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Pod Vodárenskou věž́ı 4, 182 08 Praha 8, Czech Republic

{flusser,suk,lebl}@utia.cas.cz
2 Data Science at Scale Team, Los Alamos National Laboratory, P.O. Box 1663,

Los Alamos, NM 87545, USA
bujack@informatik.uni-leipzig.de

3 MR Unit, Department of Diagnostic and Interventional Radiology,
Institute for Clinical and Experimental Medicine IKEM, Vı́deňská 1958/9,
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Abstract. Tensor fields (TF) are a special kind of multidimensional
data, in which a tensor is given for each point in space. Often, it is a
3 × 3 array in each voxel. To detect the patterns of interest in the field,
special matching methods must be developed. We propose a method for
the description and matching of TF patterns under an unknown affine
transformation of the field. Transformations of TFs act not only in the
spatial coordinates but also on the field values, which makes the detec-
tion more challenging. To measure the similarity between the template
and the field patch, we propose original invariants with respect to affine
transformations designed from moments. Their performance is demon-
strated by experiments on real data from diffusion tensor imaging.
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1 Introduction

A gray-level image can be described by a scalar function. Sometimes, we need a
vector defined in each point of the space, then we talk about a vector field. An
example can be wind or water flow in a river. There are even more complicated
cases, where we need a tensor of rank 2 or higher in each point. An example is the
Cauchy stress tensor, where in each point of space, we need information not only
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about magnitude of the inner force and its direction, but also about transverse
components of the force that try to turn the inner part of the material.

Another example comes from diffusion tensor imaging (DTI). DTI is a mod-
ern technique based on magnetic resonance imaging (MRI) for an examination of
tissues with internal anisotropic structure, such as neural axons of white matter
in the brain and peripheral nerve fibres. It reconstructs the diffusion of water
molecules in each voxel by measuring their movement in several distinct direc-
tions. This measurement is accomplished via several diffusion-weighted acqui-
sitions, each obtained with a different orientation of the diffusion sensitizing
gradients. After obtaining a complete set of such measurements (six diffusion-
encoding gradient directions are the minimum needed to calculate the diffusion
tensor; usually 30, 64, or more gradient directions are used), a symmetric second-
rank 3 × 3 tensor is calculated in each voxel. This tensor image is an extremely
useful modality, because it offers a possibility to detect a subtle pathology in the
brain, to track neural tracts through the brain (this process is called tractog-
raphy), to examine the integrity of peripheral nerves, and to diagnose of many
neurological diseases [1,9,30].

In this paper, we deal with the template matching problem. A template,
extracted from a reference image, shall be localized in the sensed image. However,
there might be a deformation between the template and the corresponding patch.
Template matching is an important part of registration of data taken at different
times and in localization of regions of interest. Due to the tensorial nature of DTI
data, common algorithms known from scalar image template matching cannot
be used directly.

To measure the similarity between the template and the field patch, we need
special kinds of descriptors, that are invariant to particular deformation of the
template, to the template size and orientation. In this paper, we model the tem-
plate variations by a total affine transform, which means that the transformation
acts in the coordinate domain as well as in the value (vector or tensor) domain.
This model is sufficiently general to capture most of the situations that appear
in practice and, at the same time, it is still sufficiently simple to be handled
mathematically.

2 Literature Survey

Our research is a follow-up of the previous work on the rotation and affine
invariants of images and vector fields. The rotation invariants of vector fields
were first studied by Schlemmer et al. [23]. Liu and Ribeiro [19] used them to
detect singularities on meteorological satellite images showing wind velocity and
Liu and Yap [18] applied them to the indexing and recognition of fingerprint
images.

A generalization to more than two dimensions using tensor contraction was
proposed by Langbein and Hagen [17]. Bujack et al. [5] showed that the invariants
can be derived also by means of the field normalization approach. Yang et al.
improved the numerical stability of the invariants by using orthogonal Gaussian-
Hermite [33] and Zernike [32] moments. Recently, Bujack [3] introduced a flexible
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basis of the invariants to avoid moments that vanish on the given templates. In
[6], Bujack et al. propose the systematic approach to the generation of the tensor
field invariants.

In contrast to the above group of papers on vector field rotation invariants,
affine moment invariants (AMI) of graylevel images have been studied in hun-
dreds of papers and books [13,21,22,24,25,27]. Special AMIs were proposed for
color images [7,20,26]. The most recent paper on this field is [16], where affine
invariants of 2D vector fields are proposed.

In this paper, we focus on the case of 3D tensor fields. We restrict ourselves to
the case of the second-rank symmetric tensors and we assume the inner (tensor
values) and outer (coordinate) affine transformations are the same. Both assump-
tions are implied by physics of DTI. However, the presented theory of invariants
could be developed in a more general way even without these limitations.

3 Affine Tensor Field Moment Invariants

Intuitively speaking, a tensor is an array of numbers, where the number of indices
is called its rank and their range of the indices its dimension. If a tensor has a
rank r and a dimension d, it has dr components1. Unlike usual arrays, the tensors
have two types of indices, contravariant and covariant. They differ in behavior
under affine transformations of the space. The tensors are multiplied with the
matrix of the direct transformation on behalf of each covariant index and by
the matrix of the inverse transformation on behalf of each contravariant index.
Formally, the tensor σ in affine transformation behaves

σ′i1i2···in
j1j2···jm = a�1

j1
a�2

j2
· · · a�m

jm
āi1

k1
āi2

k2
· · · āin

kn
σk1k2···kn

�1�2···�m ,

i1, i2, . . . , in, j1, j2, . . . , jm, k1, k2, . . . , kn, �1, �2, . . . , �m = 1, 2, . . . , d,

(1)

where ak
j are elements of the matrix of the direct affine transformation A

and āi
� are elements of the matrix of the inverse affine transformation A−1.

Here i1, i2, . . . , in, k1, k2, . . . , kn are contravariant indices, n is contravariant
rank, j1, j2, . . . , jm, �1, �2, . . . , �m are covariant indices, m is covariant rank and
r = n + m is total rank or just rank.

Special cases include scalars, which are tensors of rank zero, vectors, which are
tensors of rank one, and matrices, which are tensors of rank two. The dimension
and rank of tensor fields used in practice is limited. The most common tensor
fields in physics are Cauchy stress tensor, viscous stress tensor, diffusion tensor
and Maxwell stress tensor. All of them have dimension three and contravariant
rank two, i.e. they form 3 × 3 arrays in each point of the 3D space

σ ∈ R
3×3. (2)

1 This rank differs from the rank of matrix in linear algebra. Alternatively, it is called
“order”, but it can be confused with moment order. In this paper, we work with the
moment order, but not with matrix rank, therefore we use rank here for the number
of tensor indices.
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The Cauchy stress tensor describes internal stress at a point inside a solid mate-
rial. It is symmetric, i.e. σij = σji, so, it contains only six degrees of freedom.
The diagonal components express magnitude and direction, while the other com-
ponents of the tensor express the transverse components of the inner stress. A
description of the tensors and operations with them can be found in [2] or in [8].
A good explanation can also be found in [10] or in its English translation [11].

Unlike matrices, tensors are multiplied in following fashion:

σp
ijk� = σ1

ijσ2
k�, i, j, k, � = 1, . . . , 3, (3)

where σp ∈ R
3×3×3×3 i.e. each component of the first tensor is multiplied with

each component of the second tensor. The tensor product is noted as

σp = σ1 ⊗ σ2. (4)

The product has four indices, thus it is not a second rank tensor, but it satisfies
the general definition of a tensor.

Two Cauchy stress tensors can be added

σs
ij = σ1

ij + σ2
ij i, j = 1, . . . , 3, (5)

i.e. only corresponding components are added. The result σs = σ1 + σ2 is
again a second rank tensor. Please note that this product and sum extend to ten-
sors of all ranks. For a formal introduction to general tensors, we recommend [4].

The viscous stress tensor is analogous to the Cauchy stress tensor in fluids.
Unlike the Cauchy stress tensor, it can have an antisymmetric component and
is generally not symmetric. The Maxwell stress tensor is the analogon of the
Cauchy stress tensor for electromagnetic forces. It is also symmetric.

An example from biology comes from diffusion tensor imaging. It is a way of
using magnetic resonance imaging (MRI), which measures the restricted diffusion
of water molecules in the tissue. The diffusion tensor D ∈ R

3×3 is a second rank
three-dimensional symmetric tensor, like the Cauchy stress tensor.

3.1 Covariant and Contravariant Indices

Generally, tensors have two types of indices - covariant and contravariant. The
covariant indices are notated as subscripts, e.g. νij , the contravariant indices are
notated as superscripts, e.g. νij .

The range of the indices equals the dimension d of the space, i.e. i = 1, 2
in 2D and i = 1, 2, 3 in 3D. Let A ∈ R

d×d be a matrix representing an affine
transformation. A tensor of covariant rank two behaves under the transformation
A as

ν′
ij =

d∑

k=1

d∑

�=1

Ak
i A

�
jνk�. (6)

Similarly for a tensor of contravariant rank two, we have

ν′ij =
d∑

k=1

d∑

�=1

(A−1)i
k(A−1)j

�ν
k�. (7)
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The most popular second rank tensor, probably known from linear algebra, is
a matrix denoting a linear transform. It has both covariant and contravariant
indices and transforms via

ν′j
i =

d∑

k=1

d∑

�=1

Ak
i (A−1)j

�ν
�
k, (8)

which is equivalent to the common matrix transformation AνA−1.

3.2 Contraction

There is another important operation with tensors - the contraction. It is the
sum over two indices, one covariant and one contravariant. Let us take such a
tensor νj

i . Its contraction equals

c =
d∑

i=1

νi
i, (9)

which is equivalent to the trace of the matrix. In so-called Einstein notation
[31], the symbol of sum is omitted and we write just c = νi

i. The contraction is
sometimes noted

c =
∑

(i,j)

νj
i . (10)

It means the sum is performed over the summands satisfying i = j.
They key property used in this paper is the invariance of the total contraction

to affine transformations. If we observe the contraction of a tensor νj
i subject to

an affine transformation, we obtain

d∑

i=1

ν′i
i =

d∑

i=1

d∑

k=1

d∑

�=1

Ak
i (A−1)i

�ν
�
k =

d∑

i=1

νi
i = c. (11)

Thanks to the common index i, the matrices A and A−1 are multiplied as
matrices, the result is an identity matrix and the contraction remains unchanged
regardless the transformation. The contraction is the way to affine invariants.
When we can compute a total contraction (i.e. contractions over all indices) of
a tensor, it is an affine invariant.

3.3 Transformations of Tensor Fields

Now, let us look at an actual tensor field

σ(x, y, z) ∈ R
3×3 (12)

assigning a tensor to each point in space. Sometimes, it is noted as

σ(x), (13)

where x = (x, y, z)T = (x1, x2, x3)T is the vector of coordinates.
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As mentioned above, for transforming tensor fields (as for vector field) we
need to define two transformations. One for transforming the coordinate system,
the second one transforms the tensor (vector) values. Usually these transforma-
tions are identical resulting in intuitive transformation, e.g. rotating the tensor
(vector) field also rotates the directions of tensors (vectors). Formally let A, B
be these two affine transformations acting on a tensor field

σ′(x′) = B(σ(A−1(x))). (14)

We can write the transformations using their 3×3 matrix representations, which
we also denote by A, B. Here, the inner transformation of the coordinates takes
the form

x′i =
∑

(j,k)

(A−1 ⊗ x)ij
k = (A−1)i

jx
j , (15)

which coincides with the standard matrix vector product in matrix notation
A−1x. The outer transformation of the tensor values is written as

σ′kl =
∑

(i,m)
(j,n)

(B ⊗ B ⊗ σ)k�mn
ij = {Bk

i B
�
jσ

ij} (16)

using contraction and Einstein notation.
The case A = B is called the total transformation, cases where transfor-

mations differ are rare. The same way the tensor multiplication together with
contraction in the inner transformation (15) equals the matrix multiplication,
the outer transformation (16) can be rewritten to the matrix multiplication as

σ′ = BσBT . (17)

Note that affine transformation does not change the rank of a tensor.

3.4 Moment Tensors

Geometric moments of a real valued function f(x, y) have been introduced to
pattern recognition in [14]

mpq =

∞∫

−∞

∞∫

−∞
xpyqf(x, y) dx dy. (18)

The sum o = p+q is called order of the moment. For a 3D tensor field, we simply
extend (18) by the third spatial coordinate and replace the scalar function f by
our tensor valued function σij

m(ij)
pqr =

∞∫

−∞

∞∫

−∞

∞∫

−∞
xpyqzrσij(x, y, z) dx dy dz. (19)
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The moments of order o can be arranged to the moment tensor oM. For general
tensors we have

oMk1...koi1...in
j1...jm

=
∫

Rd

xk1 · · · xkoσi1...in
j1...jm

(x1 · · · xd) ddx, (20)

where o is the order of the moment tensor, m is the covariant rank of the tensor
field and n is its contravariant rank2. For example, the moment tensor of a
Cauchy stress tensor is

oMk1...koij =

∞∫

−∞

∞∫

−∞

∞∫

−∞
xk1 · · · xkoσij(x1, x2, x3) dx1dx2dx3. (21)

Also note that the components of the moment tensor equal the geometric
moments

oMk1...koi1...in
j1...jm

= m
(i1...in)
p1...pd(j1...jm) (22)

iff p� many of the indices k1, . . . , ko equals � for all � = 1, . . . , d.

3.5 Construction of the Invariants

The affine invariants can be constructed as total contractions of tensor products
of moment tensors and permutation tensors [11]. The permutation tensor ε in
2D takes the form

εij =
(

0 1
−1 0

)
. (23)

In 3D, it is the 3 × 3 × 3 cube with slices

εij1 =

⎛

⎝
0 0 0
0 0 1
0 −1 0

⎞

⎠ , εij2 =

⎛

⎝
0 0 −1
0 0 0
1 0 0

⎞

⎠ , εij3 =

⎛

⎝
0 1 0

−1 0 0
0 0 0

⎞

⎠ . (24)

If the index values create a cyclic shift of 123, the value is 1, if it is a cyclic shift
of 321, the value is -1. In the remaining 21 positions, the value is 0.

An example of such an invariant is

I =
∑

(i1,i2)(j1,j2)(j1,j2)
(k1,k2)(�1,�2)(m1,m2)
(n1,n2)(o1,o2)(p1,p2)

2Mi1j1k1�1 ⊗ 1Mm1n1o1 ⊗ 0Mp1q1 ⊗ εi2k2n2 ⊗ εj2m2p2 ⊗ ε�2o2q2 =

= 2Mijk� 1Mmno 0Mpqεiknεjmpε�oq.
(25)

If we need to generate all the affine invariants of a tensor field, we need to
generate all total contractions of the type of Eq. (25), i.e. all tensor products of
all moment tensors and permutation tensors, where each index is used exactly
twice, once in the moment tensor and once in the permutation tensor.
2 Here xk1 is not power, but upper index (superscript), i.e. if k1 = 3, then xk1 = z.

We multiply o coordinates in the integral.
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3.6 Tensor Field Affine Moment Invariants and Quadri-Layer
Hypergraphs

Not all combinations are needed to unambiguously describe a template. We are
looking for a subset that is complete, i.e., it has enough invairiants to discern
two templates that differ something other than an affine transform, but has as
little elements as possible to maximize efficiency. When we want to generate a
complete set of affine invariants, we must generate all possible combinations of
moment tensors and permutation tensors and also all possible total contractions
on the given combinations.

We can help us with the idea of graphs, where each node corresponds to a
moment tensor and each edge to a permutation tensor. When we generate all
the graphs with the given parameters and compute the corresponding invariants,
we obtain the complete set. In the case of tensor field affine moment invariants
(TFAMIs), we need so-called quadri-layer hypergraphs. Let G = (V;E)) be a
graph consisting of a set of vertices (nodes) V and a set of edges E.

In standard graphs, each edge connects two nodes. In the hypergraph, each
edge can connect multiple nodes. Similarly, in the standard graph, all edges are
qualitatively equal but sometimes we need more types of edges. Such graphs are
called multilayer graphs.

In the case of symmetric 3D tensor fields, we need quadri-layer hypergraphs,
where each edge connects three nodes. We note it

G = (V;E1, E2, E3, E4).

Further we denote
Gk = (V;Ek)

the k-th layer of the graph G.
An arbitrary invariant can be represented by a quadri-layer graph as follows.

Each moment tensor in the product (25) corresponds to a graph node. Each per-
mutation tensor εijk corresponds to an edge connecting three nodes. It connects
the moment tensor with the index i, the moment tensor with the index j, and
the moment tensor with the index k.

The edges from E1 use only coordinate indices, the edges from E2 connect
two coordinate indices and one value index, the edges from E3 use one coordinate
index and two value indices, and the edges from E4 connect only value indices.
The plotting of the triple edges of four types is not easy; we decided to denote
them as tripods with color arms. The black arm means the coordinate index,
while the contravariant value index is noted by magenta color. The examples of
the color combinations are in Fig. 1.
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Fig. 1. Examples of triple hyperedges of individual types: (a) E1 connecting only coor-
dinate indices, (b) E2 connecting two coordinate indices and one value index (c) E3

connecting one coordinate index and two value indices, and (d) E4 connecting only
value indices.

We can use different types of graphs, but this type proved its efficiency in the
invariant generation. In Fig. 2, we can see the graph representing the invariant
(25). We can observe a node with two black edges, a node with one black edge
and a node without black edges. They correspond to the moments of orders 2,
1, and 0 respectively. All the nodes has two magenta edges corresponding to the
value indices, because we work with the tensors of the second rank.

An algorithm for a systematic generation of all such graphs can be found on
the webpage [28]. In Table 1, there are the numbers of the generated invariants.
Here, # edges is the number of edges permitted, # graphs denotes the overall
possible number of configurations that produce affine invariants, # invariants
represents the number to which we could reduce the set while maintaining its
completeness, and # independent is the theoretically possible lower limit of
independent affine invariants.

Table 1. The numbers of graph edges, graphs, all invariants, and independent invari-
ants.

# edges # graphs # invariants # independent

3 635 1 1

4 14941 12 12

5 404448 41 40

6 11862154 2123 152
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Fig. 2. The graph representing invariant from Eq. (25).

4 Numerical Experiment

We tested our method on real world data obtained from a diffusion MRI scan of
a human head. The diffusion in the brain is represented by a three-dimensional
second rank symmetric tensor field. Example slices of those data are shown in
Fig. 3, where the 3 × 3 tensor in each pixel is visualized through color coding as
described in the following section.

4.1 Obtaining Data and Visualization

In this experiment, we used real DTI scans of a human brain. The device used
for an examination was a 3T Siemens TrioTim MR scanner using spin-echo
echo-planar imaging (SE EPI) sequence. The acquisition parameters were the
following: repetition time (TR) of 8300 ms, echo time (TE) of 84 ms, voxel size
of 2 × 2 × 2 mm, 68 axial slices, two averages, field of view (FOV) of 256 mm,
number of diffusion directions 30, two b-values: 0, and 900 s/mm2. The output
of the machine are 62 measurements each with different gradient settings. One
measurement is a set of 68 slices in the axial plane with a of resolution 112×128
pixels resulting in 62 112 × 128 × 68 volumes, each representing the diffusion in
a certain direction. These volumes can be stacked together (as described in [15])
to produce a 3D volume with of 3×3 symmetric matrices - one tensor in each
voxel.

It is challenging to visualize such data [12]. We used a method, where we
visualize the tensor field so that colors are used to indicate the direction of
the diffusion. First, we assign the RGB colors to the world coordinates x, y,
z i.e. red for the coronal, green for the sagittal and blue for the axial plane.
Then for each voxel, the diffusion tensor is transformed into a diagonal matrix.
Components on the diagonal - eigenvalues - represent a magnitudes of diffusion in
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a new coordinate system given by the corresponding eigenvectors. This efficiently
transfers a tensor into a vector. Each of the new coordinates can be assigned a
color based on the x, y, z ⇐⇒ R,G,B correspondence. Finally, the three colors
can be merged into one as their linear combination with coefficients being the
corresponding eigenvalues.

For clarity, only the voxels with strongly anisotropic diffusion (one prevailing
direction of diffusion) were colored, while the rest was assigned gray level based
on the fractional anisotropy (scalar value, the total diffusion).

Fig. 3. Original MRI diffusion tensor, cut in (a) axial, (b) sagittal and (c) coronal
plane. (Color figure online)

4.2 Invariance

We generated ten random affine transformations without translation. They were
composed of two rotations (Euler angles with uniform distribution on the inter-
vals 〈0, 2π〉, 〈0, π〉, and 〈0, 2π〉) and a non-uniform scaling (Gauss distribution
with mean one and standard deviation 0.2) between them. An example of such
an affine transformation is shown in Fig. 4. The values of four representative
invariants are depicted in Fig. 5. The horizontal lines show that they indeed do
not change under the different affine transforms. The labels on the horizontal axis
note specific affine transformations, 0 are values of the original tensor field. The
average relative error over all invariants and all affine transformations is 1.043%.
For comparison, we also converted the moments directly, without re-sampling
the tensor field. The relative average error then decreased to 1.2604 · 10−12 %.
It is caused just by numerical imprecisions during computation.

4.3 Template Matching

We tested our invariants in a template matching experiment. We generated 10
random spherical templates with a diameter of 15 voxels (see Fig. 7 for an exam-
ple of the template). At least 90% of the volume of all the templates is inside the
patient’s head (i.e. valid data) and there is no overlap between them. Then, we
again generated two random affine transformations of the whole diffusion tensor
field and searched the templates in them.
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Fig. 4. The MRI diffusion tensor field from Fig. 3 after an example affine transfor-
mation, cut in (a) x-y plain, x-z plain, (c) y-z plain. The color coding is descibed in
the main text. The artifacts are part of the data and have nothing to do with the
transformation. (Color figure online)

Fig. 5. Values of some TFAMI.

We searched the tensor field voxel by voxel, computed TFAMIs in each posi-
tion, and tested for a match with TFAMIs of the templates. We used 205 invari-
ants of symmetric tensor fields from the 2nd to the 6th order, their list can be
downloaded from [29]. The sorted errors can be seen in Fig. 6. The errors are
computed as Euclidean distances of the affinely transformed template positions
and the best matches of TFAMIs.
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Fig. 6. Errors in the two template matching experiments. Each line corresponds to a
random affine transform.

We consider errors greater than 5 voxels as failures. So, the templates in the
first transformation were found successfully, while in the second attempt, we
encountered one mismatch. This template size is a limit, where the mismatches
are rare. The templates of a bigger size are found reliably, while the matching of
smaller templates fails frequently because of a shortage of significant information
contained in the template. We intentionally chose limit parameter values, where
we can study the behavior of the invariants. When we use bigger templates, we
obtain errorless result.

Fig. 7. MRI diffusion tensor with example of a template, (a) x-y plain, x-z plain, (c)
y-z plain. The color coding is described in the main text. (Color figure online)
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5 Conclusion

This paper introduced invariants of tensor fields w.r.t. total affine transforma-
tions based on the moments of tensor fields. The behavior of tensor fields in affine
transformations is different from vector fields, scalar fields, and color images and
the traditional techniques cannot be used. We developed a set of complete invari-
ants that allow affine invariant pattern detection on second order tensor fields
and demonstrated their performance on MRI diffusion tensor fields.
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32. Yang, B., Kostková, J., Flusser, J., Suk, T., Bujack, R.: Rotation invariants of
vector fields from orthogonal moments. Pattern Recogn. 74, 110–121 (2018)
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