x(t)), (5)

with the constant matrix (the linear part of the system)

A =


−k0 k0 0 0 0
k0 −k0 0 k−1 0
0 0 0 k−1 + k2 0
0 0 0 −(k−1 + k2) 0
0 0 0 k2 0

 (6)

and the vector representing nonlinear, e.g. bilinear, parts

b(x(t)) =


u(t)

−k1 · x2(t) · x3(t)
−k1 · x2(t) · x3(t)
k1 · x2(t) · x3(t)

0

 . (7)

The initial conditions are
x(0) =

(
u(t0) 0 e0 0 0

)T
. (8)

The ODE system (5) is nonlinear because of the bilinear terms and time-varying dosing function
u(t). Nevertheless, thanks to the conservation properties (3), there exists an alternative, a quasi-
linear approach representing (in some sense) linearization of originally non-linear system (5)
with the block diagonal system matrix of a special form (negative M-matrix). However, the
system matrix dimension (order) has to be bigger because of the repeated presence of some state
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variables (as it is shown in the next section). To the best of our knowledge, this approach was
proposed by Bohl and Marek [1, 2] and further extended into the control theory framework by
Marek [4].

Theorem (Bohl-Marek decomposition): When the conservation equations of a system of
ODEs contain all variables, then the system can be decomposed into coupled, quasi-linear sub-
problems.

Sketch of the proof : Knowing that all state variables are involved in the conservation proper-
ties, the rate of change of the sum of certain variables (in the left hand side of a corresponding
ODE) must be zero. Consequently the corresponding part of column sums also must be zero.
Finally, the ODE can be reassembled in blocks with desired special structure of M-matrices.

Here in our case study, the state variables are listed in two subsets {x3, x4} and {x1, x2, x4, x5},
and thus the non-linear ODEs (5) can be represented as a linear system with the system matrix
of a special form, a negative M-matrix. Let these two subsets of state variables be assembled
and merged together as follows

x̃(t) =

(
x1(t)
x2(t)

)
, x1(t) =

(
x3(t)
x4(t)

)
, x2(t) =


x1(t)
x2(t)
x4(t)
x5(t)

 .

Then the ODE system for modi�ed state variable vector x̃(t) is

dx̃(t)

dt
=Mx̃(t), (9)

with the block diagonal system matrix M of a special form

M =



−k1 · x2 k−1 + k2 0 0 0 0
k1 · x2 −(k−1 + k2) 0 0 0 0

0 0 −k0 k0 0 0
0 0 k0 −k0 − k1 · x3 k−1 0
0 0 0 k1 · x3 −(k−1 + k2) 0
0 0 0 0 k2 0

 . (10)

The initial conditions are

x(0) =
(
e0 0 u(t0) 0 0 0

)T
.

3 Parameter estimation and experimental design

The quality of parameter estimation is usually measured by the squared error functional

J =

∫ tf

t0

(zm(t)− z(p;u(t); t))2 dt, (11)

where z(p;u(t); t) ∈ Rnout is the output vector, zm(t) ∈ Rnout are (continuous) measured data,
p ∈ Rq is a parameter vector, e.g., p = (k0, k1, k−1, k2)

T , and u(t) is the control input.

Here, in order to maximize the information content of the corresponding experiment, we formulate
the optimal control problem, e.g., we look for an optimal impuls input u(ti)

max
admissible u(t)

∥F(p0)∥. (12)
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If the quantity ∥F(p0)∥, being evaluated at p0, is the determinant of the Fisher information
matrix, i.e., ∥F(p0)∥ ≡ det(F(p0)), we speak about a D-criterion. Note that the key role in
evaluation of F plays the sensitivity matrix χ = ∂z(p0;u(t);t)

∂p ∈ Rnout×q because F = χTχ ∈ Rq×q.

4 Conclusion

As a proof of concept, we took the case of enzyme-catalyzed reactions with a substrate transport
chain, see [5] for parameter values. For two above introduced model formulations, i.e. the
classical formulation (5) and the 'quasi-linear' Bohl-Marek formulation (9), and based on the
di�erent impuls controls u(ti) � the same dosis of substrate in di�erent time instants ti, one can
calculate (numerically) parameter sensitivities, i.e. the partial derivatives of the output vector
z(p;u(t); t) with respect to individual model parameters. Afterwards, comparing ∥F(p0)∥, the
optimal control input maximizing the information content can be selected. Eventually, the
computational costs related to both formulations (5) and (9) can be compared as well.
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