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Abstract—Neural networks are often trained on datasets, that
are not fully representative of the expected query images. Many
times, the difference stem from the query images being taken in
sub-optimal conditions. The most common defects are rotation,
scale, blur, noise and intensity & contrast change which were
all thoroughly studied and described. In this paper we propose
a novel neural network architecture which is invariant to such
degradations by design. We incorporate the knowledge build for
classical methods directly into the network architecture providing
an alternative to the augmentation of the training dataset. In
the experiments, the proposed solution outperforms the classical
augmentation technique in both accuracy and computational
resources needed.

I. INTRODUCTION

Over the past decade, the neural networks took over both
industry and academia in terms of state-of-the-art problem-
solving methods for many image processing tasks. Many of the
models found their way into real world applications and lately,
thanks to optimized architectures even into handheld devices.
In many areas, neural network can even surpass human (e.g.
plant classification based on leaf photo [2] ,[1]). However, like
with any model, the quality of output is strongly dependent
on the quality of the input image [3]. Images captured in
unfavorable lighting conditions, with shaky camera or from
different angle may fail to be classified (or segmented, tracked
etc., in the rest of this paper we focus on classification). In
case of a mobile app a simple warning text can prompt user
to retake the photo (in a specific way) but in many cases
this is not possible (e.g., images of stellar bodies, stained
microscopic images etc.). Besides the engineering solution to
this problem, the obvious step is to add various, on-purpose
damaged images into the training set and re-run the training
process. This paper proposes an alternative approach which
rivals the training dataset augmentation approach without a
need to alter or touch the existing, trained network. This allows
for an attractive enhancement of preexisting systems and offers
an interesting new angle for designing new architectures and
further research.

II. RELATED WORK

Data quality and its impact on neural networks is well
known and studied topic [5] ,[4] and more lately [7] ,[6]. Lebl
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et al. [3] showed, that even though effective, augmentation
against blur must be carefully sampled over the expected
extent of blur and over different blur types. The need for
transformation-invariant features is extensively reviewed in
[8].
The concept of invariants is quite old [9], see the book [10]

for a survey and further references thereof.
Some recent works describe architectures, that are enforcing

certain feature structure, which in return grants rotational
invariance [12] [11]. In this paper we want to broaden the
domain of invariant networks and extend them to arbitrary
degradation, leveraging both handcrafted invariants and exist-
ing well-performing networks.

III. METHOD AND DATA

In this section we summarize a general theory of image
invariants, establish (semantically) a new group of neural
networks using those invariants and finally propose a novel
alternative to dataset augmentation for dealing with degrada-
tions in query data.

For any computer vision task, real life application face
challenges with data quality. Ranging from simple lack of
sufficient training dataset for medical applications where one
often must work with just couple dozens of labeled images
to more traditional image degradations like rotation, scale,
warping and blur - for example in by-leaf plant classification.
Different strategies were developed over the years to counter
these obstacles from engineering solutions (asking the user to
control input image quality) to using separate CycleGANs to
prepare arbitrary number of synthetic images covering major-
ity of possible cases (e.g., stained tissue for cell classification
and segmentation). The common theme is to either eliminate
the problem or include samples of problematic data into the
training set. Depending on the application, this can become
quite time consuming if not near impossible given the extent
of the augmentation needed (e.g., capturing sufficient range of
blur families and levels).

A. Theory

An invariant I to a function f is a transformation with the
property:

I (x ) = I ( f (x ))
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In the rest of the paper, we consider x being a clean,
ideal image and f being some form of degradation - a
transformation detrimental for a classification task. The entity
I(·) may or may not in general be an image itself. We use the
word invariant for both the operator and the resulting image.
While invariants can be extremely powerful tool in image
processing tasks, they tend to sacrifice the discriminability
potential in favor of being agnostic to certain degradation.
We are considering both of these properties of invariants and
leveraging them as benefits.

Let’s take the classification problem with a train-
ing/validation sets of ideal, clean images and a method (net-
work) that solves the problem ideally - achieving maximal
possible accuracy while having no redundancy in the model.
Now we introduce a degradation to the input images which
has detrimental effect on the model accuracy. Our proposed
approach is to find and construct an invariant I and enhance
the original method (without changing it) such that it solves
the classification problem even with degraded input images.

B. Implementation

An obvious solution to the introduction of the degraded
images to the classification problem is to simply include them
also in the training set and retrain the model (augmentation).
This serves as a baseline for comparison with our proposed
solution. In addition, we set the following assumptions and
constrains to create a level playing field:

• Base model has a satisfactory accuracy on the initial clean
dataset. Complexity of the model is arbitrary (potentially
very high) and training can use substantial resources.

• Degradations have detrimental impact on accuracy, they
are broad in terms of range and complexity - making
them hard to exhaustively sample, however they are well
understood by classical methods.

• An invariant I to those degradation exist, describing the
whole family of said degradations. It generally loses in
discrimination power. This invariant should stay in the
image domain (this condition can be relaxed) and should
not exceed the original image in terms of complexity (and
dimensions).

• We care about resources consumed, meaning we can’t
keep broadening the augmentation until we succeed or
exhaust the potential of the given model.

We call the solution to the problem stated above the
Invariant Network (INET). INets must satisfy the following
conditions:

• Preserve accuracy on the original clean dataset.
• Greatly improve the accuracy on degraded data - on par

with data augmentation.
• Agnostic to specific sub-type of given degradation.
• Use up at most the same computational resources as

augmentation.
The third condition means for example invariance to ALL
rotations, not only to rotation by 90, 180 and 270 deg or more
practically to multiple blur families, not just Gaussian blur.

Four approaches were explored in total:

1) Building invariant representation of input data and feed-
ing it directly to existing net.

2) Building network such that it is agnostic to specific type
of degradation by design

3) Pre-processing the input while using the original archi-
tecture for classification

4) Using domain knowledge from handcrafted methods to
support original architecture with an invariant extension

The first two options won’t be discussed further in this
paper. If invariant representation of an image preserves dis-
criminability while being agnostic to certain degradation, there
is no advantage of using the original image in the first place
and any modification would increase resource consumption.
Example being the invariant equals a bi-spectrum of an image
and degradation equals rotation (there is no information loss
in translating to bi-spectrum and CNN can be trained to work
purely in frequency domain attaining the same accuracy albeit
the computational cost would increase, similar idea explored
by [13]). The second approach can be the best in certain
situations and is explored for example by [11] in case of
rotations, however the model needs to be constructed from
scratch.

For this paper we’ve prepared two examples of invariant
network architectures. The first proposal - SINet - maximizes
the usage of the existing assets and tries to enhance the
input to achieve invariance (approach 3.). We achieve this by
simply adding another channel to the input (extreme case of
image pre-processing) and re-use the original NN architecture
unchanged. If the invariant representation is relatively close in
image space to the original, we can expect reasonably good
accuracy without any further action. By re-training the fully
connected output layer, we aim to boost INET’s ability to make
a correct decision in case the confidence is low. By retraining
the whole network, we can achieve even better results while
still avoiding full augmentation of training dataset (as various
damaged images are mapped to the same invariant).

The second proposal - πNet - is to prepare a separate,
simpler network that is operating purely on the invariant
representations of images (approach 4.). Features of this
network are then combined with the features of the original,
already trained network and final decision-making layer(s)
is(are) added. This architecture originates from the idea of
ensemble models with two main differences - it does not
combine the final results but rather some low-level feature
vectors and it only has one common loss function.

Note: It is obviously possible to prepare multiple different
models and use sophisticated (e.g., machine learning) methods
to combine results or build decision trees or even include the
input image as a factor in choosing which solution to pick.
This is commonly used in many areas: [14], [15]. However,
we aim to provide simple, compact solution and stay strictly
in the neural network domain.



C. Proposed solutions (INets)

Stacked invariant networks (SINet)

• Invariant must have the same dimensions as the original
image

• Invariant must remain in the image domain
• Invariant added as a channel to input
• Re-training needed (reuses original weights for initializa-

tion)

Figure 1 shows the SINet architecture. The main strength of
this approach is the simplicity and speed of implementation.
We only care about constructing the invariant itself, the rest
stays the same.

Fig. 1. SINet architecture - the original network is unchanged, input image
is enriched by another channel - the invariant.

Parallel invariant network (πNet)

• Parallel network architecture with two branches merging
into single output, see Fig.2

• Any invariant representation
• Invariant fed to separate branch
• Fully reuses original Net, up to final fully-connected layer
• Invariant branch can be pre-trained

As shown on Fig 2, the original neural network is unchanged
up to the last fully connected layer (with all the weights
frozen). The invariant branch can be pre-trained and have
only the last layer fine-tuned to a specific task. Features of
both branches are merged together, and another block is used
before classification - this can be a single fully-connected layer
or arbitrarily complicated sub-net.

Fig. 2. πNet architecture - the original network (left branch) is unchanged up
to the last layer(s), input image is converted into invariant and both branches
- original and invariant (right) are merged before the final classification layer.



D. Summary

Existing original Network:
• Great accuracy on clean dataset
• Complex architecture
• Fine-tuned to specific problem
• Costly training
Degradations:
• detrimental impact on accuracy
• broad range
• well described by handcrafted methods
• difficult to parameterize (limited for rotations)
• difficult to exhaustively sample (limited for rotations)
Invariants:
• Describe whole family of degradations
• Stay in the image domain
• Substantial loss in discrimination power (limited for

corruption of high frequency)
Invariant networks:
• Unaffected performance on clean dataset
• Greatly improved performance on degraded data
• Agnostic to degradation type (within a family)
• Competitive to augmentation
Baseline - full augmentation of training dataset:
• Sampling the space of degradations must be decided

beforehand
• Achievable accuracy limited by architecture (number of

parameters) in case of optimized networks
• Can be costly

IV. EXPERIMENTS

We have designed two sets of experiments comparing accu-
racy of four models in seven different training configurations.
We chose MNIST as a dataset for its simplicity and to have
(nearly) perfect baseline accuracy even with simpler network
architectures. The nature of the images also helps to select
invariants designed as continuous functions even when dealing
with discrete space, sampling, and finite precision. Training
dataset contains 60000 images, validating 20000 images, im-
age size is 28x28 px. Examples of images are in Fig. 3

Fig. 3. MNIST dataset samples - 4, 0, 8

First experiment uses randomly rotated data - each image
from the validation dataset is rotated by a random angle
(uniform distribution 0-359 deg). Invariant is chosen as an
average of all possible rotations, see fig 4.

There are many full rotational invariants - meaning the
original image can be restored from the invariant (up to
the rotation), one example being a bi-spectrum. We could

Fig. 4. MNIST dataset numbers 4, 0, 8. Top: rotated images, Bottom:
rotational invariants - concentric circles

Fig. 5. MNIST dataset numbers 4, 0, 8. Top: noisy images - spectral damage,
Bottom: spectral invariants - low-pass filter

use this invariant and achieve similar or better results than
with proposed concentric circles, however full invariants are
generally difficult (time consuming) to calculate, not robust
in discrete space and finite precision and would require much
more complicated invariant branch. Concentric circles are a
straightforward method which is robust and compress n × n
pixels to ∼ n/2 pixels. Such representation allows for simple
architecture as we’ve reduced the complexity of input data.

Second uses corruption of high frequencies that looks like
a noise in the image domain. First, we use Fourier transform,
then all frequencies outside 2px radius have 25% probability
to be damaged: equally likely either set value to 0 or set
value to 1/4 of the zeroth frequency. Finally inverse Fourier
transform brings the image back to image domain, but noisy.
This way we can construct true invariant, which is a low-pass
(2px radius) filtered image, see fig 5.

The models are:
• CNN - Original model solving given problem. Minimal

convolutional neural network architecture such that at-
tained accuracy is not improving anymore by adding more
parameters (layers)

• SINet - the same network as above but takes two-channel
input - image and its invariant representation, the initial
weights are reused from the original CNN

• ICNN - control model - original CNN but the input is
converted to the invariant representation

• πNet - Parallel network architecture with original branch
being the original CNN and invariant branch having simi-
lar convolutional architecture (but fewer blocks). Outputs
are concatenated and fed into fully connected layer.

Configurations are:



• Baseline - training done only on clean dataset.
• 100% augmentation - with and without including the full

clean dataset, the full rotated / noisy dataset is used. Note
that We re-trained all models twice, once for both kinds
of degradations and corresponding invariants.

• 20% augmentation - only 20% of rotated / noisy datasets
were used. With and without including the full clean
dataset.

• 5% augmentation - same as above but only 5% of rotated
/ noisy datasets were used.

This setting always compares result achieved with similar
level of computational effort invested and ensures as fair com-
parison as possible. See section IV-C for all the results side-
by-side, we discuss the outcomes in more detail in subsections
below.

A. Rotation invariance

Focusing on rotation-invariant, we achieve mediocre accu-
racy when using the pure invariants as an input (68%, see
Tab I), this was an expected trade-off for an easy-to-calculate
lightweight representation. However, by analyzing the Top3
accuracy of both the original network and the invariants we
can build a traditional decision model that assigns scores to all
classes based on joint confidences. Even without learning the
weights, one can put together system that greatly outperforms
the original network on rotated data and comes on par with
it on clean data. Leaving the decision on the networks works
for both INets and no further adjustments were necessary to
rival augmentation as seen in table II. From the rest of the
results, it is apparent that πNet is closely but consistently
outperforming the other models in all configurations. This is
more pronounced when we limit the resources - tables III and
IV.

This setting fulfills all the requirements we set above and
provides encouragement for further exploration of proposed
approach. Mainly it proves that we don’t need to solve the
given degradation entirely and even simple naive invariants
can greatly improve the overall accuracy.

B. Noise invariance

With the second degraded dataset and corresponding in-
variant, we deviated a little from the conditions set above
to present more realistic problem that has actual detrimental
effect on the recognition capability even for humans - heavy
noise (realized as a damage in the spectral domain). The
corresponding invariant was chosen to be a low-pass filter,
with radius 2px.

Note: we tried different radii and we’ve obtained similar
or better result even for low-pass radii up to 10px. We are
presenting the results for the smallest - thus the most compact
representation - radius that still yielded satisfactory results. It
is possible to denoise the source images and omit the invariant
architecture however that is not a topic of this paper.

To control this experiment and ensure both numerical stabil-
ity and to guarantee invariance, we are damaging the spectrum
center-symmetrically (so the inverse FFT is real-valued) and

we don’t damage the lowest frequencies (in the 2px radius).
This can be related to older compression algorithms where
images were sent first in low resolution and gradually down-
loaded more and more details - the initial low-res image is
sent with high priority, ensuring save arrival while the rest is
(more) likely to be corrupted. Limiting the low pass to those
un-corrupted frequencies guarantees invariance. Compared to
the rotation, heavily damaged images are hard to recognize
even for humans while the invariants are somewhat readable,
effectively being blurred versions of the original. This is
reflected in the performance. The un-augmented original CNN
is virtually useless because the input images are far from the
training set while it reacts well to the invariants - using the
pure invariants as an input yields 92% accuracy, see Tab I - as
they resemble the original images. Mixing clear and damaged
images during training then produces the desired result of
almost unchanged accuracy on clear images and great accuracy
on damaged images. Because of the nature of the damage, the
original CNN was not able to fully learn the degraded data,
even with heavy augmentation while πNet attained excellent
results even with only partial (20%) augmentation.

Note: there is a drop in accuracy when training only on
degraded images at 45% of the training dataset where the
original CNN is unable to train and stays at the initial 11%
accuracy.

C. Result tables

Baseline: Both proposed solutions maintain great accuracy
on the clean dataset however without degraded data in the
training set, the invariant branch is not given significant
weight. Noise invariants alone perform well on degraded
dataset but fall short on clean images.

Rotation Noisy
Architecture clean damaged clean damaged

CNN 99% 44% 99% 11%
SINet 99%99%99% 44% 99%99%99% 11%
ICNN 68 68%68%68% 92% 92%92%92%
πNet 99% 45% 99% 39%

TABLE I
ALL 4 MODELS TRAINED ON 100% OF THE CLEAN DATASET AND

VALIDATED ON CLEAN, ROTATED AND NOISY DATASET.

Trained on clean + degraded dataset (2x 100% of training
data): Both proposed solutions achieved our goal - almost
unaltered performance on clean dataset and satisfactory ac-
curacy on degraded images. Note that pure training dataset
augmentation was not enough to reach good accuracy for CNN
model.

Rotation Noisy
Architecture clean damaged clean damaged

CNN 98% 93% 98% 70%
SINet 98% 93% 98% 92%
ICNN 69% 69% 93% 93%
πNet 98%98%98% 94%94%94% 98%98%98% 94%94%94%

TABLE II
ALL 4 MODELS TRAINED ON 100% OF THE CLEAN + 100% OF DEGRADED

DATASET AND VALIDATED ON CLEAN, ROTATED AND NOISY DATASET.



Trained on clean + degraded dataset (100% + 20% of
training data): Performance is slightly better on clean images
than in table II but we lose accuracy on degraded images.

Rotation Noisy
Architecture clean damaged clean damaged

CNN 99%99%99% 90% 99%99%99% 66%
SINet 99% 90% 99% 89%
ICNN 67% 67% 92% 92%
πNet 99% 92%92%92% 99% 93%93%93%

TABLE III
ALL 4 MODELS TRAINED ON 100% OF THE CLEAN AND 20% OF

DEGRADED DATASET AND VALIDATED ON CLEAN, ROTATED AND NOISY
DATASET.

Trained on clean + degraded dataset (100% + 5% of training
data): All models start rapidly losing accuracy on degraded
images compared to Table II.

Rotation Noisy
Architecture clean damaged clean damaged

CNN 99% 80% 99% 42%
SINet 99%99%99% 80% 99%99%99% 87%
ICNN 67% 67% 92% 92%
πNet 99% 85%85%85% 99% 92%92%92%

TABLE IV
ALL 4 MODELS TRAINED ON 100% OF THE CLEAN AND 5% OF DEGRADED

DATASET AND VALIDATED ON CLEAN, ROTATED AND NOISY DATASET.

Inspecting the results above once can deduce that we are
also able (to some extent) control the bias towards either
degraded images or clean images. With full training dataset
augmentation we sacrifice a little bit of accuracy on clean
images and gain great accuracy on degraded data. However,
if we expect majority of our data to be clean, we recommend
augmenting only portion of the training set.

V. CONCLUSION

The above experiments justify the proposed solution and
encourage further exploration of πNet architecture.

The biggest benefits of πNet are: Great accuracy, easy
integration into existing applications and the training cost
ceiling - for each training image there is exactly one invariant,
making the training dataset at most twice as big. Comparing to
classical augmentation, where we may need to add multiple
different instances of degradations for each training image.
The original, already trained network can be fully utilized up
to the fully connected output layer. The invariant branch of
πNet can be pre-trained just like any other network using
for example ImageNet so we only need to re-train two FC
layers and train the final output block. We thus have an upper
bound on the training complexity needed and as shown in
the experiments, we can even reduce the augmentation rate
in case the resources are scarce. This is especially useful in
commercial applications, where knowing the expected load
beforehand is crucial for estimating a budget.

We have proposed a novel approach for handling degrada-
tions of input data for neural networks which rivals and even
surpasses augmentation with similar or smaller computational
resource investments.

With the proposed πNet we achieved:

• Comparable performance as base CNN on clean data
• Best performance on degraded data out of all tested

architectures
• Agnostic to base CNN - plug-and-play architecture
• Competitive cost of training
As a next step we plan to generalize the framework further

as well as suggest optimized strategies for designing the
invariant branch. Second area is to combine multiple invariants
in a single step and prepare architecture robust to two or more
degradations at the same time.
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