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Abstract
Blur is an image degradation that makes object recognition challenging. Restoration approaches solve this problem via
image deblurring, deep learning methods rely on the augmentation of training sets. Invariants with respect to blur offer an
alternative way of describing and recognising blurred images without any deblurring and data augmentation. In this paper,
we present an original theory of blur invariants. Unlike all previous attempts, the new theory requires no prior knowledge of
the blur type. The invariants are constructed in the Fourier domain by means of orthogonal projection operators and moment
expansion is used for efficient and stable computation. Applying a general substitution rule, combined invariants to blur and
spatial transformations are easy to construct and use. Experimental comparison to Convolutional Neural Networks shows the
advantages of the proposed theory.

Keywords Blurred image · Object recognition · Blur invariants · Projection operators · Moments

1 Introduction

Real digital images often represent degraded versions of
the original scene. If we want to recognize objects in such
images, the recognition algorithms either must be able to
suppress or remove the degradation, or they should be suffi-
ciently robust with respect to them. One of the most common
degradations is blur, which usually performs smoothing and
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suppression of high-frequency details in images. The blur
may appear in images for several reasons caused by differ-
ent physical phenomena. Motion blur is caused by a mutual
movement of the camera and the scene and we have to deal
with it for instance in licence plate recognition of fast moving
cars. Out-of-focus blur appears due to incorrect focus set-
ting and complicates face recognition in non-collaborative
scenarios, character recognition, template matching and reg-
istration (including stereo analysis) of blurred scenes and
numerous similar tasks. Medium turbulence blur is the result
of light dispersion and random fluctuations of the refractive
index during the acquisition and appears namely in ground-
based astronomical imaging.

Capturing an ideal scene f by an imaging device with
the point-spread function (PSF) h, the observed image g is
modeled as a convolution:

g(x) = ( f ∗ h)(x). (1)

This linear image formation model, even if it is very sim-
ple, is a reasonably accurate approximation of many imaging
devices and acquisition scenarios and it holds if not globally
then at least locally.
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1.1 Three Approaches to Blurred Images

There exist basically three different approaches to the recog-
nition of blurred images (see Fig. 1).

The oldest (and the least efficient) one relies on image
restoration/deconvolution techniques. Image restoration
inverts (1) to estimate f from its degraded version g, while
the PSF may be partially known or unknown (Campisi &
Egiazarian, 2007; Kundur & Hatzinakos, 1996; Rajagopalan
& Chellappa, 2014). As soon as f has been recovered, the
objects can be described by any standard features and recog-
nized by traditional classifiers. However, image restoration
is a time-consuming ill-posed problem and without any addi-
tional constraints infinitely many solutions satisfying (1)
exist. To choose the correct one, it is necessary to incorporate
a prior knowledge into regularization terms and other con-
straints. If the prior knowledge is not available, the restoration
methods frequently converge to solutions which are far from
the ground truth even in the noise-free case. Due to its inef-
ficiency, the restoration approach is not considered in this
paper.

“Handcrafted” features invariant to blur originally
appeared in the 1990’s, when some researchers realized that
a complete restoration of f is not necessary for object recog-
nition and can be avoided, provided that an appropriate image
representation is used. These so called blur invariants are
then used as an input of a standard classifier. Roughly speak-
ing, blur invariant I is a functional fulfilling the constraint
I ( f ) = I ( f ∗h) for any h from a certain set S of admissible
PSFs. The main drawback of all blur invariants published so
far is that they require a parametricmodel (or other equivalent
prior knowledge) of the PSF and lack a unified mathemati-
cal framework. Thus, for each class of PSFs, the invariants
have to be derived “from scratch” and the type of the PSF
must be examined in the applications, which is difficult and
time consuming. On the other hand, if the model of the
PSF is available, numerous successful applications have been
reported in the literature (see Flusser et al. 2016b, Chapter 6
for a survey and further references thereof).

In accordancewith the current trends in computer vision, a
deep learning approach using convolutional neural networks
(CNN) has been tested in several papers. A detailed theo-
retical analysis of robustness of CNN-based classification
with respect to blur has not been conducted yet, so most
authors just reported their empirical observations. They all
agreed that the blur in query images significantly decreases
theCNNperformance if the network has been trained on clear
images only and that data augmentation (i.e. the extension of
the training set with artificially blurred samples, which is a
kind of “brute force”) helps tomitigate the performance drop.
However, the augmentation should be relatively large-scaled,
going across various blur types and size, because CNNs are

not able to learn one type/size of blur and recognize another
one.

1.2 TheManuscript’s Contribution

The original contribution of this paper is twofold.

• Unified theory of blur invariants. We discover a unified
theoretical background of blur invariants which is pre-
sented in this paper for the first time. We show that all
previously published blur invariants are particular cases
of a general theory, which provides this topic with a roof.
Three key theorems, referred here as Theorems 3, 4, and 6
are formulated and proved here regardless of the particu-
lar PSF type. We proved that the key role is played by the
orthogonality of the projection operator, which implies
blur-invariant properties. This is a significant theoretical
contribution of this paper, which has an immediate prac-
tical consequence. If we want to derive blur invariants
w.r.t. a new class of PSFs, Theorems 3 and 6 offer the
solution directly.

• Comparison of blur invariants andCNN.Wecompare the
proposed blur invariants to a deep learning and CNN-
based solutions and demonstrate the pros and cons of
both. We explain when and why each of them fails/wins.
Last but not least, we envisage a “fusion” of both
approaches to reach an optimal recognition performance
and time complexity.

2 RelatedWork

2.1 Blur Invariants

Unlike geometric invariants, which can be traced over two
centuries back to Hilbert (1993), blur invariants are a rel-
atively new topic. The problem formulation and the basic
idea appeared originally in the 1990’s in the series of
papers by Flusser et al. (1995, 1996a) and Flusser and Suk
(1998). The invariants presented in these pioneer paperswere
found heuristically without any theoretical background. The
authors observed that certain moments of a symmetric PSF
vanish. They derived the relation between the moments of
the blurred image and the original and thanks to the vanish-
ing moments of the PSF they eliminated the non-zero PSF
moments by a recursive subtraction and multiplication. They
did it for axially symmetric (Flusser et al., 1995, 1996a)
and centrosymmetric (Flusser & Suk, 1998) PSFs. These
invariants, despite their heuristic derivation and the restric-
tion to centrosymmetric PSFs, have been adopted by many
researchers in further theoretical studies (Zhang et al., 2010;
Wee & Paramesran, 2007; Dai et al., 2010a, b, 2013; Liu et
al., 2011a; Zuo et al., 2010; Kautsky & Flusser, 2011; Zhang
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Fig. 1 Three approaches to the
recognition of blurred images.
Image restoration via
deconvolution (left), description
and recognition by blur
invariants (middle), and a deep
learning approach (right)

et al., 2000a, 2002; Flusser et al., 2000, 2003; Candocia,
2004; Ojansivu & Heikkilä, 2007; 2008b; 2008a; Makaremi
& Ahmadi, 2010, 2012; Galigekere & Swamy, 2006) and
in numerous application-oriented papers (Bentoutou et al.,
2005; Liu et al., 2011c; Hu et al., 2007; Bentoutou et al.,
2002; Bentoutou & Taleb, 2005b, a; Mahdian & Saic, 2007;
Ahonen et al., 2008; Zhang et al., 2000b; Yap&Raveendran,
2004).

By a similar heuristic approach, various invariants to cir-
cularly symmetric blur (Chen et al., 2011; Dai et al., 2013;
Flusser & Zitová, 2004; Ji & Zhu, 2009; Liu et al., 2011b, a;
Zhu et al., 2010), linear motion blur (Flusser et al., 1996b;
Guang-Sheng & Peng, 2012; Guan et al., 2005; Peng & Jun,
2011; Stern et al., 2002; Wang et al., 2007; Zhong et al.,
2013), and Gaussian blur (Liu & Zhang, 2005; Xiao et al.,
2012; Zhang et al., 2013) have been proposed.

Significant progress of the theory of blur invariants was
madebyFlusser et al. (2015),where the invariants to arbitrary
N -fold rotation symmetric blur were proposed. In that paper,
a derivation based on a mathematical theory rather than on
heuristicswas presented for the first time. The invariantswere
constructed bymeans of projection of the blurred image onto
the subspace of thePSFs.A similar result achieved by another
technique was later published by Pedone et al. (2013).

Some authors came up with the (computationally very
expensive) concept of blur-invariant metric, which is sim-
ilar to blur invariants but allows a blur-robust comparison
of two images without constructing the invariants explicitly
(Gopalan et al., 2012; Lébl et al., 2019, 2021; Vageeswaran
et al., 2013; Zhang et al., 2013).

Themain limitation of all the abovementionedmethods is
their restriction to a given single class of blurs. In otherwords,
the authors first defined the blur type they were considering
and then they derived the invariants based on the specific
properties of the blur. In this paper, we approach the problem
the otherway round. Regardless of the particular blur, we find
a general formula for blur invariants. Then, for any type of

admissible PSF, this general formula immediately provides
specific invariants. This is the major original contribution of
this paper that differentiates the proposed theory from the
previous ones.

2.2 CNN-Based Recognition of Blurred Images

Traditional CNNs use pixel-wise representation of images,
which is significantly changed if the image has been blurred.
So, a fast drop of performance if the network, trained on clear
images only, is fedwith blurred test images, has been reported
in several papers. To achieve a reasonable recognition rate,
the training set has to be extended using a representative set
of degradations of the training images. This process is called
data augmentation. Common data augmentation methods
for image recognition have been designed manually and the
best augmentation strategies are dataset-specific (Krizhevsky
et al., 2017). To learn the best augmentation strategy was
recently proposed in Cubuk et al. (2019), which searches the
space of various augmentation operations and finds a pol-
icy yielding the highest validation accuracy. Large-scale data
augmentation is, however, time and memory consuming and
for big databases it might be not feasible even on current
super-computers.

Only few papers have studied quantitatively the impact
of blur on the network recognition performance. Vasiljevic
et al. (2016) first confirmed experimentally that introduction
of even a moderate blur hurts the performance of networks
trained on clear images and proposed a fine-tuning of the
network to overcome this. A similar study was published
by Zhou et al. (2017). Dodge and Karam (2016) compared
the impact of four types of image degradations—Gaussian
blur, contrast deficiency, JPEG artifacts and noise on the
CNN-based recognition. They showed that blur is the most
significant factor. Pei et al. (2021) studied the influence of
various degradations (local occlusion, lens distortion, alias-
ing, haze, noise, blur) in detail. Their paper again confirmed
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that the CNN performance in recognition of blurred images
is very low if the training set contains clear images only.Most
recently, Lébl et al. (2023) studied the influence of data aug-
mentation with respect to various blur types and sizes and
the relationship between the number of augmented samples
and the recognition rate. They concluded that even for small
training set a relatively large augmentation is necessary to
keep the success rate sufficient but the number of augmen-
tation samples can be slightly reduced by choosing a good
augmentation strategy.

3 Blur Invariants

In this Section, we show how blur invariants can be con-
structed by means of suitable projectors. Let us start with
introducing some basic terms.

Definition 1 By an image function (or image) we understand
any real function f ∈ L1

(
R
d
) ∩ L2

(
R
d
)
with a compact

support.1 The set of all image functions is denoted as I.
On the one hand, this definition of I is not very restrictive

because the image space is “large” enough (more precisely, I
is dense both in L1 and L2). On the other hand, it ensures the
mathematical correctness of some basic operations. In partic-
ular, for any f , g ∈ I their convolution exists and f ∗ g ∈ I
(this follows from the Young’s inequality) and their Fourier
transformsF( f ),F(g) exist as well (but may lie outside I).
For the convenience, we assume the Dirac δ-function to be
an element of I.2

Definition 2 A linear operator P : I → I is called a projec-
tion operator (or projector for short) if it is idempotent, i.e.
P2 = P .

Let us denote S = P(I). Then S is a linear subspace
of I and I can be expressed as a direct sum I = S ⊕ A,
where A is called the complement of S. Any f ∈ I can be
unambiguously written as a sum f = P f + f A, where P f
is a projection of f onto S and f A ∈ A is simply defined
as f A = f − P f . For any f ∈ I we have P fA = 0 and,
consequently, S ∩A = {0}. If f ∈ S then f = P f and vice
versa.

Projector P is called orthogonal (OG), if the respective
subspaces S and A are mutually orthogonal.

LetS be, fromnowon, the set of blurring functions (PSFs),
with respect to which we want to design the invariants. Any
meaningful S must contain at least one non-zero function

1 Symbol L p
(
R
d
)
denotes a space of all functions of d real variables

such that
∫ | f |p < ∞.

2 From mathematical point of view, this is formally incorrect since
δ /∈ L1 ∩ L2. We could correctly include δ by means of theory of
distributions but this would be superfluous for the purpose of this paper.

Fig. 2 Partitioning of the image space. Projection operator P decom-
poses image f into its projection P f onto S and its complement f A,
which is a projection onto A. The ellipsoids depict blur-equivalent
classes.Blur-invariant information is contained in the primordial images
fr and gr (see the text)

and must be closed under convolution. In other words, for
any h1, h2 ∈ S must be h1 ∗ h2 ∈ S. This is the basic
assumption without which the question of invariance does
not make sense. If S was not closed under convolution, then
any potential invariant would be in fact invariant w.r.t. con-
volution with functions from the “convolution closure” of S,
which is the smallest superset of S closed to convolution.

Under the closure assumption, (S, ∗) forms a commu-
tative semi-group (it is not a group because the existence
of inverse elements is not guaranteed). Hence, the convolu-
tion may be understood as a semi-group action of S on I.
The convolution defines the following equivalence relation
on I: f ∼ g if and only if there exist h1, h2 ∈ S such that
h1 ∗ f = h2 ∗ g. Thanks to the closure property of S and to
the commutativity of convolution, this relation is transitive,
while symmetry and reflexivity are obvious. This relation
factorizes I into classes of blur-equivalent images. In partic-
ular, all elements of S are blur-equivalent. The image space
partitioning and the action of the projector are visualized in
Fig. 2.

Now we are ready to formulate the following General
theorem of blur invariants (GTBI), which performs the main
contribution of the paper and a significant difference from all
previous work on this field.

Theorem 3 (GTBI) Let S be a linear subspace of I, which
is closed under convolution and correlation. Let P be an
orthogonal projector of I onto S. Then

I ( f )(u) ≡ F( f )(u)

F(P f )(u)
(2)

is an invariant w.r.t. a convolution with arbitrary h ∈ S at
all frequencies u where I ( f ) is well defined.

123



2302 International Journal of Computer Vision (2023) 131:2298–2315

Proof Let us assume that P is “distributive” over a convolu-
tion with functions from S, which means P( f ∗h) = P f ∗h
for arbitrary f and any h ∈ S. Then the proof is trivial, we
just employ the basic properties of Fourier transform:

I ( f ∗ h) ≡ F( f ∗ h)

F(P( f ∗ h))
= F( f ) · F(h)

F(P f ∗ h)

= F( f ) · F(h)

F(P f ) · F(h)
= I ( f ) . (3)

The “distributive property” of P is equivalent to the con-
straint that the complement A is closed w.r.t. convolution
with functions from S. This follows from

P( f ∗ h) = P((P f + f A) ∗ h) = P(P f ∗ h + f A ∗ h)

= P f ∗ h + P( f A ∗ h). (4)

Now let us show that this constraint is implied by the
orthogonality of P regardless of its particular form.

Since S ⊥ A and Fourier transform on L1 ∩ L2 preserves
the scalar product (this property is known as Plancherel theo-
rem), thenF(S) ⊥ F(A). Let us consider arbitrary functions
a ∈ A and h1, h2 ∈ S. Using the Plancherel theorem, the
convolution theorem, and the correlation theorem (the corre-
lation � of two functions is just a convolution with a flipped
function), we have

〈a ∗ h1, h2〉 = 〈F(a ∗ h1),F(h2)〉 =
∫

A · H1 · H∗
2

= 〈A, H∗
1 · H2〉 = 〈a, h2 � h1〉 = 0. (5)

The last equality follows from the closure of S w.r.t. correla-
tion.Hence,A has been proven to be closedw.r.t. convolution
with functions from S, which completes the entire proof. �

The invariant I ( f ) is not defined if P f = 0, which means
this Theorem cannot be applied if f ∈ A. In all other cases,
I ( f ) is well defined almost everywhere. Since S contains
compactly-supported functions only, F(P f )(u) cannot van-
ish on any open set and therefore the set of frequencies, where
I ( f ) is not defined, has a zero measure.3 In addition to the
blur invariance, I is also invariantw.r.t. correlationwith func-
tions from S. This is a “side-product” of the assumptions
imposed on S. The proof of that is the same as before, with
only the operations convolution and correlation swapped.

Under the assumptions of the GTBI, S itself is always
an equivalence class and δ ∈ S (to see this, note that for
arbitrary h ∈ S we have h = δ ∗ h = P(δ ∗ h) = Pδ ∗ h
which leads to Pδ = δ).

3 This may not be true if I and S contained functions of unlimited
support. ThenF(P f )(u)might vanish on a nonzero-measure set, which
would decrease the discrimination power of I .

The GTBI is a very strong theorem because it constructs
the blur invariants in a unified form regardless of the partic-
ular class of the blurring PSFs and regardless of the image
dimension d. The only thing we have to do in a particular
situation is to find, for a given subspace S of the admissible
PSFs, an orthogonal projector P . This is mostly much eas-
ier job than to construct blur invariants “from scratch” for
any S. This is the most important distinction from our pre-
vious paper (Flusser et al., 2015), where the invariants were
constructed specifically for N -fold symmetric blur without
a possibility of generalization.

Before we proceed further, let us show that the assump-
tions laid on S and P cannot be skipped.

As a counterexample, let us consider a 1D case where S is
a set of even functions. Let P be defined such that P f (x) =
f (|x |). So, P is a kind of “mirroring” of f and actually, it is
a linear (but not orthogonal) projector on S. In this case, A
is a set of functions that vanish for x ≥ 0. Clearly, A is not
closed to convolution with even functions and functional I
defined in GTBI is not an invariant.

Let us consider another example, again in 1D. Let S be
a set of functions that vanish for any x < 0. S is a linear
subspace closed to convolution but it is not closed to corre-
lation. Let us define operator P as follows: P f (x) = f (x)
if x ≥ 0 and P f (x) = 0 if x < 0. Obviously, P is a linear
orthogonal projector onto S. However,A is again not closed
to convolution with functions from S and GTBI does not
hold. These two simple examples show, that the assumptions
of convolution and correlation closure ofS and orthogonality
of P cannot be generally relaxed (although GTBI may stay
valid in some cases even if these assumptions are violated,
see Sect. 5).

The property of blur invariance does not say anything
about the ability of the invariant to distinguish two differ-
ent images. In an ideal case, the invariant should be able
to distinguish any two images belonging to distinct blur-
equivalence classes (images sharing the same equivalence
class of course cannot be distinguished due to the invari-
ance). Such invariants are called complete. The following
completeness theorem shows that I is a complete invariant
within its definition area.

Theorem 4 (Completeness theorem) Let I be the invariant
defined by GTBI and let f , g ∈ I\A. Then I ( f ) = I (g)
almost everywhere if and only if f ∼ g.

Proof The proof of the backward implication follows imme-
diately from the blur invariance of I . To prove the forward
implication, we set h1 = Pg and h2 = P f . Then it holds
f ∗ h1 = g ∗ h2, which means f ∼ g due to the definition
of the equivalence class. �

To summarize, I cannot distinguish functions belonging
to the same equivalence class due to the invariance and func-
tions from A since they do not lie in its definition area. All
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other functions are fully distinguishable. Note that the com-
pletenessmaybeviolated onother image spaces, for instance,
on a space of functions with unlimited support where we find
such f and g that I ( f ) = I (g) at all frequencies where both
I ( f ) and I (g) arewell defined but f and g belong to different
equivalence classes.

Understanding what properties of f are reflected by I ( f )
is important both for theoretical considerations as well as
for practical application of the invariant. I ( f ) is a ratio of
two Fourier transforms. As such, it may be interpreted as
deconvolution of f with the kernel P f . This “deconvolution”
eliminates the part of f belonging to S (more precisely, it
transfers P f to δ-function) and effectively acts on the f A
only:

I ( f ) = F( f )

F(P f )
= F(P f ) + F( f A)

F(P f )
= 1 + F( f A)

F(P f )
.

I ( f ) can be viewed as a Fourier transform of so-called
primordial image fr . Even if the primordial image itself may
not exist (the existence of F−1(I ( f )) is not guaranteed in
I), it is a useful concept that helps to understand how the
blur invariants work. The primordial image is unique for each
equivalence class, it is the “most deconvolved” representative
of the class. Two images f and g share the same equivalence
class if and only if fr = gr . For instance, the primordial
image of all elements of S is δ-function.

Any element of the equivalence class can be reached
from the primordial image through a convolution. Any
features, which describe the primordial image, are unique
blur-invariant descriptors of the entire equivalence class. At
the same time, the primordial image can also be viewed as
a kind of normalization. It plays the role of a canonical form
of f , obtained as the result of the “maximally possible”
deconvolution of f (see Fig. 3 for schematic illustration).

As the last topic in this section, we briefly analyze the
robustness of I ( f ) to noise. Let us assume an additive
zero-mean white noise, so we have g = f ∗ h + n and,
consequently, Pg = h ∗ P f + Pn. As we will see in
Sect. 5, all meaningful projection operators contain summa-
tion/integration over a certain set (often large) of pixels,
which makes Pn to converge to the mean value of n, which
is zero. So, we have

I (g) ≡ F(g)

F(Pg)
= F( f ) · F(h) + F(n)

F(P f ) · F(h)

= I ( f ) + F(n)

F(P f ) · F(h)
. (6)

Considering the magnitude of the second term, note that
|F(n)(u)| = σ because the noise is white. Hence, at least at
low frequencies whereF(P f ) ·F(h) dominates, this term is
close to zero and I exhibits a robust behavior as I (g)

.= I ( f ).

Fig. 3 The concept of the primordial image: The blurred image is pro-
jected ontoS and this projection is used to “deconvolve” the input image
in the Fourier domain. Blur-invariant primordial image is obtained as
a seeming Fourier inversion of I ( f ). Its moments are blur invariant and
can be calculated directly from f

However, this may be violated at high frequencies where
F(P f ) · F(h) is often low.

4 Invariants andMoments

The blur invariants defined in the frequency domain byGTBI
may suffer from several drawbacks when we use them in
practical object recognition tasks. Since I ( f ) is a ratio, we
possibly divide by very small numberswhich requires careful
numerical treatment. Moreover, if the input image is noisy,
the high-frequency components of I ( f )may be significantly
corrupted. This can be overcome by suppressing them by
a low-pass filter, but this procedure introduces a user-defined
parameter (the cut-off frequency) which should be set up
with respect to the particular noise level. That is why we pre-
fer to work directly in the image domain. Some heuristically
discovered image-domain blur invariants were already pub-
lished in the early papers (Flusser et al., 1995, 1996a; Flusser
& Suk, 1998). Here we present a general theory, which orig-
inates from the GTBI.

A straightforward solutionmight be to calculate an inverse
Fourier transform of I ( f ), which leads to obtaining the pri-
mordial image fr and to characterize fr by some popular
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descriptors such as moments. This would, however, be time-
consuming and also problematic from the numerical point
of view. We would not only have to calculate the projec-
tion P f , two forward and one inverse Fourier transforms,
but even worse, the result may not lie in I. In this Section,
we show how to substantially shorten and simplify this pro-
cess. We show, that the moments of the primordial image can
be calculated directly from the input blurred image, without
an explicit construction of P f and I ( f ). Since fr is a blur
invariant, each its moment must be a blur invariant, too. This
direct construction of blur invariants in the image domain,
again without specifying particular S and P , is the major
theoretical result of the paper and performs a very useful
tool for practical image recognition.

Image moments can be understood as “projections” of the
image onto an arbitrary polynomial basis, which is formal-
ized by the following definition.

Definition 5 Let B = {πk(x)} be a set of d-variate polyno-
mials. Then the integral

M ( f )
p =

∫
πp(x) f (x) dx (7)

is calledmoment of function f with respect to setB. The non-
negative integer |p|, where p is a d-dimensional multi-index,
is the order of the moment.

Clearly, for any f ∈ I its moments w.r.t. arbitrary B exist
and are finite. Moments are widely used image descriptors.
Depending on B, we recognize various types of moments. If
πk(x) = xk we speak about geometric moments. If d = 2
and πpq(x, y) = (x + iy)p(x − iy)q , we obtain complex
moments. If the polynomials πk(x) are orthogonal, we get
orthogonal (OG) moments. Legendre, Zernike, Chebyshev,
and Fourier–Mellin moments are the most common exam-
ples. For the theory ofmoments and their application in image
analysis we refer to Flusser et al. (2016b).

Various bases have been employed to construct moment
invariants (Flusser et al., 2009). There is no significant dif-
ference among them since between any two polynomial
bases there exists a transition matrix. In other words, from
the theoretical point of view, all polynomial bases and all
respective moments carry the same information, provide the
same recognition power and generate equivalent invariants.
However, working with some basis might be in a particu-
lar situation easier than with the others, and also numerical
properties and stability of the moments may differ from each
other. Here we choose to work with a basis that separates the
moments of P f and f A, although equivalent invariants could
be derived in any basis at the expense of the complexity of
respective formulas.

Let S and P fulfill the assumptions of GTBI. Considering
the decomposition f = P f + f A, we have for the moments

M ( f )
p = M (P f )

p + M ( f A)
p . (8)

We say that B separates the moments if there exist a non-
empty set of multi-indices D such that it holds for any f ∈ I

M (P f )
p = M ( f )

p (9)

if p ∈ D and

M (P f )
p = 0 (10)

ifp /∈ D. In otherwords, this condition says that themoments
are either preserved or vanish under the action of P . If ful-
filled, the condition also says that the value of M ( f A)

p is

complementary to M (P f )
p .

A sufficient condition forB to separate themoments is that
πp ∈ S if p ∈ D and πp ∈ A otherwise. Since S and A are
assumed to bemutually orthogonal, the separability of suchB
is obvious. This has nothing to do with a (non)orthogonality
of B itself, as we show in the following simple 1D example.
Let S be a set of even functions and A be a set of odd func-
tions. Let πp(x) = x p. If we take D = {p = 2k|k ≥ 0}, we
obtain the moment-separating polynomials.

For the given S and projector P , the existence of a basis
that separates the moments is not guaranteed, although in
most cases of practical interest we can find some. If it does
not exist, the moment blur invariants still can be derived. It is
sufficient if the moments M (P f )

p can be expressed in terms of

M ( f )
p ifp ∈ D and some functions ofM ( f )

p equal zero forp /∈
D. Thismakes thederivationmore laborious and the formulas
more complicated but does not make a principle difference.
Anyway, to keep things simple, we try for any particular S
to find such B that provides the moment separability.

To get the link between I ( f ) and the moments M ( f )
p , we

recall that Taylor expansion of Fourier transform is

F( f )(u) =
∑

p

(−2π i)|p|

p! m( f )
p up (11)

where mp is a geometric moment. In the sequel, we assume
that the power basis πp(x) = xp separates the moments.
If it was not the case, one would substitute into (11) any
separating basis through the polynomial transition relation.

The GTBI can be rewritten as

F(P f )(u) · I ( f )(u) = F( f )(u). (12)

All these three Fourier transforms can be expanded similarly
to (11) into absolutely convergent Taylor series. Thanks to
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the moment separability, we can for any p ∈ D simply write
m(P f )

p = m( f )
p = mp. So, we have

∑

p∈D

(−2π i)|p|

p! m( f )
p up ·

∑

p

(−2π i)|p|

p! Cpup

=
∑

p

(−2π i)|p|

p! m( f )
p up, (13)

whereCp can be understood as themoments of the primordial
image fr . Comparing the coefficients of the same powers of
u we obtain, for any p

p∑

k∈D

(−2π i)|k|

k!
(−2π i)|p−k|

(p − k)! mkCp−k = (−2π i)|p|

p! mp,

(14)

which can be read as

p∑

k∈D

(
p
k

)
mkCp−k = mp. (15)

The summation goes over those k ∈ D for which 0 ≤ ki ≤
pi , i = 1, . . . , d. Note that always 0 ∈ D. (To see that, it is
sufficient to find an image whose zero-order moment is pre-
served under the projection. Such an example is δ-function,
because P(δ) = δ, as we already showed.)

After isolatingCp on the left-hand side we obtain the final
recurrence

m0Cp = mp −
p∑

k∈D
k �=0

(
p
k

)
mkCp−k. (16)

This recurrent formula is a general definitionof blur invari-
ants in the image domain (provided that m0 �= 0).4 Since
I ( f ) has been proven to be invariant to blur belonging to S,
all coefficients Cp must also be blur invariants. The beauty
of Eq. (16) lies in the fact that we can calculate the invariants
from the moments of f , without constructing the primordial
image explicitly either in frequency or in the spatial domain.

Some of the invariants Cp are trivial for any f and use-
less for recognition. We always have C0 = 1 and some other
invariants may be constrained depending on the index set D.
If for arbitrary p,k ∈ D also (p − k) ∈ D, then Cp = 0
for any p ∈ D as can be deduced from Eq. (16) via induc-
tion. This commonly happens in many particular cases of
practical interest and then only the invariants with p /∈ D

4 If m0 = 0, then Cp is not defined. We find the first non-zero moment
mn,n ∈ D, and derive an analogous recurrence for Cp−n.

should be used. In addition to that, some invariants may van-
ish depending on f . In particular, if f ∈ S, then Cp = 0 for
any p �= 0.

5 Blur Examples

In this section, we show the blur invariants provided by
the GTBI for several concrete choices of S and P with
a particular focus on those of practical importance in image
recognition. Some of them are equivalent to the invariants
already published in earlier papers; in such cases, we show
the link between them. Some other invariants are published
here for the first time.

5.1 Trivial Cases

The formally simplest case ever is S = I and P f = f .
Although this choice fulfills the assumptions of GTBI, it is
not of practical importance because the entire image space
forms a single equivalence class, and any two images are blur
equivalent. Actually, GTBI yields I ( f ) = 1 for any f .

An opposite extreme is to choose S = {aδ|a ∈ R}. This
“blur” is in fact only a contrast stretching. If we set P f =
(
∫

f ) · δ, P is not orthogonal but still P( f ∗ h) = P f ∗ h
and GTBI can be applied provided that

∫
f �= 0. We obtain

I ( f ) = F( f )/
∫

f , which leads to a contrast-normalized
primordial image fr = f /

∫
f .

Another rather trivial case is S = {
h

∣∣∫ h = 1
}
. This is

the set of all brightness-preserving blurs without any addi-
tional constraints. We may construct P f = f /

∫
f , which

actually is a projector; however it is neither linear nor orthog-
onal. Since P( f ∗ h) = P f ∗ h, we can still apply GTBI,
which yields a single-valued blur invariant I ( f ) = ∫

f , that
corresponds to the primordial image fr = (

∫
f ) · δ.

5.2 Symmetric Blur in 1D

In 1D, the only blur spaceS, which can be defined generically
and is of practical interest, is the space of all even functions.
1D symmetric blur invariantswere firstly described inFlusser
and Suk (1997) and later adapted to wavelet domain by
Makaremi and Ahmadi (2010). Kautsky and Flusser (2011)
rigorously investigated these invariants and showed how to
construct them in terms of arbitrarymoments.Galigekere and
Swamy (2006) studied the blur invariants of 2D images in the
Radon domain, which inherently led to 1D blur invariants.

If we consider the projector

P f (x) = ( f (x) + f (−x))/2 (17)

thenA is a space of odd functions, P is orthogonal and GTBI
can be applied directly. As for the moment expansion, the
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simplest solution is to use the standard monomials πp(x) =
x p, which separate the geometric moments for D being the
set of even non-negative indices.

5.3 Centrosymmetric Blur in 2D

Invariantsw.r.t. centrosymmetric blur in 2Dhave attracted the
attention of the majority of authors who have been involved
in studying blur invariants. The number of papers on this kind
of blur exceeds significantly the number of all other papers
on this field. This is basically for two reasons—such kind of
blur appears often in practice and the invariants are easy to
find heuristically, without the knowledge of the state-of-the-
art theory of projection operators.

A natural way of defining P is

P f (x, y) = ( f (x, y) + f (−x,−y))/2. (18)

Then standard geometric moments are separated at D =
{(p, q)|(p + q) even} and Eq. (16) leads to moment expan-
sion that appeared in some earlier papers such as in Flusser
and Suk (1998) and others cited in Sect. 2.1.

This approach can be extended into 3D, where the def-
inition of centrosymmetry is analogous. Existing 3D blur
invariants (Flusser et al., 2000, 2003) are just special cases
of Eq. (16).

5.4 Radially Symmetric Blur

Radially (circularly) symmetric PSF’s satisfying h(r , φ) =
h(r) appear in imaging namely as an out-of-focus blur on
a circular aperture (see Fig. 4a for an example). The projector
P∞ is defined as

(P∞ f )(r) = 1

2π

2π∫

0

f (r , φ) dφ. (19)

The standard power basis does not separate the moments.
This is why various radial moments have been used to ensure
the separation. Basis B consists of circular harmonics-like
functions of the form π(r , φ) = Rpq(r)eiχ(p,q)φ , where
Rpq(r) is a radial polynomial and χ(p, q) is a simple func-
tion of the indices. There are several choices of B, which
separate the respective moments and yield blur invariants
(the index set D depends on the particular B). Some of them
were introduced even without the use of projection opera-
tors. They mostly employed Zernike moments (Chen et al.,
2011; Dai et al., 2013; Ji & Zhu, 2009; Zhu et al., 2010),
Fourier–Mellin moments (Liu et al., 2011b) and complex
moments (Flusser & Zitová, 2004).

Fig. 4 Blurring PSFs obtained as photographs of a bright point. Out-
of-focus blur on a circular aperture (a), on polygonal apertures (b, c),
and directional blur (d). Aperture a has radial symmetry, b has 9-fold
rotation symmetry and c exhibits 9-fold dihedral symmetry

5.5 N-Fold Symmetric Blur

N -fold rotationally symmetric blur performs one of the most
interesting cases, both from theoretical and practical points
of view. This kind of blur appears as an out-of-focus blur on
a polygonal aperture. Most cameras have an aperture the size
of which is controlled by physical diaphragm blades, which
leads to polygonal or close-to-polygonal aperture shapes if
the diaphragm is not fully open (see Fig. 4b, c).

The blur space is defined as

SN = {h|h(r , θ) = h(r , θ + 2π/N )}. (20)

SN is a vector space closed under convolution and correla-
tion. We can construct projector PN as

(PN f )(r , θ) = 1

N

N∑

j=1

f (r , θ + α j ), (21)

where α j = 2π j/N . Since PN is an orthogonal projector,
GTBI can be immediately applied. Complex moments are
separated with

D = {(p, q)|(p − q)/N is integer} (22)

which allows to get particular blur invariants from Eq. (16).
Invariants to N -fold symmetric blur were originally stud-

ied in Flusser et al. (2015), where the idea of projection
operators appeared for the first time. Their application for
registration of blurred images was reported in Pedone et al.
(2013).

5.6 Dihedral Blur

The N -fold symmetry, discussed in the previous subsection,
may be coupled with the axial symmetry. In such a case, the
number of the axes equals N and we speak about the N -fold
dihedral symmetry.Many out-of-focus blur PSFs are actually
dihedral, particularly if the diaphragmblades are straight (see
Fig. 4c).
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The blur space DN is a subset of SN given as

DN = {h ∈ SN | ∃α such that h(x, y) = hα(x, y)}, (23)

whereα ∈ 〈0, π/2〉 is the angle between the symmetry axis a
and the x-axis and hα(x, y) denotes function h(x, y) flipped
overa.However, the setDN isnot closedunder convolution if
we allow various axis directions. Only if we fix the symmetry
axis orientation to a constant angle α, we get the closure
property. Then we can define the projection operator Qα

N as

Qα
N f = PN ( f + f α)/2 (24)

and GTBI can be applied.
Dihedral blur invariants were firstly studied in Boldyš and

Flusser (2013). Their major limitation comes from the fact
that the orientation of the symmetry axis must be apriori
known (and the same for all images entering the classifier).
This is far from being realistic and the only possibility is to
estimateα from the blurred image itself (Pedone et al., 2015).

5.7 Directional Blur

Directional blur (sometimes called linearmotion blur) is a 2D
blur of a 1D nature that acts in a constant direction only.
Directional blurmay be caused by camera shake, scene vibra-
tions, and camera or scenemotion. The velocity of themotion
may vary during the acquisition, but this model assumes the
motion along the line. We do not consider a general motion
blur along an arbitrary curve in this paper.5

The respective PSFhas the form (for the sake of simplicity,
we start with the horizontal direction)

h(x, y) = h1(x)δ(y), (25)

where h1(x) is an arbitrary 1D image function. The space S
is defined as a set of all functions of the form (25). When
considering a constant direction only, S is closed under 2D
convolution and correlation. The projection operator P is
defined as

P f (x, y) = δ(y)
∫

f (x, y) dy. (26)

P is not orthogonal but geometric moments are separated
with D = {(p, q)| q = 0} and Eq. (16) yields the directional
blur invariants in terms of geometric moments.

If the blur direction under a constant angle β is known,
the projector Pβ f is defined analogously to (26) by means
a line integral along a line which is perpendicular to the blur

5 Imposing no restrictions on the blur trajectory would lead to a very
broad blur space, where only trivial invariants exist.

direction (see Fig. 4d for an example of a real directional
PSF).

The idea of invariants to linear motion blur appeared for
the first time in Flusser et al. (1996b) and in a similar form
in Stern et al. (2002), without any connection to the pro-
jection operator. Zhong used the motion blur invariants for
recognition of reflections on a waved water surface (Zhong
et al., 2013). Peng et al. used them for weed recognition from
a camera moving quickly above the field (Peng & Jun, 2011)
and for classification of wood slices on a moving conveyor
belt (Guang-Sheng & Peng, 2012) (these applications were
later enhanced by Flusser et al. 2013, 2014). Other appli-
cations can be found in Guan et al. (2005) and Wang et al.
(2007). The necessity of knowing the blur direction before-
hand is, however, an obstacle to the wider usage of these
invariants.

5.8 Gaussian Blur

Gaussian blur appears whenever the image has been acquired
through a turbulent medium. It is also introduced into the
images as the sensor blur due to the finite size of the sampling
pulse and may be sometimes applied intentionally as a part
of denoising.

SinceGaussian function has anunlimited support,wehave
to extend our current definition of I by including functions
of exponential decay. We define the set S as

S = {aG
 | a > 0, 
 positive definite}, (27)

where 
 is the covariance matrix which controls the shape
of the Gaussian G
 .

S is closed under convolution but it is not a vector space.
We define P f to be such element of S which has the same
integral and covariance matrix as the image f itself. Clearly,
P2 = P but P is neither linear nor orthogonal. Although
the assumptions of GTBI are violated, the Theorem still
holds thanks to P( f ∗ h) = P f ∗ h. The moment expansion
analogous to Eq. (16) can be obtained when employing the
parametric shape of the blurring function. Thanks to this, we
express all moments of order higher than two as functions of
the low-order ones, which substantially increases the number
of non-trivial invariants.

Several heuristically found Gaussian blur moment invari-
ants appeared in Liu and Zhang (2005), Xiao et al. (2012)
and Zhang et al. (2013). Invariants based on projection oper-
ators were proposed originally in Flusser et al. (2016a) for
circular Gaussians and in Kostková et al. (2020) for blurs
with a non-diagonal covariance matrix.
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6 Combined Invariants

An important property of the blur invariants Eq. (16) is that
they can be easilymade invariant also to arbitrary linear trans-
formation. This is crucial in practice, where the image to be
recognized is often degraded by an unknown spatial defor-
mation, which originates from non-perpendicular view and
other geometric distortions. CNNs are not able to handle this
problem efficiently, they again rely on a massive augmenta-
tion of the training set by many samples with various spatial
deformations.

Let us assume a general linear transformation

x′ = Ax,

where A is a d × d regular matrix. The compound transfor-
mation is then given as

g(x) = ( f ∗ h)(Ax). (28)

This can be rewritten as

g(x) = ‖A‖( f ′ ∗ h′)(x) , (29)

where ‖A‖ is the absolute value of the determinant of
A, f ′(x) = f (Ax), and h′(x) = h(Ax), so the blur and the
linear coordinate transform are commutative in this sense.

Let us assume that S is closed under linear transforma-
tion, which means h′ ∈ S for arbitrary A and any h ∈ S.
Now we formulate the theorem which tells in a construc-
tive manner how to generate combined invariants in arbitrary
dimension d, if some geometric invariants w.r.t. linear trans-
formation are available (Fig. 5).

Theorem 6 (Substitution theorem) Let f ∈ I, f ′(x) =
f (Ax), I ( f ) be the blur invariant constructed according
to the GTBI and Cp be blur moment invariants defined by
Eq. (16). Let the blur space S be closed w.r.t. linear coor-
dinate transformation. Let J (m0, . . . ,mp) be an absolute
invariant of image moments w.r.t. A, i.e. J (m′

0, . . . ,m
′
p) =

J (m0, . . . ,mp). Then J (C0, . . . ,Cp) is a relative invariant
w.r.t. both A and the blur as

J (C ′
0, . . . ,C

′
p) = ‖A‖−w J (C0, . . . ,Cp),

where w is the weight6 of invariant J (m0, . . . ,mp).

See Appendix for the proof of Theorem 6.

6 The termweight of an invariant has been commonly used in the theory
of algebraic invariants, see for instance (Suk & Flusser, 2011) for the
definition. For any given invariant, its weight is known and follows from
the way how the invariant has been constructed.

Fig. 5 Visual explanation of the idea of the Substitution Theorem. In
practice, invariant J (C0, . . . ,Cp) is computed directly from image f
without the intermediate steps

Substitution theorem says that combined invariants can be
simply obtained by replacing the moments in the formula for
geometric invariants by moment-based blur invariants (16).
The strength of the Theorem lies in the fact that it holds for
any blur set S, general linear transformation, arbitrary image
dimension and even for arbitrary polynomial basis of the
moments. The Theorem benefits from relatively rich litera-
ture on geometric moment invariants, that can be taken as the
invariant J . If A is a 2D rotation/scaling, we refer to rotation
invariants from complex moments (Abu-Mostafa & Psaltis,
1984; Flusser, 2000). For 3D rotation/scaling, the use of tra-
ditional moment invariants (Cyganski & Orr, 1988; Sadjadi
& Hall, 1980) or those based on spherical harmonics (Lo
& Don, 1989; Suk et al., 2015) is recommended depending
of S. In case of general linear/affine transformation, vari-
ous affine moment invariants are available in 2D (Hickman,
2012; Reiss, 1991; Suk& Flusser, 2011) as well as in 3D (Xu
& Li, 2006).

7 Experimental Evaluation

In this section, we show the performance of the proposed
invariants in the recognition of blurred facial photographs, in
templatematchingwithin a blurred scene and in two common
image processing problems—multichannel deconvolution
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and multifocus fusion—where we use the proposed invari-
ants for registration of blurred frames. The first experiment
was performed on simulated data, which makes possible to
evaluate the results quantitatively,while the other three exper-
iments show the performance on real images and blurs. A
comparison toCNNand another “handcrafted” blur-invariant
technique is also presented.

7.1 Face Recognition

In this experiment, we used 38 facial images of distinct
persons from the YaleB dataset (Georghiades et al., 2001)
(frontal views only). Each class was represented by a single
image resized to 256× 256 pixels and normalized to bright-
ness. As the test images, we used synthetically blurred and
noisy instances of the database images starting from mild
(5 × 5 blur, SNR = 50 dB) to heavy (125 × 125 blur, SNR
= 5 dB) distortions. We used four types of centrosymmetric
blur (circular, random, linear motion, Gaussian) and Gaus-
sian white noise in these simulations (see Fig. 6 for some
examples). In each setting, we generated 10 instances of each
database image.

The faces were classified by four different methods—blur
invariants, CNN trained on clear images only, CNN trained
on images augmented with blur, and the Gopalan’s invari-
ant (Gopalan et al., 2012). As blur invariants, we used the
particular version of I ( f ) from Theorem 6 with operator
P defined in Sect. 5.3. As the CNN, we used a pre-trained
ResNet18 (He et al., 2016) initially trained on the ImageNet
dataset (Deng et al., 2009). Data augmentation was done
by adding 100 differently blurred and noisy instances to the
training set such that the blur was of the same size as that of
the test images. The Gopalan’s invariant belongs to “hand-
crafted” features and measure the “distance” between two
images in a way that should be insensitive to blur. Unlike
the proposed invariants, the Gopalan’s method requires the
knowledge of the blur support size, which is no problem in
simulated experiments.

The recognition results are summarized in Table 1. The
performance of the proposed invariants is excellent except
for the last two settings, where the blur caused an extreme
smoothing and significant boundary effect (but still the per-
formance over 90% is very good). Figure 7 shows examples
of a very heavy blur that was handled correctly by the pro-
posed invariants. The CNN trained only on clear images fails
for mid-size and large blurs, which corresponds to the results
of earlier studies. However, if we augment the training data
extensively with blurred images, the performance is close to
100% but the training time was about four hours compared
to few seconds required by the invariants. In this scenario,
introducing new images/persons to the database requires
additional lengthy training of CNNs. The performance of the
Gopalan’s method decreases as the blur increases because

Fig. 6 Sample faces used in the experiment. From top to bottom: no
blur, motion, Gaussian, uniform and random blur; from left to right:
blur size 5, 7, 9, 11, 13, and 15 pixels

Table 1 The recognition rate [%] for different degradations achieved
by the proposed invariants (In), CNN trained on clear images, CNNwith
augmentation by blurred images, and the Gopalan’s method (Gopalan
et al., 2012) (G)

Degradation Method
SNR Blur In CNN A-CNN G

50 Circular 5 × 5 100 100 100 100

50 Circular 10 × 10 100 90 100 98

50 Circular 15 × 15 100 35 100 76

50 Circular 125 × 125 100 – 100 40

5 Circular 125 × 125 99.9 – 99.8 5

5 Random 125 × 125 99.8 – 99.9 5

5 Motion 125 × 125 92 – 99.6 3

5 Gaussian 125 × 125 91 – 99.5 3

this method is blur-invariant only approximately. Its com-
puting complexity is less than that of the augmented CNN
but much higher than that of the proposed invariants and the
CNN without augmentation.

7.2 Template Matching

Localization of sharp templates in a blurred scene is a com-
mon task in many application areas such as in landmark-
based image registration and in stereo matching. In this
experiment, we show how the blur invariants can be used
for this purpose.

We took two pictures of the same indoor scene—the first
one was sharp while the other one was intentionally taken
with wrong focus. In the sharp image, we selected 21 square
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Fig. 7 Extreme cases recognized correctly by the blur invariants but
misclassified both by CNN and the Gopalan’s method

templates (see Fig. 8a) and the goal was to find these tem-
plates in the blurred scene. Since the out-of-focus blur has
approximately a circular shape, we used the blur invariants
w.r.t. radially symmetric blur (see Sect. 5.4). Since the tem-
plates are relatively small, we used the invariants defined
directly in the image domain bymeans of moments (16). The
matching was performed by searching over the whole scene,
without using any prior information about the template posi-
tion. Thematching criterionwas theminimumdistance in the
space of blur invariants. Nine templates were localized with
an error less than or equal to 10 pixels, eight templates with
an error 11–20 pixels, three templates with an error 21–30
pixels, and one template with an error greater than 30 pixels
(see Fig. 8b). In the sense of a target error, each template was
localized in a position that is less than half of the template
size from the ground truth.

The localization error is caused by the fact that the blurred
template is not exactly a convolution of the ground truth tem-
plate and the PSF. We observe a strong boundary effect as
pixels outside the template influence pixels inside the tem-
plate. This interaction is, of course, beyond the assumed
convolution model. In the case of a large PSF, it influences
the matching. If the distance matrix has a flat minimum, then
a small disturbance of the invariants due to the boundary
effect may result in an inaccurate match.

For comparison, we performed the same task using plain
moments instead of the invariants while keeping the number
and order of the features the same. Results are unaccept-
able, most of the templates were matched in totally wrong
positions (see Fig. 8c). This clearly shows that introducing
blur-invariant features brings a significant improvement.

7.3 Multichannel Deconvolution

Multichannel blind deconvolution (MBD) is a process where
two or more differently blurred images of the same scene are

Fig. 8 Template matching experiment. The original sharp scene with
the selected templates (a), thematched templates in the defocused scene
using blur invariants (b) and the same using plainmoments (c). The tem-
plate color encodes the localization error (green: 0–10 pixels, yellow:
11–20, violet: 21–30, red: > 30)

given as an input and a single de-blurred image is obtained
as an output (Campisi & Egiazarian, 2007). The restoration
is blind, so no parametric form of the PSF’s is required.
Comparing to single-channel deconvolution, it is more stable
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Fig. 9 Multichannel
deconvolution. The original
frames blurred by a camera
shake (left and middle). Note
the shift and rotation
misalignment between them,
that was registered by
blur-invariant phase correlation.
The result of MBD (Kotera et
al., 2017) applied on the
registered frames (right)

Fig. 10 Multifocus fusion. The
input frames focused on the
foreground (left) and on the
background (middle). The
frames were registered by
blur-invariant phase correlation
and fused by the method from
Zhang et al. (2020) (right)

and usually produces much better results. However, the cru-
cial requirement is that the input frames must be registered
before entering thedeconvolutionprocedure.The registration
accuracy up to several pixels is sufficient because advanced
MBD algorithms are able to compensate for a small mis-
alignment (Šroubek & Flusser, 2005). Since the input frames
are blurred, most of the common registration techniques
designed originally for sharp images (Zitová&Flusser, 2003)
fail.

For the registration of blurred frames, the proposed invari-
ants can be used. In Fig. 9 (left and middle), we see two input
images of a statue blurred by camera shake. Since the camera
was handheld and there was a few-second interval between
the acquisitions, the images differ from each other not only
by the particular blur but also by a shift and a small rotation.
To register them, we use “blur-invariant phase correlation”
method. It is an efficient landmark-free technique inspired by
traditional phase correlation (de Castro & Morandi, 1987).
Our method uses directly the blur invariants I ( f ) and I (g)
(insteadofwhitenedFourier spectrum F/|F | andG/|G|used
in the phase correlation) to find the correlation peak. Since
we do not have much prior information about the blurs, we
use operator P2 from Section V.E to design the invariants,
because it is less specific than the others and should work for
many blurs. Switching betweenCartesian and polar domains,
the method can register both shift and rotation.

In this real-data example we do not have any ground truth
so we cannot explicitly measure the registration accuracy.
However, it is documented by a good performance of the sub-
sequent MBD algorithm. The registered frames were used as
an input of the MBD proposed in Kotera et al. (2017). The

result can be seen in Fig. 9 right. We acknowledge a sharp
image with very little artifacts, which proves a sufficient reg-
istration accuracy (and of course a good performance of the
MBD algorithm itself).

7.4 Multifocus Fusion

Multifocus image fusion (MIF) is a well-known technique of
combining two or more images of the same 3D scene, that
were taken by a camerawith a shallow depth of field (Blum&
Liu, 2006). Typically, one frame is focused to the foreground
while the other one to the background (see Fig. 10 for an
example). The fusion algorithms basically decide locally in
which frame this part of the scene is best focused and gen-
erate the fused image by stitching the selected parts together
without performing any deconvolution. Obviously, an accu-
rate registration of the inputs is a key requirement.

The registration problem is here even more challenging
than in the previous experiment, because the convolution
model holds only on the foreground or background and the
required accuracy is higher them in the MBD case.

The input frames and the fused product are shown in
Fig. 10. As in the previous experiment, we applied the blur-
invariant phase correlation. Since there was just a shift
between the frames, the entire procedure run in the Carte-
sian coordinates. We assumed a circular out-of-focus blur, so
we used the operator P∞. After the registration, the fusion
itself was performed by the method proposed in Zhang et al.
(2020). High visual quality of the fused product with almost
no artifacts proves the accuracy of the registration.

123



2312 International Journal of Computer Vision (2023) 131:2298–2315

8 Conclusion

8.1 Paper Summary

In this paper, we presented the general theory of invariants
with respect to blur. The main original contribution of the
paper lies in Theorems 3 and 6.We showed that all previously
published examples of blur invariants are just particular cases
of a unified theory, which can be formulated bymeans of pro-
jection operators without a limitation to a single blur type.
The central role is played by the orthogonality of the pro-
jection operator, which is sufficient to possess the invariant
properties. The connection between orthogonality of projec-
tions and blur invariance had not been known before. This
discovery significantly contributes to the understanding of
blur invariants. Using the proposed theory, we derived blur
invariants to new unexplored blur types, which would be dif-
ficult to construct otherwise.

8.2 Evaluation of the Experiments

The experiments demonstrated a very good performance of
the proposed invariants in the recognition of blurred objects
and in blurred frames registration. Blur invariants exist in
equivalent forms in Fourier domain where they are expressed
directly by the projection operator and in the image domain
where they usemoment expansion.Both domains can be used
in experiments and our choice mostly depends on the image
size (for large images, Fourier invariants are more efficient
and vice versa).

8.3 Comparison to CNN:What is Better?

The comparison to deep-learning methods, represented here
by theResNetCNN, performs another interesting outcome of
the paper. We showed that in our experiments blur invariants
significantly outperform the CNN without an augmentation
in terms of recognition power and the CNN with a data aug-
mentation in terms of computing complexity. This might,
however, not be true in general for any kind of data. Consid-
ering memory consumption, the invariants are significantly
more efficient even if no data augmentation was applied.
Image representation by the invariants is highly compres-
sive. We usually work with the feature vector of length less
than 20 while CNN works with a complete pixel-wise repre-
sentation of the images.

Blur invariants perform well if the intra-class variations
can be mathematically modelled in a simple way (here the
model was the convolution, possibly combined with a spa-
tial transformation) even if the number of classes is high.
Then the object classes are exactly the same as orbits of
respective group action. This typically happens in the case
of single-sample classes (for instance a single person defines

one class and query images are various blurred and trans-
formed photographs of the person). To reach a comparable
recognition rate, CNNs require a massive augmentation over
a wide range of blurs, which makes the training extremely
time-consuming.

On the other hand, the proposed invariants can hardly be
used for classification into broad generic classes such as “per-
son”, “car”, “animal”, “tree”, etc. The intra-class variability
is so rich that cannot be parameterized. The invariants do not
have the ability to analyze the image content and they are not
“continuous”, which means that two visually similar objects
(two dogs or two cars for instance) might have very differ-
ent invariant values. These scenarios can be well resolved by
deep learning, however, there is still the necessity of a large-
scale augmentation of the training set with blur if blurred
images are expected on the input of the system.

8.4 Where to go Next?

The proposed invariants and CNNs with augmentation
should be understood as complementary rather than com-
petitive approaches, each of them dominating in distinct
situations (two extremes are mentioned above). Practical
scenarios are often somewhere “in between”. An optimal
solution could be found as a weighted fusion of handcrafted
and learned features where the weights are automatically
determined during the learning process depending on the
data. The fusion itself may be done in various ways. We can
concatenate learned and handcrafted features into a single
feature vector which is sent to SVM classifier. Alternatively,
we can run two parallel networks of different architectures,
whichwe fuse before the decision level.Yet another approach
is to run traditional CNN and calculate the handcrafted fea-
tures on the learned featuremaps. Regardless of the particular
fusion rule, this general idea can be viewed as a kind of aug-
mentation, not applied on the training set as usually but on
the feature space representing the images, where the pixel
level is extended by a high-level handcrafted features.

It is highly probable that using learned and handcrafted
blur-invariant features together will require developing of
new network architectures. The research on this field is at
a very initial stage and we envisage its dynamic development
in the near future.
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Appendix

Proof of Theorem 6.
The proof follows the scheme shown in Fig. 5. Let us first

investigate the relation between I ( f ) and I ( f ′). By defini-
tion, we have

I ( f ′)(u) = F( f ′)(u)

F(P f ′)(u)
.

Now we show that P f ′(x) = (P f )(Ax). Since

f ′(x) ≡ f (Ax) = (P f )(Ax) + f A(Ax)

and (P f )(Ax) ∈ S thanks to the transformation closure, it
is sufficient to show that f A(Ax) ∈ A. This follows from
orthogonality of S and A. Picking an arbitrary h ∈ S, we
have

〈h(x), f A(Ax)〉 =
∫

h(x) f A(Ax) dx

=
∥∥∥A−1

∥∥∥
∫

h
(
A−1x

)
f A(x) dx = 0.

Since the decomposition is unique, it really holds P f ′(x) =
P f (Ax). Recalling that theFourier transformof arbitrary f is
under A transformed as F( f ′)(u) = ∥∥A−1

∥∥F( f )
(
A−Tu

)
,

where A−T denotes
(
A−1

)T
, we obtain

I ( f ′)(u) = F( f )
(
A−Tu

)

F(P f )
(
A−Tu

) = I ( f )
(
A−Tu

)
.

After applying (formally) the inverse Fourier transform, we
get the relation between the primordial image fr of f and f ′

r
of f ′

f ′
r (x) = ‖A‖ fr (Ax).

This relation tells us that the primordial image is transformed
by the same coordinate transformation as the original image,
up to multiplicative factor ‖A‖.

Let us recall that the blur invariants (16) are in fact
moments of the primordial image. Let us denote those of
fr (x) as Ck, those of f ′

r (x) as C
′
k, and those of fr (Ax) as

C̃k. The relation between C ′
k and C̃k is

C ′
k =

∫
πk(x) f ′

r (x) dx

=
∫

‖A‖πk(x) fr (Ax) dx = ‖A‖C̃k.

Since J is an invariantw.r.t. A, itmust hold J (C0, . . . ,Cp)

= J (C̃0, . . . , C̃p). Consequently,

J (C ′
0, . . . ,C

′
p) = J (‖A‖C̃0, . . . , ‖A‖C̃p)

= ‖A‖−w J (C0, . . . ,Cp).

The last equality follows from the theory of affine moment
invariants (Suk & Flusser, 2011), where it was shown that
any absolute invariant J must have a form of a finite sum,
where all terms are products of K moments (K is called the
degree of the invariant) divided by (K + w)-th power of m0.
This completes the proof.
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