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Abstract

This manuscript aims to deliver a survey of results obtained during the solution of
the project No. GA19-07635S of the Czech Science Foundation. The timespan dedicated
to the work on this project was 1.3.2019 - 30.6.2022. The main area dealt with were
nonlinear multi-agent systems and their synchronization, further, attention was paid to
some auxiliary results in the area of nonlinear observers.

This Report briefly introduces the Project, provides a summary of the results obtained
and also sketches an outline how these results will be applied and extended in future.

1 Introduction

1.1 Goals of the Project

The purpose of the project was the design of algorithms for synchronization of nonlinear
multi-agent systems based on fully nonlinear approaches like the exact feedback linearization.
Several variants of the problems were to be studied, such as state-feedback as well as dynamic
feedback. Thus, some auxiliary results in the nonlinear observers theory were also included
into the project.

1.2 Knowledge Gap to be Filled

Up to the start of the Project, theory of linear multi-agent systems was fairly well-developed.
However, this cannot be said about theory of nonlinear multi-agent systems, in spite of
numerous papers dealing with this topic. The reason is that a majority of these works dealt
with nonlinearities in the agents in a very simple way: they assumed the Lipschitz property
of the nonlinearities. Then, these nonlinearities were estimated, usually using the Young
inequality. This converted the problem of synchronization of a nonlinear multi-agent system
into the problem of sychronization of a linear uncertain multi-agent system. This problem
was extensively elaborated at those time. On the other hand, the drawback of this method
was a relatively high conservativeness of the results. Namely, the synchronizing control law
was able to deal not only with a given nonlinear system but rather with a class of different
systems satisfying a common estimate by the aforementioned Young inequality. Hence there
was a need for a more precise controller design that would have promised larger applicability
combined with more suitable properties of the resulting control law.

To accomplish this task and to deliver practically applicable results, systems with other
features were also studied. This concerns multi-agent systems with delays in the control sig-
nals as this feature is often encountered in system controlled by communication networks -
a typical case of control of multi-agent systems. Moreover, as, in practical applications, not
all quantities are measurable. For instance, in case of mechanical systems, measurement of
velocity is often connected with difficulties. Hence, it is necessary to reconstruct values of
these quantities from the set of the measurable quantities (e.g. the positions or accelerations).
To achieve this goal, observers have to be used; in the connection with nonlinear systems,
the observers must be able to deal with nonlinearities in the system. Theory of nonlinear
observers was not sufficiently elaborated, with many results applicable only under too re-
strictive assumptions. Hence, extension of the nonlinear observer theory and achievement of
practically viable method was also one of the goals set in this Project.



Finally, the ultimate goal was to jointly apply the theory of synchronization of nonlinear
multi-agent systems and the theory of nonlinear observers so as to solve the problem of
synchronization of a nonlinear multi-agent system with output measurements.

2 A Brief Description of Publications Dedicated to the Project

In the list of references, only the publications supported by the Project are listed.
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The publications can be grouped into the following groups:

1. Synchronization of multi-agent systems with delays: journal papers [1], [4], conference
papers [2], [16].

2. Stabilization of large-scale interconnected systems: conference papers [5], [7], [9].

3. Nonlinear observers: journal papers [6], [8], conference papers [12],[13], [14], a conference
contribution at the PANM 2019 meeting.

4. Synchronization of nonlinear multi-agent systems and its application to synchronization
of neurons: journal paper [18], conference papers [3], [10], [11], [17], [19].



5. Other results: PANM (two contributions: one devoted to generalized synchronization
of chaotic systems and one dealt with the small gain theorem for systems described by
quasilinear parabolic equations).

In the subsequent section, the results are described in detail. For results of greater importance,
the abstract of the publication is presented.

The above list of publications splits as follows:

• Jimp: 4 papers,

• Jsc: 1 paper,

• D: 14 papers.

The number of results in the D category significantly exceeded the planned number. All
contributions were presented at meetings co-sponsored by IFAC or IEEE.

2.1 Goals of the Project and their Fulfillment

The goals of the project were:

1. Design of networked control algorithms of nonlinear large-scale interconnected systems.

2. Design of networked control algorithms of nonlinear multi-agent systems, for both the
leader-following as well as consensus problems.

3. Observer-based control for nonlinear large-scale and multi-agent systems, especially
polynomial large-scale systems.

4. All algorithms will be studied for systems with quantization, time delays and also for
the case of event-triggered control.

2.1.1 Large-scale Interconnected Systems

The primary concern was to adopt new, efficient methods for the control of large-scale inter-
connected systems. This is a prerequisite for application to nonlinear large-scale systems as
nonlinearities usually require to apply efficient computational methods, otherwise feasibility
of the problem is compromised.

To achieve this goal, publications [5] and [9] were elaborated.

2.1.2 Nonlinear Multi-Agent Systems and Multi-Agent Systems with Delays

This is the topic most attention was devoted to. Publications concerning nonlinear multi-
agent systems include [3], [10], [11]. Moreover, application of the theory of the nonlinear
multi-agent systems to the synchronization of a neural network composed of Hindmarsh-Rose
neurons also belongs to this part of the Project. This area is covered by [18], [17] and the
preliminary result published in [19].

Since the delays are inevitable in practical control of multi-agent systems, it was also
necessary to prepare theoretical foundations for application of control signals that are delayed
to the control of multi-agent systems. Moreover, both these areas were unified into the theory
of control of nonlinear multi-agent systems with delayed controls. This covers many real-world
applications such as control of unmanned aerial or underwater vehicles. Control of multi-agent
systems with delayed control signals is studied in [1], [4] or [2].



2.1.3 Observer-Based Control

Here, the primary goal was to improve results in the field of nonlinear observers before they are
applied to the synchronization of nonlinear multi-agent systems. This area includes the paper
[6] whose results were applied in [8], further [13]. Nonlinear observers with event-triggering
were studied in [12], with quantization in [14]. Finally, application of these results to the
synchronization problem of multi-agent systems was presented in [10], thus fully satisfying
this goal.

3 Synchronization of Multi-Agent Systems

3.1 Paper [1]

The paper dealing with the problem of consensus synchronization of linear multi-agent systems
with time delays was [1].

Abstract: The paper presents an algorithm for the solution of the consensus problem of
a linear multi-agent system composed of identical agents. The control of the agents is delayed,
however, these delays are, in general, not equal in all agents. The control algorithm design is
based on the H∞-control, the results are formulated by means of linear matrix inequalities. The
dimension of the resulting convex optimization problem is proportional to the dimension of one
agent only but does not depend on the number of agents, hence this problem is computationally
tractable. It is shown that heterogeneity of the delays in the control loop can cause a steady
error in the synchronization. Magnitude of this error is estimated. The results are illustrated
by two examples.

The most important result proved in this paper is existence of an upper bound for multi-
agent systems with heterogeneous delays in the control loop.

To comment on the main result of that paper, it is necessary to note that the multi-agent
system considered there attainsis composed of N agents in the form

ẋi(t) = Axi(t) +Bui(t), ui(t) = K
∑

neighbors of i

(xj(t− τj)− xi(t− τi) (1)

where τi, τj are communication delays (uniformly bounded) and the graph concerning the in-
terconnection topology is undirected and contains a spanning tree. Moreover, matrices Qi,i =
1, 2, R, S and Y of suitable dimensions appear in the main result as well as matrix function Σ.
To be precise, this functions is defined as follows: Assume first matrices Q1, Q2, S ∈ Rn×n and
Y ∈ Rm×n are given. Then one can define functions σ11, σ12 : R → Rn×n, σ13, σ23 : R → Rn×m

and matrices σ16, σ33 as

σ11(d) =AQ2 +QT
2A

T + d(BY + Y TBT ),

σ12(d) =Q1 −Q2 + εQT
2A

T + dY TBT ,

σ13(d) =τ̄ dBY,

σ16 =Q
T
2 C

T ,

σ22 =− ε(Q2 +QT
2 − τ̄S)



Using these functions, let us define matrix-valued function Σ : R → R(4n+m+p)×(4n+m+p) by

Σ(d) =



σ11(d) σ12(d) σ13(d) In 0 σ16
∗ σ22 εσ13(d) 0 In 0
∗ ∗ σ33 0 0 0
∗ ∗ ∗ −σIn 0 0
∗ ∗ ∗ ∗ −γ

ε In 0
∗ ∗ ∗ ∗ ∗ −Ip


It is denoted as (here, a simplified version is presented)

Theorem 4.1: Consider the multi-agent system (1) satisfying Assumption 2.1.1 Assume also
the minimal nonzero eigenvalue of the Laplacian matrix is equal to d1 and maximal eigenvalue
of the Laplacian matrix equals dN−1. Let there exist n× n-dimensional matrices Q1 > 0, Q2

nonsingular, S > 0, a m× n-dimensional matrix Y and scalars γ > 0, ε > 0 such that

Σ(d1) < 0, Σ(dN−1) < 0. (2)

holds. Then

1. if
w1 = · · · = wN , τ1 = · · · = τN for every t ≥ 0 (3)

then consensus is achieved;

2. if condition (3) is not satisfied, then there exists a constant c > 0 such that

lim
t→∞

sup

N∑
i=1

∥xi − x̄∥ ≤ c∥ω2∥ (4)

and the function ω2 =


∫ t
t−τ1

˙̄x(s)ds
...∫ t

t−τN
˙̄x(s)ds

 where x̄ is the average dynamics.

The paper highlights a not well known feature preventing the synchroniza-
tion to appear. Even if heterogeneous delays are much more natural, attention
was almost exclusively paid to multi-agent systems with equal delays before.
Moreover, a bound on the steady synchronization error was derived, hence
inducing a bound on the maximal difference in the delays of different agents.

3.2 Paper [4]

This is a counterpart of the previously mentioned paper for the case of a leader-following
synchronization.

Abstract: An algorithm for leader-following synchronization of a multi-agent system that
is composed of linear agents with a time delay is presented. The presence of different delays

1Assumption about connectedness and existence of a spanning tree of the graph describing the intercon-
nection topology



in various agents can cause a synchronization error that does not converge to zero. However,
the norm of this error can be bounded and this bound is presented. The proof of the main
results is formulated by means of linear matrix inequalities and the size of this problem is not
dependent on the number of agents. Results are illustrated through examples highlighting the
fact that the steady error is caused by heterogeneous delays and demonstrate the capability of
the proposed algorithm to achieve synchronization up to a certain error.

The multi-agent system is composed of the following agents

ẋ0 =Ax0, ẋi = Axi +Bui, i = 1, . . . , N, (5)

xi(0) =xi,0, i = 0, . . . , N (6)

and the control of the ith agent is given by

ui = −Kdi(x0,τ0 − xi,τi)−
N∑
j=1

EijK(xj,τj − xi,τi). (7)

The time delays are uniformly bounded as in the previous paper. The graph describing the
interconnection topology is supposed to contain a spanning tree, however, the graph can be
directed.

The main result uses a matrix function Σ defined in the Appendix of the paper. It is
defined in a manner similar to the matrix function Σ introduced in the previously mentioned
paper.

Theorem 5: Let constants λ1, λ2 ∈ R, ι1, . . . , ιk ∈ C such that all eigenvalues of L+D2

lie in the convex hull of λ1, λ2, ι1, ῑ1, . . . , ιk, ῑk. Assume that n × n-dimensional matrices Q,
S and W exist such that S > 0 and W > 0, Q is nonsingular, a m×n-dimensional matrix Y
and scalars ε > 0 and γ > 0 and K = Y Q−1 so that Σ(A, λiB, Y,Q, S,W ) < 0 for all i = 1, 2
and Σ(I2 ⊗ A, J ′(ι) ⊗ B, I2 ⊗ Y, I2 ⊗ Q, I2 ⊗ S, I2 ⊗W, ε, γ) < 0 for all i = 1, . . . , k. Then a
constant κ exists such that for all T ′ > 0 holds∫ T ′

0
∥ξ∥dt ≤ κ

∫ T ′

0
∥ω2∥2dt (8)

if ξ(t) = 0 for t ∈ [−τ̄ , 0] and ω2 =


∫ t−τ0
t−τ1

ẋ1(s)ds
...∫ t−τ0

t−τN
ẋN (s)ds

 .

A generalization of the results described in the previous papers.

3.3 Conference paper [2]

A preliminary version of the aforementioned journal paper, with reduced amount of informa-
tion, was presented at the ECC 2020 conference.

2matrix L is the Laplacian matrix, D is the pinning matrix



3.4 Conference paper [16]

A multi-agent system with a jointly connected topology (the interconnection topology of the
agents periodically switches among a finite number of interconnection topologies, however,
the union of these interconnection topologies is strongly connected) was considered here.
Moreover, the system was assumed to have a sampled control. A synchronization algorithm
for such a system was developed.

Abstract: An algorithm for synchronization of a linear multi-agent system with jointly
connected topology is presented.The system is composed of identical agents. It is assumed
that the control of the agents is sampled. The resulting control is obtained as a solution of
a set of linear matrix inequalities originating from a suitable Lyapunov-Krasovskii functional
in connection with the Barbalat lemma. An example illustrates the results.

It is assumed the agents are identical, described by the equation ẋi = Axi+Bui, the control
ui is sampled with period τ̄ , the interconnection topologies are denoted by Gi, i = 1, . . . , ν; it
is assumed all topologies are exchanged during any interval of length T1, the maximal time
for any topology to stay unchanged is T2 > 0, the minimal time between topology switches is
T3 > 0.

The results are summarized by Theorem 7:
Theorem Let there exist n × n-dimensional matrices Q1 > 0, Q2 non-singular, R > 0,

a m × n-dimensional matrix Y and scalars α > 0, β ∈ (0, 1) and ε > 0 so that, with
matrix-valued function Σ defined below, with some positive constant c and κ (depending on
the system, see the paper) and K = Y Q−1

2 the following holds: Σ(d1) < 0, Σ(dN−1) < 0,
(T2α∥Q−1

2 ∥2ν(1− β)− νT3κ(
1
β + 1)c2) > 0. Then the multi-agent system is synchronized.

Here,

Σ(d) =

ε((AQ2 + dBY ) + (AQ2 + dBY )T ) Q1 −Q2 + ε(QT
2A

T + dY TBT ) τ̄ dBY
Q1 −QT

2 + ε(AQ2 + dBY ) −ε(Q2 +QT
2 ) + τ̄R ετ̄dBY

τ̄dY TBT ετ̄dY TBT −τ̄R


(9)

The result is more efficient than existing approaches as it uses a method
specifically tailored to handle sampled multi-agent systems with jointly con-
nected topology.

Note also that systems with jointly connected topology can be used as a
model for multi-agent systems with partially disturbed communication, e.g.
by malicious attacks. This result can thus be a base for a development of a
control law resilient against these attacks.

4 Stabilization of Large-Scale Systems

4.1 Conference paper [5]

This paper improves results obtained before by using a more powerful matrix inequalities
based on the Wirtinger inequality. Moreover, the interconnection of the subsystems is more
general (the previous paper whose results are generalized, namely the paper Bakule et al.,
Decentralized H-infinity control of complex systems with delayed feedback, Automatica, 67:
127 – 131, 2016 is focused on systems where all subsystems are coupled).



The system considered is composed of subsystems

ẋi =Axi +BKxi +BK(xi,τi − xi) +

N∑
j=1

lijÃ(xj − xi), xi(0) = xi,0, i = 1, . . . , N. (10)

The control actions are given by ui(t) = Kxi(t− τi).
The most important result is as follows:
Assume γ > 0 is a scalar and let there be n × n-dimensional matrices P̄ > 0, R̄ > 0,

S̄ > 0, W > 0 and Z̄ > 0 and Y ∈ Rn×m. Let us also define matrix Ψ by

Ψ =



ψ11 ψ12 ψ13 ψ14 ψ15 ψ16 0
∗ ψ22 ψ23 εψ14 0 0

√
εψ16

∗ ∗ ψ33 0 0 0 0
∗ ∗ ∗ ψ44 0 0 0
∗ ∗ ∗ ∗ −In 0 0
∗ ∗ ∗ ∗ ∗ −γIn 0
∗ ∗ ∗ ∗ ∗ ∗ −γIn


where

ψ11 =Q
T (A+ dÃ)T + (A+ dÃ)Q+ R̄− S̄

ψ12 =P̄ −Q+ ε(QTAT + dQT ÃT )

ψ13 =S +BY

ψ14 =BY

ψ15 =Q
TCT

ψ16 =G

ψ22 =− ε(Q+QT ) + τ ′2R̄+ (τ̄2 − τ ′2)W + εZ

ψ23 =εBY

ψ33 =− R̄− S̄

ψ44 =− π2

4
W

Theorem:Assume there exist scalars ε > 0, γ > 0 and matrices P̄ > 0, W > 0, R̄ > 0,
S > 0, Q nonsingular and Y so that

Ψ(d) <0 (11)

holds for d = λmin(L) as well as for d = λmax(L). Let also K = Y Q−1. Then system (1) with
control given by (13) is stable. This paper also shows how much improvement was achieved
in comparison with previously obtained results.

A less conservative method for finding the stabilizing control of an inter-
connected large-scale system was obtained, its properties were illustrated. A
thorough comparison with methods developed earlier was presented.



4.2 Conference paper [9]

Here, the attention is paid to discrete-time large-scale systems with delays in the control loop.
To be specific, we consider the interconnected system composed of N subsystems

xi(k + 1) = (A+DFi(k)E)xi(k) +Bui(k) +

N∑
j=1

lijÃxj(k), (12)

where i = 1, . . . , N , xi : N → Rn, A, Ã ∈ Rn×n, B ∈ Rn×m, the control ui : N → Rm is given
by

ui(k) = Kxi(k − τ(k)) (13)

with a matrix K ∈ Rm×n to be designed.
It is assumed the interconnection matrix is symmetric and its smallest eigenvalue is de-

noted by dmin, the maximal one is dmax and the time delays are uniformly bounded between
dm and dM .

First, for given matrices P , X, Qi, i = 1, 2, 3, Mi, Ni, Ri, Li, Yi, i = 1, 2 one constructs
matrix Ω(d) as follows:

Ω(d) =


ω11 ω12 ω13 ω14(d)
∗ ω22 ω23 ω24

∗ ∗ ω33 0
∗ ∗ ∗ ω44

 ,

ω11 =− P + (1 + dM − dm)Q1 +Q2 +Q3 +H(N1),

ω12 =(L1 −M1 +NT
2 −N1 M1 − L1),

ω13 =(
√
dM − dmL1

√
dM − dmM1

√
dMN1),

ω14(d) =(ω14,1(d) ω14,2(d) ω14,3(d))

ω14,1(d) =A
T + dÃT ,

ω14,2(d) =
√
dM − dm(AT + dÃT − I),

ω14,3(d) =
√
dM (AT + dÃT − I)T

)
,

ω22 =

−Q1 +H(L2 −M2 −N2) M2 −L2

∗ −Q2 0
∗ ∗ −Q3

,
ω23 =

√
dM − dmL2

√
dM − dmM2

√
dMN2

0 0 0
0 0 0

 ,

ω24 =

KTBT
√
dM − dmK

TBT
√
dMK

TBT

0 0 0
0 0 0

 ,

ω33 =diag(−R1 −R2,−R1,−R2),

ω44 =diag(X,Y1, Y2).



The paper presents a proof of the statement that, if there exist matrices P > 0, Qi > 0, Mi

etc. such that the following relations hold

0 >Ω(dmin), (14)

0 >Ω(dmax), (15)

In =PX, (16)

In =R1Y1, (17)

In =R2Y2 (18)

then the discrete-time large-scale system composed of N subsystems (12) is stable.
The resulting set of matrix inequalities is not linear. An iterative procedure was proposed

that renders the problem into a subsequent solution of a set of linear matrix inequalities. This
procedure enables us to use effective LMI solvers to obtain the result.

Discrete-time complex systems are being studied less frequently than sys-
tems with continuous time, thus this paper aims to fill this gap.

5 Nonlinear Observers

5.1 Paper [6]

Abstract: This paper presents a computational procedure for the design of an observer of a
nonlinear system. Outputs can be delayed, however, this delay must be known and constant.
The characteristic feature of the design procedure is computation of a solution of a partial
differential equation. This equation is solved using the finite element method. Conditions
under which existence of a solution is guaranteed are derived. These are formulated by means
of theory of partial differential equations in L2-space. Three examples demonstrate viability
of this approach and provide a comparison with the solution method based on expansions into
Taylor polynomials.

Here, a construction of an observer for the systems

ẋ = F (x) for t ≥ −τ, y = h(xτ ) for t ≥ 0 (19)

with initial conditions
x(−τ) = x0 ∈ Rn. (20)

is described. As noted in the references to this paper, the observer is given by
Preliminaries: We aim to find an observer defined as

˙̂x = F (x̂) + L(x̂)(yτ − ŷτ ), ŷ = h(x̂). (21)

The crucial object is the observer gain L : Rn → Rn designed so that the observation error
e(t) = x(t)− x̂(t) converges to zero for t→ ∞.

To find the observer gain, one has to solve the equation for a smooth function Φ : Rn → Rn:

∂Φ

∂x
F (x) = ÃΦ(x) + bh(xτ ) (22)



where matrix Ã has sufficiently stable eigenvalues and the pair (Ã, b) is controllable. Then,
the control gain is given by

L =
(∂Φ
∂x

(x̂)
)−1

b (23)

The main contribution of the paper was twofold: first, it delivered a proof of existence
of equation (21) on a predefined domain (as opposed to the proof of existence using Taylor
series obtained before). The other one is a successful application of the Finite Element Method
(FEM) to the solution of (21).

The existence result (in this report, it is presented in a rather simplified version) is for-
mulated as (with A being the linearization of function F at the origin)

Theorem:
Assume Ω ⊂ Rn, 0 ∈ Ω, is a bounded domain such that

ai −
1

2

(
divF (x)

)
> 0 (24)

holds for all x ∈ Ω and all i = 1, . . . , n. Let also Γ−
i = {x ∈ ∂Ω|n(x).(F (x)) < 0}. Then

• for every i ∈ {1, . . . , N} there exist uniquely determined functions ϕi ∈ L2(Ω), ϕi = 0
on Γ−

i , such that ϕ = (ϕ1, . . . , ϕn)
T solves (22).

• the observer gain L given by

L(x̂) =
(
Φ̄ +

∂ϕ

∂x
(x̂)

)−1
b (25)

is such that observer (21) guarantees limt→∞ ∥e(t)∥ = 0.

This is a point that justifies the application of the finite element method.

This paper generalizes some assumptions guaranteeing existence of the ob-
server gain, thus increasing number of potential applications of this method.
Note that before, these assumptions were too restrictive to be applicable to
many real-world systems. Moreover, implementation details and a brief tuto-
rial for a numerical solution by the Finite Element Method were presented.

5.2 Conference paper [13]

This conference paper can be regarded as a discrete-time counterpart to the paper described in
the previous subsection. The methodology is analogous, albeit instead of a partial differential
equation, a functional equation is solved. As there is not a software for solution of this kind
of equations, it was necessary to develop algorithms including implementation of this method
from scratch.

The most important contribution of this paper is twofold: first, the method developed here
enables to remove the requirement for asymptotic stability of the observed system (that was
imposed on the observed system earlier) and an effective numerical method for computation
of the observer was proposed.



We consider the discrete-time system

x(k + 1) =F (x(k)), x(0) = x0, (26)

y(k) =h(x(k)) (27)

where x : N → Rn is the state, y : N → R is the output, F : Rn → Rn, h : Rn → R are
continuous functions.

An observer is constructed for this system. It was known previously that the observer is
constructed using the solution T of the following equation

T (F (x)) = Ax+ bh(x), T (0) = 0 (28)

on a pre-defined domain. Solution of this equation was conducted numerically, using the
finite difference method. This means, values of the solution were evaluated on a fixed discrete
mesh. The values in other points were approximated using polynomial interpolation.

Numerical methods (apart from those using the expansion into Taylor poly-
nomials) were not proposed for this kind of observers for discrete-time sys-
tems. The proposed method allows to find a solution under milder assump-
tions than in the pioneering paper.

5.3 Journal article [8]

The paper presents an application of the aforementioned method to the problem of state
estimation of a biological system - a bioreactor.

Abstract: An observer for a nonlinear biological system — biomass production in a
bioreactor — is proposed. The specific growth rate is estimated. The key point of the observer
design is finding a solution of a certain partial differential equation. Conditions guaranteeing
existence of its solution are presented. The solution is approximated using finite element
method. The results are illustrated by a numerical example.

The problem concerned is estimation of the state of the biomass growth in a bioreactor.
This process can be described by equations (see references in the paper):

ẋ =(µ−D(x, t))x, (29)

µ̇ = ρ(x, µ, t). (30)

The first equation describes changes in the biomass concentration x dependent on the dilution
rate D while the second equation shows how the specific growth rate changes. The function
ρ attains a specific form according to the kinetic model used - the kinetics is reformulated
using the Monod or Haldane curves.

This problem poses several challenges connected mainly with the fact that the system
exhibits a dynamics whose parts are very fast and, simultaneously, other parts are very slow.
Still, it was demonstrated that the proposed algorithms copes well with the problem. The
results were illustrated by examples.



This paper demonstrates how the finite element-based method for a con-
struction of a nonlinear observer is capable of handling a real-world problem.
This result is interesting also since the observed system exhibits dynamics
with two time scales - parts of its dynamics are much faster than other parts.
Even this challenge was successfully resolved.

5.4 Conference paper [14]

In this paper, the results concerning the Luenberger observer were extended to the case when
the measurements are quantized. Quantization of the measured data in combination with the
Luenberger-like nonlinear observer were not investigated before.

Abstract: A Luenberger-like observer for nonlinear systems with quantized measurements
is proposed. The observer design is based on the solution of a certain partial differential equa-
tion that is solved numerically. Then, stability of this observer is proved even in presence of
quantized measurements and delayed measurements. The results are illustrated by an example.

Quantization often occurs when data is transmitted through communication networks.
Therefore the need for investigation of effects of quantization on the precision of the Lu-
enberger observer for nonlinear systems. In the paper, the observer investigated in [6] was
augmented by the quantization mechanism: the measured data were quantized by a logoarith-
mic quantized, resulting in the fact that the measured data attained only a discrete set of
values {σρj} ∪ {−σρj} ∪ {0}, j ∈ N with σ > 0 and ρ > 0 were parameters of the quantizer.

The scheme of the observer with quantized measurements is shown in Fig. 5.4. The
transmitted value of the output of the quantizer is transmitted through the channel.
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Figure 1: Observer with quantized measurements.

It was shown that the problem of observation with a quantized observer can be converted
into a problem of observation with an observer with uncertainty. The major tool to derive
the results were also Lyapunov functions in connection with linear matrix inequalities theory.
The main results (Theorem 5) reads Theorem Consider system (as in [6]) with the time
delay τ > 0. Let there exist n× n-dimensional matrices P > 0, Q > 0 and a scalar h > 0 so



that the following matrix inequalities hold:

ÃTP + PÃ+ τ
(
2Q+ (Mδ)2P + (Mδ)4P

)
<0, (31)

hÃT Ã <P, (32)

hIn <P, (33)(
Q P
∗ hIn

)
>0, (34)

Then the observation error converges to zero. (The constant M > 0 describes the robustness
required due to the application of the quantized control; more to be found in the original paper.)

To our best knowledge, this is the first attempt to combine the Luenberger-
like observer design with quantization.

5.5 Conference paper [12]

This paper is another continuation of the effort in investigation of the Luenberger-like nonlin-
ear observers. Here, the nonlinear observer is combined with the event-triggering mechanism;
these two areas have not been combined before.

Abstract: A Luenberger-like observer for nonlinear systems combined with the event-
triggering mechanism is proposed. A proof of stability of the proposed scheme is presented.
Moreover, it is proved that the Zeno behavior does not happen. The results are illustrated by
an example.

The paper was presented at the CDC 2021 conference, this is one of most
important events in the area of the control theory and cybernetics.

The observer is the same as considered in paper [6]. However, here, the measurements
are not obtained continuously in time but rather in certain time instants when the so-called
event-triggering condition is satisfied. The observer with the event-triggering mechanism can
be seen in Fig. 5.5. Note that the data is transmitted only at the discrete time instants tk
rather than continuously in time, thus economizing the capacity of the transmission channel.

The event-triggering condition reads

tk+1 = inf{t > tk | |y(t)− y(tk)| ≥ δ(|y(t)|+ d)}. (35)

with user-defined parameters d and δ.
The main idea is to design a Lyapunov function V = eTPe (e being the observation error

and P is a symmetric positive definite matrix) for the observer without the event-triggering
mechanism, then, this Lyapunov function is used as a tool for analysis of the event-triggered
observer. Existence of the event-triggering mechanism yields that the observation error does
not converge to zero but there is a steady error that can be bounded as

∥e∥2 ≤ K̄
βδ2

λmin(P )γ
(M + d)2 (36)

with K̄, β, γ and M are certain positive constants.
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Figure 2: Event-triggered mechanism and observer.

Moreover, it has been demonstrated that the minimal inter-event time is positive, hence,
the so-called Zeno behavior (infinite number of events during a finite time interval) does not
occur. The lower bound on the minimal time interval between two events is also derived and
presented in the paper.

The Luenberger observer with event-triggering mechanism was not studied
before. Convergence of the estimate together with absence of the Zeno be-
havior (that means, existence of a nonzero minimal interval between events)
has been proved.

5.6 Conference Contribution - A Numerical Method for the Solution of the
Nonlinear Observer Problem, Programs and Algorithms of Numerical
Mathematics

Moreover, numerical aspects of the finite element-based method for the solution of the non-
linear observer problem were discussed at the PANM 2020 meeting at Hejnice, July 2020.
Issues concerning convergence of the finite element method were discussed in a more detail
than in the aforementioned papers.

This contribution has not been included into the proceedings.
Reference to this contribution: : A Numerical Method for the Solution of the Nonlinear

Observer Problem, Programs and Algorithms of Numerical Mathematics. Proceedings of
Seminar, p. 110-119 , Eds: Chleboun J., Kůs P., Přikryl P., Rozložńık M., Segeth K., Š́ıstek
J., Programy a algoritmy numericke matematiky 2020 (PANM 2020), (Hejnice, CZ, 20200621)



6 Nonlinear Multi-Agent Systems

6.1 Conference paper [3]

The synchronization problem for a nonlinear multi-agent system is investigated in this pa-
per. Both the leader-following as well as the consensus problem are investigated. The most
important result is a procedure that guarantees how to change the control signal in order to
change the resulting average dynamics to be equal to the dynamics of one agent.

Abstract: Synchronization of a multi-agent system composed of identical nonlinear agents
admitting exact feedback linearization is presented. The agents may not be fully lineariz-
able, however, if they are minimum-phase systems, synchronization is achieved. Both leader-
following as well as the consensus problem are treated. In the latter case, it is guaranteed that
the average dynamics equals to the dynamics of one agent. The results are illustrated by an
example.

Application of the exact feedback linearization, as described in several papers before, is a
nonlinear transformation of all agents into a linear form. The resulting linear form is useful for
effective design of the synchronizing control, however, some undesirable effects arise. In the
case of the consensus problem, if the consensus is achieved, the resulting average dynamics
(sometimes called the consensus dynamics) is not identical to the dynamics of one agent
(which is nonlinear) but rather to the linearized dynamics of the agent. (Still, one can say
that the consensus problem has been solved as the synchronization error converges to zero.)
In the case of the leader-following problem, the situation is more complicated - the followers
do not track the dynamics of the leader but rather the linearized dynamics of the leader,
hence the leader following problem has not been solved successfully.

A remedy is found for both problems by adding some terms to the feedback. Addition
of these terms requires to use the robust control theory. Then, using a suitable Lyapunov
function in connection with the small gain theorem one can infer that the synchronization
in both the consensus problem as well as the leader-following problem is guaranteed while
the dynamics of the leader is exactly followed in the latter case and the average dynamics is
identical to the dynamics of a single agent in the first case.

This result eliminates some unwanted features of the method developed
earlier (namely, alteration of the average dynamics), thus increasing its po-
tential applicability.

6.2 Conference paper [10]

Consensus of nonlinear multi-agent systems with output feedback is solved. This result fuses
both directions investigated in this Project - theory of synchronization of nonlinear multi-
agent systems with theory of nonlinear observers.

Abstract The consensus problem of a multi-agent system with nonlinear agents is solved.
It is assumed only the outputs of the agents are measurable, in order to obtain the estimate
of the state, the nonlinear Luenberger observer is applied. The control of the agents is based
on the exact feedback linearization. The method is illustrated by an example.

The task is divided into two subproblems: finding an observer for the nonlinear agents and
finding the synchronizing control law with state feedback. Then, both problems are combined,



it is proved that application of the state estimate instead of the true state of the agents also
leads to synchronization.

The observer is constructed using the same method as in paper [6], with application of
the finite elements. Thus, details are omitted here. Moreover, with the designed observer,
one can construct a Lyapunov function V (depending on the observation error) such that,
for each agent, this Lyapunov function converges to zero. Such a function exists since the
observer was constructed so that the observation error converges to the origin.

The synchronizing controller was designed using the exact feedback linearization, with
the assumption of the state feedback in mind. As such a control renders the synchronization
error to zero, one can again construct a Lyapunov function W that converges to zero for time
growing to infinity.

The last task is to investigate the sum of both Lyapunov functions under the condition
that, for the feedback, the output of the observer was used instead of the true state. This
causes appearance of an additional term that intercouples both Lyapunov functions. The
main result, formulated by means of Theorem 5.1, states that, if the Lyapunov functions
are designed so that certain inequalities hold, then this control law guarantees synchronization
of the nonlinear multi-agent system under the output feedback.

This is the most important result obtained in this Project as it merges
two important research lines this Project was focused at - theory of nonlinear
observers and nonlinear multi-agent systems. It was presented at the Micnon
2021 meeting, which is one of important meetings in the area of nonlinear
control systems.

6.3 Conference paper [11]

In this paper, a special class of nonlinear agents - so-called underactuated systems - were
studied. Such systems are often met in practice, e.g. in robotics.

Abstract Consensus synchronization problem was solved for a multi-agent system com-
posed of identical underactuated system. The method is based on using a collocated feedback
combined with a choice of the fictitious output so that the agents are minimum-phase with
this output. Then, a synchronizing control is found based on the transformed variables. The
results are illustrated on an example.

The dynamics of the underactuated system was supposed to attain the form

D(qi)q̈i + C(qi, q̇i)q̇i +G(qi) = B(qi)ui (37)

with qi being the state and ui being the control.
Before the result about the synchronization of the nonlinear multi-agent systems can be

applied, it is necessary to ensure that the agents have an exponentially stable zero dynamics.
Fortunately, there is a result that enables to redefine the output of an underactuated system
so that this property is established. This procedure in combination with the algorithm for
synchronization of nonlinear multi-agent systems yield the final result.



This paper, thanks to the practical importance of the underactuated sys-
tems, might potentially have a major impact of the project in real-world
applications.

7 Applications to the Synchronization of Hindmarsh-Rose Neu-
rons

The results obtained in the field of synchronization of nonlinear multi-agent systems were
applied to the synchronization of a network composed of Hindmarsh-Rose neurons. These
networks have the favourable property that the agents - in this case, the neurons - admit the
exact feedback linearization and, moreover, their zero dynamics is asymptotically stable.

7.1 Paper [18]

This is the most important result in this part of the Project. Here, the expertise gained in
the field of synchronization of nonlinear multi-agent systems was applied to the problem of
synchronization of a network composed of Hindmarsh-Rose neurons. Moreover, the aforemen-
tioned methodology was extended by investigating the network with noise in agents (neurons)
which is a very practical extension.

Abstract: An algorithm for synchronization of a network composed of interconnected
Hindmarsh-Rose neurons is presented. Delays are present in the interconnections of the neu-
rons. Noise is added to the controlled input of the neurons. The synchronization algorithm is
designed using convex optimization and is formulated by means of linear matrix inequalities
via the stochastic version of the Razumikhin functional. The recovery and the adaptation vari-
ables are also synchronized, this is demonstrated with the help of the minimum-phase property
of the Hindmarsh-Rose neuron. The results are illustrated by an example.

In this paper, it is shown that the model of the Hindmarsh-Rose neuron, described by the
following set of equations, the HR neuron is defined by the following equations:

ẋ1 =ax
2
1 − x31 + x2 − x3 + I + σ̄(x1)dw(t), (38)

ẋ2 =1 + bx21 − x2, (39)

ẋ3 =c(x1 + 1.56)− 0.006x3. (40)

satisfies the requiements necessary to apply the exact feedback linearization-based method
for synchronization of nonlinear multi-agent systems. Moreover, this system has a nontrivial
asymptotically stable zero dynamics. Hence all features of the theory developed in this Project
can be applied to this system.

Moreover, as the noise is inevitable in practical applications, it was decided to include
the stochastic properties into the agents. This does not pose much difficulties, however, the
theory had to be adapted.

The main result is (with L being the Laplacian matrix of the interconnection of the neurons
and e being the synchronization error):



Theorem 2: Let there exist the constants r,κ1,κ2,κ and y and symmetric positive defi-
nite matrices Q,Z,W,R, S and D (diagonal) so that the following LMIs hold:

r > 1, (41)

LTDL ≤ κ1D, (42)

LTL ≤ κ2D, (43)

DL+ LTD > κD, (44)

κy + 2κ1τ̄(Z +W ) + 2(κ2τ̄ +Σ2)Q+Σ2Q < 0, (45)(
Z y
y Q

)
≥ 0, (46)(

W y
y Q

)
≥ 0, (47)

R+ S < Q, (48)(
rQ y
y R

)
≥ 0, (49)(

rΣ2Q QΣ
ΣQ S

)
≥ 0, (50)

then limt→∞ E(∥e∥2) = 0 for any initial condition e(t), t ∈ [−τ̄ , 0].
The symbol E stands for the mean value.
As an illustration of the results, some of the figures showing the convergence of the states

of the neurons are included. The detailed description of these figures can be found in [18],
hence it is omitted here, together with values of the parameters of the model. Just note
that the membrane potential is the controlled variable while the adaptation and recovery
(not illustrated here) variables consitute the zero dynamics. From the figures, one can see the
entire dynamics of one neuron and also the synchronization error in the membrane potential as
well as in the adaptation variable. The most important result is that the latter two quantities
converge to zero up to the effects of the noise.

This paper shows one of the potential of applications of the developed
theory of synchronization of nonlinear multi-agent systems based on the ex-
act feedback linearization. Moreover, effects of stochastic disturbances were
studied here.

7.2 Conference paper [19]

Some preliminary results needed to show that the Hindmarsh-Rose neurons are satisfying
requirements required to apply the synchronization method based on the exact feedback
linearization are presented in this paper. This paper thus can be regarded as a preliminary
version of the aforementioned journal article. However, one important difference is absence of
noise (and thus, all terms involving the variance of the noise in the set of LMIs to be solved).
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Figure 4: Norm of synchronization error in the membrane potential.
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Figure 5: Norm of the synchronization error in the adaptation variable.

7.3 Conference paper [17]

This paper contains an abbreviated version of the journal article [18]. The results are pre-
sented in much more concise way, also the presentation of the theoretical results is brief and
some of proofs were omitted.

8 Other Results

In this part of the Report, results that do not fit into the previous categories, even though
they are related to the main problems solved in this Project. However, all of them have some,
at least a tangential, connection to the main topic of the Project.

8.1 Conference paper [7]

The stabilization of the large-scale interconnected system can be adopted to the control of a
system with distributed parameters, such as systems described. However, another method for
control of these systems exists. This method is based on the z-transform of the temporal as
well as spatial variable and subsequent analysis of this transformed equation, which is then
an algebraic equation; to be precise, it is a multivariate polynomial equation. This can be
used to design a controller.

Both methods have been compared in many ways. The controllers obtained guaranteed a
satisfactory behavior. However, the time and memory requirements were found to be higher
in the case of the method based on a control of large-scale interconnected systems. On the
other hand, this method is applicable under less restrictive assumptions - the spatial domain
needs not be the interval (−∞,+∞) - a clearly unrealistic assumption, however, needed to
apply the method based on the z-transform. Moreover, extension to nonlinear or uncertain
systems would be more straightforward.

The results of the extensive tests and simulations can be found in this paper.



8.2 Conference paper [15]

The problem of control of a large-scale interconnected systems and the problem of synchro-
nization of a multi-agent system share many similar features, e.g. using similar mathematical
tools needed for their solution. However, they also exhibit several important differences. This
paper aimed at highlighting the common as well as different characteristics of both problems.

The center of investigation were linear large-scale interconnected systems with delays and
linear multi-agent systems, again with delay in the control loop. The most important result
is that, even if the delays in different subsystems of the large-scale interconnected system are
not equal, stabilization can be achieved. This stands in contrast with the fact that, if the
delays in the control loops of the multi-agent system are not equal in all agents, a steady
synchronization error can arise. This error does not, in general, converge to zero. On the
other hand, its magnitude can be estimated by means of the robust control. This estimate
was presented in this paper.

This paper initiated a lively discussion in the audience.

8.3 Conference Contribution - Small Gain Theorem for Systems Governed
by Quasilinear Parabolic Equations

This is a problem whose solution might be useful for a future work. To be specific, if multi-
agents composed of agents that are systems governed by quasilinear equations are considered,
a small gain theorem would come handy as it would allow to handle uncertainties etc. in a
straightforward way.

The small gain theorem for quasilinear equations was formulated and its properties were
discussed. This contribution was presented in the poster form at the PANM 2021 meeting
held in Jablonec nad Nisou. It was not included into proceedings, a paper is in preparation.

The proper reference is:
Rehák Branislav, Lynnyk Volodymyr: Small gain theorem for systems described by quasilinear
parabolic equations, PANM 21 Programy a algoritmy numerické matematiky 21, Abstrakty,
p. 22-22, PANM 21 - Programy a algoritmy numerické matematiky 21 (2022), (Jablonec nad
Nisou, CZ, 20220619)

8.4 Conference Contribution - Detection of the Generalized Synchroniza-
tion of Chaotic Systems: Auxiliary System Approach with Delayed
Communication

The detection of the generalized synchronization of chaotic systems was also a topic of the
Project, however, due to existence of another project with a similar topic, a relatively small
attention was paid to this problem. However, this paper describes an important result in this
area. It combines the previously obtained approaches concerning the general synchronization
of chaotic systems with methods for delayed systems. Here, the communication between the
chaotic systems is delayed, with the delays being equal and constant. It was demonstrated
that this fact does not prevent the general synchronization from being established.

Further research in this area is to be conducted, e.g. focusing at systems with not equal
delays or with quantized communication.

The proper reference is:
Lynnyk Volodymyr, Rehák Branislav: Detection of the generalized synchronization of chaotic
systems: auxiliary system approach with delayed communication, PANM 21 Programy a



algoritmy numerické matematiky 21, Abstrakty, p. 17-17, PANM 21 - Programy a algoritmy
numerické matematiky 21 (2022), (Jablonec nad Nisou, CZ, 20220619)

9 Future Research

The results of the Project will be applied in the future research. A hot topic nowadays is
the development of decentralized algorithms for synchronization of the multi-agent systems
resilient against malicious attacks. Several results achieved during the solution of the Project
will serve as a suitable platform to the development of these algorithms. This can be said
about the paper [16] where the synchronization of multi-agent systems with jointly connected
topology is investigated. This approach can be adopted to the case of synchronization of the
multi-agent system under the Denial-of-Service (DoS) attacks when the inter-agent commu-
nication is interrupted. Other results, such as observer-based synchronization of nonlinear
multi-agent systems or multi-agent systems with delayed communication, in both cases under
DoS attacks will also be investigated, making advantage of several results of this Project will
also be developed. The last result of the Project, namely [12], will form a base for the de-
velopment of an algorithm for the event-triggered synchronization of a nonlinear multi-agent
system under the dynamic feedback.

Moreover, there exist several extensions of the synchronization problem for multi-agent
systems. One of them is the containment problem, where the multi-agent system contains
several leaders while the remaining agents should assume a position in the convex hull of
these leaders. This problem has been solved for linear multi-agent systems but there is a lack
of its solution for nonlinear systems. The main obstacle is probably the loss of the convex
structure of the area to which the states of the agents converge.

10 Conclusions

The solution of the tasks set in the Project GA 19-07635S was described in this Report. More-
over, the results achieved were briefly described and their main contribution was highlighted.
Further lines of the research in this area were outlined.

This report brings evidence that all themes supposed to be solved of the Project were
addressed. All topics of the Project also resulted in journal papers or contributions at con-
ferences. The research is advanced further and publication in journals is also expected in
future.


