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Abstract. In this paper, we introduce new 3D rotation moment invari-
ants, which are composed of non-separable Appell moments. The Appell
moments can be substituted directly into the 3D rotation invariants
instead of the geometric moments without violating their invariance. We
show that non-separable moments may outperform the separable ones in
terms of recognition power and robustness thanks to a better distribu-
tion of their zero surfaces over the image space. We test the numerical
properties and discrimination power of the proposed invariants on three
real datasets – MRI images of human brain, 3D scans of statues, and
confocal microscope images of worms.

Keywords: 3D recognition · 3D rotation invariants · non-separable
moments · Appell polynomials

1 Introduction

Recognition of 3D objects is particularly important in bio-medical imaging,
where modalities such as CT, MRI, and confocal microscopes yield full 3D vol-
umetric data. Two main approaches to this problem are via “handcrafted” and
“learned” features. While in 2D the convolutional networks and deep learned
features have almost completely replaced traditional handcrafted features, the
situation in 3D recognition is not so clear-cut.

For volumetric data, there are several 2D-inspired architectures operating
on voxels such as convolution networks [15], residual networks [17], U-Net [10],
generative models [4] and transformers [14]. However, one faces many practi-
cal problems when applying neural networks to 3D data. The data size and
dimension imply the demand of large-scale annotated training sets. Such public
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datasets do not exist, unlike for instance ImageNet, that serves as a universal
training set in 2D applications. We can find only few specialized benchmarks for
narrow areas like Kitty (dataset for autonomous driving) [9] and fastMRI [24]
containing knee and brain MRI snaps. These training data can be used in specific
areas, but do not have a potential of pre-training general backbones suitable for
transfer learning. The problem of geometric invariance of the network, widely
investigated in 2D [16], has been studied in a few very recent papers [20,23]. So,
there is still a clear demand to develop efficient handcrafted invariant features.

Among many possible choices, moment invariants were proven to be very
powerful descriptors of 3D bodies, because they provide invariance to the object
pose and scale [8]. 3D moment invariants have been studied much less than their
2D counterparts, which means there are still many open questions concerning
namely numerical stability and ability to represent objects by low-dimensional
vectors. Both these issues are connected with the orthogonality of the moments
(more precisely, with the orthogonality of the corresponding polynomial bases).
Orthogonal moments provide generally better representation, stability and dis-
crimination power than non-orthogonal ones. On the other hand, rotation invari-
ants from OG moments are generally more difficult to construct than those from
standard non-orthogonal moments [18,19]. Two families of popular 3D rota-
tion moment invariants composed of OG moments are those based on Zernike
moments [5] and Gaussian-Hermite moments [22].

Both these systems (and actually all other ones that have been used in object
recognition so far) are separable, which means their basis functions can be factor-
ized as πpqr(x, y, z) = Pp(x)Pq(y)Pr(z). Zernike moments are separable in polar
domain, Gaussian-Hermite moments are separable in Cartesian domain. Sepa-
rability is convenient from computational point of view but results in certain
limitations of the representation ability. The distribution of zeros of separable
functions is constrained such that the zero surfaces fill a rectangular or polar
grid (see Fig. 1). Hence, separable basis functions provide good representation
in the grid directions while the representation in “diagonal” directions may be
worse. It may lead to the drop of discriminability, if characteristic object struc-
tures exhibit a diagonal-like orientation and/or if we employ only a few low-order
basis functions. This has led recently to introducing non-separable bases, how-
ever so far in 2D only.

In 2022, Bedratyuk et al. [3] introduced 2D non-separable Appell moment
invariants. In this paper, we generalize their idea into 3D.

2 Basic Idea Behind 3D Invariants

To design 3D rotation invariants form non-separable moments, we basically need
to find polynomial basis functions that are quasi-monomials, are not separable,
and there exists a stable and fast algorithm for their evaluation. Quasi-monomials
are polynomials, that are transformed under coordinate rotation exactly in the
same way as monomials xpyqzr [1]. This property is crucial for invariant design.
We can simply substitute the quasi-monomial moments into well-known invari-
ants of geometric moments (i.e. moments w.r.t. the monomial basis) [8]. The
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Fig. 1. Slices of 3D polynomials showing the zero distribution: (a) separable Zernike
Re

(
Z5

15,9

)
, xy plane, (b) separable Gaussian-Hermite G456, xy plane, (c) non-separable

Appell U456, xy plane, (d) non-separable Appell V456, xy plane. The black curves are
the zero sets.

problem is that quasi-monomials are rare. Among all separable polynomials,
Hermite polynomials were proved to be the only quasi-monomials [21]. Among
non-separable polynomials, there is no such necessary and sufficient condition.
Fortunately, Bedratyuk et al. [3] proved, that Appell polynomials [7] are quasi-
monomials in 2D. This key property is preserved in 3D as well. In the next
section, we present 3D Appell polynomials, Appell moments and original recur-
rent relations for their efficient computation.

3 3D Appell Polynomials and Moments

The term Appell polynomials (APs, named after P.E. Appell, a French mathe-
matician) denotes two families of multivariate non-separable polynomials U and
V . Appell polynomials are bi-orthogonal, which means any two polynomials, one
being from U and the other one from V , are orthogonal (with a weight) on a
unit sphere. The definition of Appell polynomials in 3D is the following (for more
details on the APs see [7]).
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The above formulas are, however, not convenient for numerical evaluation
due to possible overflows. In Appendix, we present recurrent formulas for stable
and fast computation.

The Appell moments M of a 3D image f(x, y, z) are its projections onto the
set of Appell polynomials

M (P )
pqr =

∞∫

−∞

∞∫

−∞

∞∫

−∞
Ppqr(x, y, z)f(x, y, z) dxdy dz , (2)

where P stands either for U or for V . To obtain Appell invariants, these moments
are substituted into geometric moment invariants [2,6,8] (this is possible because
APs are quasi-monomials), so we end up with formulas such as

Φ1 = M200 + M020 + M002,

Φ2 = M2
200 + 2M2

110 + 2M2
101 + M2

020 + 2M2
011 + M2

002.

Using the list from [6], we obtain a complete and independent set of 213 invari-
ants up to the 9th moment order.

4 Experiments

4.1 Human Brain MRI

The aim of the first experiment is to numerically verify the rotation invariance.
We used two MRI measurements of the brain of the same patient (Fig. 2) down-
loaded from [11]. Their original sizes are 192×224×224 and 193×229×193 voxels.
We generated 8 random 3D rotations of each snap with bilinear interpolation
and then computed 77 rotation invariants up to the sixth order. We computed
the Appell moment invariants both of U and V families by recurrence formulas
(4)–(9) and compared them with the invariants from complex moments [19], geo-
metric moments [18], Gaussian-Hermite moments [22] and Zernike moments [5].
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Fig. 2. Brain MRI images used in the experiment: (a) slice 96 (out of 192) of the first
snap, (b) slice 97 (out of 193) of the second snap.

Table 1. ERAs of the rotation invariants in %. The averages over all invariants are
used.

invariants Appell U Appell V Complex Geometric G-H Zernike

brain 1 1.2067 0.9720 2.6408 2.6392 3.4373 1.4609

brain 2 1.4592 1.1898 3.5169 3.5168 3.8445 1.8552

average 1.3329 1.0809 3.0788 3.0780 3.6409 1.6580

As a measure of quality we used the error relative to average (ERA)

ERA =
100%
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, (3)

where ni is the number of invariants (ni = 77 for sixth order), nr = 8 is the
number of rotations, and Iij is jth invariant of ith rotation. ERA is similar
to more common mean relative error (MRE), which is, however, unstable for
invariants being close to zero. The average ERAs of all invariants are shown in
Table 1. It is apparent that both Appell U and V invariants actually exhibit the
rotation invariance, even with smaller error than traditional separable invariants.

4.2 The Statues

This experiment demonstrates the ability of the Appell invariants in a simple
object recognition task. We scanned five visually similar small sculptures by a 3D
scanner. The scanner uses 8 scanning directions to create a 3D model (see Fig. 3
(a)–(e) for the models). No texture is covering the models or inserted inside.
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Fig. 3. From (a) to (e) the models of five statues used in the experiment, (f) rotated
and noisy sample to be recognized.

The original models were used as the training samples. Eight random rota-
tions of each statue were classified by the same invariants that were used in the
MRI experiment. We applied a simple nearest-neighbor classifier in the space
of invariants. If there is no noise, all methods classified all statues correctly.
To make the problem more challenging, we added random noise inside the cir-
cumscribed sphere around each test sample (see Fig. 3(f) for an example), that
simulates scanner errors in recovering 3D surface. Noisy objects are more dif-
ficult to recognize and performance differences of individual methods become
apparent, as is documented in Table 2.

We can see that the Appell U moments are the best performing ones, the only
unsatisfactory result is for low order of the moments. Looking at the other results,
it is interesting that good recognition rate does not necessarily correspond with
low ERA value (compare Complex and Geometric invariants).

5 The Worms

In this experiment, we tested recognition via template matching. We used 3D
data from confocal microscope that are publicly available [13]. The dataset was
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Table 2. Success rates and relative errors of various rotation invariants in % for noisy
objects. The first column shows the maximum order of the moments used.

max. order Appell U Appell V Complex Geometric G-H Zernike

2 60 62.2 100 60 93.3 95.6

3 100 91.1 97.8 100 100 100

4 100 100 97.8 100 100 95.6

5 100 88.9 97.8 97.8 80 95.6

6 100 93.3 97.8 100 86.7 95.6

ERA 0.246 0.303 2.675 0.324 2.744 2.506

captured by Leica microscope with 63× oil objective [12] and consists of 28
volumes of worms Caenorhabditis elegans at the larval stage1 and corresponding
stacks of 555 ground-truth annotated cell nuclei, see Fig. 4.

Fig. 4. The worm used in the experiment: (a) cross-section, (b) longitudinal section,
(c) ground-truth nucleus masks in the cross-section, (d) ground-truth nucleus masks
in the longitudinal section.

Now we tried to detect the nuclei via template matching. Ten nuclei were
chosen for training, i.e. we computed their invariants of all kinds up to the sixth
order. Then we passed through the scan of the worm, computed invariants in
the neighborhood of each voxel and compared them with the invariants of the
training set. There is a hypothesis that the nuclei of different cells are very
similar in their shape and appearance but differ from one another by orientation
in 3D space, so rotation invariance of the features is required. We optimized the
radius of the spherical neighborhood for each type of moments individually to
get the best performance (the optimal radius depends on the shape of the basis
functions, so it cannot be the same in all cases).

The voxel is considered to be the center of the nucleus if the two following
conditions are satisfied:

1 The dimension of the chosen volume is 1244 × 140 × 140, the pixel size is 0.122 ×
0.116 × 0.116 µm.
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• The feature distance must be below a user-defined threshold and must form
the local minimum in the 3 × 3 × 3 neighborhood of the voxel in question.

• The detected nucleus cannot overlap the nuclei detected before.

The quality of the detection was evaluated by means of the ground-truth
masks. If the spatial distance between the detected nucleus and the nearest
mask is less than 10 voxels, the detection is considered correct.

The results are summarized in Table 3. Again, Appell U invariants detected
almost all nuclei and won the contest, followed by Complex, Geometric, and
Zernike invariants.

Due to the high computation demand of a pattern matching problem, the
source code was implemented in PyTorch framework allowing us to run the algo-
rithm in parallel on Nvidia A100 GPU. Thanks to this, the task run by several
orders faster than in case of traditional implementation, but still it took about
two hours due to a large number of template positions to be tested. A speed up
via pyramidal search and / or sparse space sampling would definitely be possible
but the runtime was not the issue we were primarily interested in. Therefore, the
invariant calculation in each voxel took about two hours using Nvidia A100 GPU.
The source codes are available at https://github.com/karellat/nuclei.

Table 3. The numbers of correctly detected nuclei out of 545 instances.

Invariants Appell U Appell V Complex Geometric G-H Zernike

# detected nuclei 528 359 473 437 338 414

Radius [voxels] 13 11 11 13 15 17

6 Conclusion

We introduced new 3D rotation moment invariants, which are composed of non-
separable Appell moments. To the best of our knowledge, this is the first appli-
cation of 3D non-separable polynomials in object recognition. The design of the
invariants was possible because the Appell polynomials are quasi-monomials.
At this moment, we are not aware of any other non-separable quasi-monomials.
Furthermore, we proposed recursive formulae for fast and stable computation.

To show the performance of the new Appell invariants in practice, we pre-
sented three experiments of different kind – invariance verification on MRI scans,
object recognition of real 3D objects, and template matching in a volumetric
microscopic images. In all of them, Appell invariants outperformed the com-
petitors. This is mainly due to more even distribution of zeros of the Appell
polynomials over the image space, which leads to a better representation ability
of the Appell moments, especially if only low-order features are used.
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Appendix

In this appendix, we present recurrent relations for fast and stable computation
of 3D Appell polynomials. The polynomials Um,n,o = Um,n,o(x, y, z) satisfy the
recurrences

Um+1,n,o = x(2m + n + o + 1)Um,n,o + moxzUm,n,o−1 + mnxyUm,n−1,o+
+2mnoxyzUm,n−1,o−1 + m((y2 + z2 − 1)m + (y2 + 2z2 − 1)o+
+(2y2 + z2 − 1)n)Um−1,n,o + moz((y2 − 1)(m + o − 1)+
+(3y2 − 1)n)Um−1,n,o−1 + mny((3z2 − 1)o+
+(z2 − 1)(m + n + 1))Um−1,n−1,o − 2mnoyz(m + n + o − 2)Um−1,n−1,o−1

(4)
Um,n+1,o = y(m + 2n + o + 1)Um,n,o + noyzUm,n,o−1 + mnxyUm−1,n,o+

+2mnoxyzUm−1,n,o−1 + n((x2 + z2 − 1)n + (x2 + 2z2 − 1)o+
+(2x2 + z2 − 1)m)Um,n−1,o + noz((x2 − 1)(n + o − 1)+
+(3x2 − 1)m)Um,n−1,o−1 + mnx((3z2 − 1)o+
+(z2 − 1)(m + n − 1))Um−1,n−1,o − 2mnoxz(m + n + o − 2)Um−1,n−1,o−1

(5)
Um,n,o+1 = z(m + n + 2o + 1)Um,n,o + moxzUm−1,n,o + noyzUm,n−1,o+

+2mnoxyzUm−1,n−1,o + o((x2 + y2 − 1)o + (2x2 + y2 − 1)m+
+(x2 + 2y2 − 1)n)Um,n,o−1 + mox((y2 − 1)(m + o − 1)+
+(3y2 − 1)n)Um−1,n,o−1 + noy((x2 − 1)(n + o − 1)+
+(3x2 − 1)m)Um,n−1,o−1 − 2mnoxy(m + n + o − 2)Um−1,n−1,o−1

(6)

and the polynomials Vm,n,o = Vm,n,o(x, y, z) satisfy the recurrences

(2(m + n + o + 1) + 1)xVm,n,o = Vm+1,n,o − n(n − 1)Vm+1,n−2,o−
−o(o − 1)Vm+1,n,o−2 + m(m + 2n + 2o + 2)Vm−1,n,o

(7)

(2(m + n + o + 1) + 1)yVm,n,o = Vm,n+1,o − m(m − 1)Vm−2,n+1,o−
−o(o − 1)Vm,n+1,o−2 + n(2m + n + 2o + 2)Vm,n−1,o

(8)

(2(m + n + o + 1) + 1)zVm,n,o = Vm,n,o+1 − m(m − 1)Vm−2,n,o+1−
−n(n − 1)Vm,n−2,o+1 + o(2m + 2n + o + 2)Vm,n,o−1

(9)

with the initial conditions U0,0,0 = 1, U1,0,0 = x, U0,1,0 = y, U0,0,1 = z, U2,0,0 =
3x2+y2+z2−1, U0,2,0 = x2+3y2+z2−1, U0,0,2 = x2+y2+3z2−1, U1,1,0 = 2xy,
U1,0,1 = 2xz, U0,1,1 = 2yz, V0,0,0 = 1, V1,0,0 = 3x, V0,1,0 = 3y, V0,0,1 = 3z,
V2,0,0 = 3(5x2 − 1), V0,2,0 = 3(5y2 − 1), V0,0,2 = 3(5z2 − 1), V1,1,0 = 15xy,
V1,0,1 = 15xz, V0,1,1 = 15yz.
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