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Abstract—A great deal of attention has been paid to alternative
techniques to data augmentation in the literature. Their goal is to
make convolutional neural networks (CNNs) invariant or at least
robust to various transformations. In this paper, we present an
ensemble model combining a classic CNN with an invariant CNN
where both were trained without any augmentation. The goal is
to preserve the performance of the classic CNN on nondeformed
images (where it is supposed to classify more accurately) and the
performance of the invariant CNN on deformed images (where
it is the other way around). The combination is controlled by
another network which outputs a coefficient that determines the
fusion rule of the two networks. The auxiliary network is trained
to output the coefficient depending on the intensity of the image
deformation. In the experiments, we focus on rotation as a simple
and most frequently studied case of transformation. In addition,
we present a network invariant to rotation that is fed with the
Radon transform of the input images. The performance of this
network is tested on rotated MNIST and is further used in the
ensemble whose performance is demonstrated on the CIFAR-10
dataset.

Index Terms—CNN, rotation invariance, equivariance, Radon
transform, network fusion, network ensemble

I. INTRODUCTION

Since the introduction of AlexNet [1] in 2012, convolutional
neural networks (CNNs) have started dominating visual recog-
nition and replacing handcrafted features. Although they have
achieved tremendous and stunning success in many fields of
computer vision, they still face many challenges. One of them
is their noninvariance under many basic image transformations
frequently occurring in real situations. It is a well-known fact
that CNNs perform very poorly on images deformed by scale,
rotation, blur, and other transformations if they did not occur
in the training set. Yet, a transformed object is still the same
object. This problem is most often tackled by augmenting the
dataset, which can prolong the training dramatically, worsen
the results on non-transformed images, and has also other
issues. Hence, an enormous amount of research work has been
devoted to designing alternative approaches to augmentation.

In this paper, we present an ensemble model that combines
a traditional CNN with a CNN modified to be fully invariant
under certain group of transformations. The reasoning behind
this ensemble is that the latter CNN was modified specially
for the transformation and therefore, it is expected to perform
worse when this transformation does not occur, but better when
the transformation is met at significant intensity. While totally

avoiding augmentation, the goal is to ideally preserve the
performance of the traditional CNN on nondeformed images
and at the same time to achieve at least the performance of the
invariant CNN on deformed images. The ensemble combines
the two neural networks at the score level. The core idea of
the combination is to estimate the deformation intensity of an
image that is passed to the ensemble as input. This requires
the inclusion of another model for the estimation that needs to
be trained on the same dataset where all images are deformed
by different levels of the transformation. Since one of major
drawbacks of data augmentation is a much longer training
time, this estimation model should preferably be easier and
faster to train than the two CNNs for the actual task.

The proposed ensemble idea is general and we formulate
it so that it can be applied to any transformation. Since one
of the most common (and most investigated in the literature)
deformations is rotation, we used rotation as a deformation
example in our experiments. For this purpose, we invent a
CNN that is fully invariant under rotation and uses the Radon
transform of an image as input. The idea is similar to works
that use images in polar coordinates [2]–[4] – a rotation
is transformed into a circular shift along an axis, which is
then preserved between convolutional layers. Unlike the polar
transform, the Radon transform does not suffer from unequal
sample density in different parts of an image. We show that the
performance of the Radon transform is superior to the polar
transform on rotated MNIST. To the best of our knowledge,
nobody used the Radon transform to tackle the problem of
rotational noninvariance of CNNs before.

A special kind of research work dedicated to this subject
seeks to achieve the so-called equivariance of feature mapping
to a group of transformations (which can be, for instance,
a group of rotations). We say that a feature mapping f is
equivariant to G if

f(gI) = g′f(I) for all g ∈ G

where I is either an image or a feature map and g′ belongs
to a group G′ of transformations and can be determined if
we know g. This means that if an image is transformed, the
feature maps behave in a predictable way. If we slightly adjust
the padding in convolutional layers, then a CNN based on the
Radon transform has this property since any rotation results in
a cyclic shift of the transform, which is then preserved between
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convolutional layers, and the final invariance can be achieved
by eliminating the spatial dimension.

In the following section, we refer to the literature devoted
to CNN modifications that make the models robust to a
transformation. We focus especially on rotation. In Section
III-A, our proposed ensemble is defined and explained for a
general transformation. A continuous definition of the Radon
transform, its discretization and properties that we need are
covered in Section III-B. A CNN using the Radon transform
of an image requires two modifications to be invariant un-
der rotation. These are explained in Section III-C. Finally,
we perform experiments in Section IV. First, we show the
effectiveness of our invariant CNN on rotated MNIST and
also its superiority to invariant CNNs using polar coordinates.
Then, we train a classic CNN and an invariant CNN with
the same architectures on the MNIST dataset without any
augmentation and examine the impact of rotations on both
networks. MNIST is an example of a dataset which is too
simple for applying the proposed ensemble, as the invariant
CNN is similarly good on nonrotated images and much better
on rotated images. That is not the case of CIFAR-10 where we
apply the proposed ensemble and show that it almost achieves
the maximum accuracy of both models for any rotation of the
test set.

II. RELATED WORK

There are many publications dealing with the impact of
transformations on convolutional neural networks such as
scale [5], [6], blur [7], [8] or even affine transformation.
For instance, the popular Spatial Transformer Network [9] by
Jaderberg et al. brings inputs to a standard position before
sending them to a classification network, and it can deal with
a general affine transformation.

Since our experiments are focused on rotations, we cover
the literature with the same aim in the remainder of the section.

In 2016, Cohen and Welling introduced a popular concept
of G-CNN [10], a neural network equivariant to a discrete
group of transformations. The idea is general, but is tested
on the group of mirror reflections and 90◦ rotations, where
the equivariance is achieved by rotating and mirroring con-
volutional filters. The major drawback of this approach is the
discreetness – equivariance is designed only for rotations by
multiples of an angle, and increasing the group size increases
the computational cost.

A special approach to constructing equivariant networks
uses steerable filters introduced in [11]. Steerability puts
constraints on filters so that they can be written as a linear
combination of a finite set of filters. The first paper that
presented the theory of steerable filters in CNN was written
by Cohen and Welling [12]. The publication [13] proposed
steerable filters based on complex circular harmonics. The
E(2) - Equivariant Steerable CNN designed in [14] achieved
state of the art on rotated MNIST [15], a dataset used as
a popular benchmark for rotationally robust classification
models. Recently, the result was slightly surpassed in [16].

Transforming an image to polar coordinates is another way
how to enable rotational equivariance in CNNs between layers
[2]–[4]. In polar coordinates, a rotation manifests as a circular
shift of the image. To preserve rotational equivariance between
layers, the papers suggest using an alternative kind of padding
instead of the traditional zero-padding. However, [3], [4] do
not get rid of the spatial dimension in the last convolutional
layer before passing it to a fully-connected layer making it
only robust to rotations, not invariant, as stated. A drawback
of this polar transformation is the different sampling density
in different parts of an image. Another drawback is the loss of
translational equivariance, which is a natural benefit of classic
CNNs. The Polar Transformer Network [2] tries to mitigate
this problem by adding a trainable polar origin predictor before
transforming the images into polar coordinates.

Summarizing, geometric invariance of CNNs is a hard and
widely studied problem. For more details, we refer to the
survey paper [17] and to the references thereof.

III. METHODOLOGY

A. Ensemble

Let us assume, we have two trained models – a classic
CNN and a CNN that is modified to be invariant under a
transformation. Let us denote them by CNN and I-CNN.
Generally, we suppose that I-CNN is significantly worse than
CNN on nondeformed images (this can be due to many
reasons; for example, I-CNN often works with a lossy im-
age representation), but also significantly better on deformed
images. If any of these assumptions were not true, we could
simply use one model which would be better in all cases.
Both assumptions justify using an ensemble whose prediction,
denoted by pred, is of the form

pred(I) = β(I) · predCNN(I) + (1− β(I)) · predI-CNN(I) (1)

where pred is a softmax output, i.e. a vector of n numbers,
where n is the number of classes.

The parameter β is learnable and dependent on the image I
and expresses how much I is deformed. When an image is not
deformed at all and CNN is much better than I-CNN, then β
should tend to 1. If it is the other way around, it should tend
to 0. In the cases where I is only slightly deformed, so that
the performance of CNN is similar to I-CNN, β is supposed
to be somewhere between 0 and 1.

Learning β is therefore a question of the performances
of CNN and I-CNN. We can examine how the performance
of CNN depends on the intensity of the deformation, which
can be, for example, an angle of rotation. Let us say that
at intensity µ, the accuracies of both models coincide. Then
let us choose l1, l2 so that β goes continuously from 1 to 0
(by a chosen function) in the interval [µ − l1, µ + l2]. That
means that the ideal β is 1 for deformation intensities less
than µ − l1 and 0 for those greater than µ + l2. Given a
dataset, we can artificially deform each image with various
intensities and assign corresponding β using the described
procedure. Then we train a model with image as input and β
as output. An important assumption that we put on this model



is that the training is easier and shorter than training CNN or
I-CNN because one of major drawbacks of augmentation is
its extreme extension of training time.

The proposed formula (1) is only a simple example of a
combination at the score level that we choose. However, one
could possibly find more sophisticated methods of doing so.

In the case of rotation, estimating β (which depends
on the rotation angle) can work only for objects/images
with a native orientation. It would not make sense for
aerial/satellite/microscope images, for instance.

The scheme of the ensemble, where I-CNN is our rotation-
invariant network using the Radon Transform as input, is
shown in Figure 1.

p⃗ = [p1, p2, ..., pn]

p⃗′ = [p′1, p
′
2, ..., p

′
n]

prediction = β · p⃗+ (1− β) · p⃗′

β

CNN

I-CNN

CNN

Rad[·]

Fig. 1. The scheme of the proposed ensemble combining a classic and an
invariant network. The combination is based on another model that estimates
the intensity of the image deformation. It outputs β ∈ [0, 1] and the final
prediction is a convex combination of softmax outputs. In this case, the Radon
transform is used as an input of I-CNN.

B. Radon transform

The Radon transform [18] captures directional information
in an image, i.e. information along straight lines. A straight
line with ρ as the perpendicular distance of the line from the
origin and θ as the angle between the line and the y-axis can
be described as

ρ = x cos θ + y sin θ.

Let f be a continuous function defined on a disc Ω ⊂ R2

with radius r. Then, the Radon transform of f is defined as

Rad[f ](ρ, θ) =
∫
Ω

f(x, y)δ(ρ− x cos θ − y sin θ) dxdy

where θ ∈ [0, 2π) and ρ ∈ [−r, r]. Let Rα denote the rotation
of f by α ∈ [0, 2π). Then obviously

Rad[Rαf ](ρ, θ) = Rad[f ](ρ, θ + α)

Hence, a rotation of an image in Cartesian coordinates is
merely a circular shift along the second axis of the Radon
transform (see Figure 2 for an example). That is a key property
that we require.

Traditionally, the coordinate θ is taken only from [0, π)
because Rad[f ](·, θ) for θ ∈ [π, 2π) is only a mirror image
of Rad[f ](·, θ) for θ ∈ [0, π). However, since convolutional
layers are not equivariant to mirroring, we need to include
both intervals to get a circular shift when a rotation appears.

When working with digital images, discretization has to be
done. For simplicity, let us assume I is an S×S image with C
channels. First, the image has to be masked by the inscribed
circle, as in Figure 2. Then, apparently, the angle θ must be
sampled. We do so equidistantly using two settings α = 2π

S
and α = π

S , so that the image after the transform has size S×
2S and S×S, respectively. The choice of the sampling step is a
question of preserving information about the image as much as
possible, and at the same time not increasing the computational
cost of the consequent network more than necessary. And one
has to bear in mind that one half of the transformed image
does not contain any information, since it is only the mirror
image of the other half.

After the discretization, Rad(I)(·, nα) can be computed by
rotating I by nα and summing each column individually.

C. Invariant CNN using Radon transform

The invariant CNN uses the Radon transform of an image
as input. Then, any rotation manifests as a circular shift along
the second axis of the input. It is possible to use an existing
CNN like ResNet, but two modifications have to be done. The
first one enforces equivariance of convolutional layers and the
second makes the network invariant before classification.

• Although most CNNs use zero-padding for convolutions,
this is not a suitable choice here because the convolutional
feature mapping would not be equivariant to a circular
shift. Let us assume that a convolutional layer uses a
kernel of size k×k where k is odd. Then we pad the input
along the second axis so that we copy the first and the last
k−1
2 columns and append them as the new last and first

columns, respectively. The rows might be zero-padded
if needed. A similar idea appears in [2], [4]. With this
modification, a circular shift of the input is transformed
to a circular shift in the last convolutional layer.

• Let us assume that the CNN has a traditional structure of
convolutional layers with max poolings (other frequently
used techniques like batch normalization do not have
an impact), possibly followed by fully-connected layers,
and with a softmax output at the end. To make the
final prediction invariant under rotation, it is necessary
to eliminate the spatial dimension (or at least the angular
dimension) in the last convolutional layer. We do so by
applying Global Average Pooling [19].

However, while achieving rotation invariance, translation
invariance (a natural benefit of classic CNNs) is lost, as the
Radon transform depends on the origin around which an image
is rotated. In the transform of a translated image, all columns
remain the same except for a shift that is different for each
column. Therefore, a translation invariance can be achieved for
images without a background simply by shifting all columns
so that their first nonzero intensities match. For images with



Fig. 2. Radon transform calculation. The images (examples taken from MNIST and CIFAR-10 datasets) are masked by the inscribed circle. Then, their Radon
transform is computed. Image rotation results in a cyclic shift of the Radon transform along the horizontal axis.

a background, an origin predictor would have to be applied if
one requires both invariance properties.

IV. EXPERIMENTS

We perform experiments on three datasets – MNIST, rotated
MNIST, and much more complex CIFAR10.

A. rotated MNIST

Rotated MNIST [15] is a standard dataset frequently used
as a benchmark for networks adjusted to handle rotations
better. Unlike regular MNIST, the training set is reduced to
10000 samples. The validation set and the test set have 2000
and 50000 images, respectively. Each image in each set is
randomly (all angles equally probable) rotated by α ∈ [0, 2π).
The random rotations and the reduced training set are the
reasons why traditional CNNs perform worse on this dataset
than the modified CNNs and even data augmentation is not
able to change this.

We use the dataset to show the effectiveness of incorporating
the Radon transform into traditional CNNs and also its clear
superiority to the polar coordinates used in [2]–[4] for the
same goal.

Our experiments are performed on a CNN consisting of
4 convolutional layers with 3 × 3 kernels, ReLU activation
function, and 30, 30, 35 and 40 channels, respectively. The
invariant network uses the padding described in Section III-C.
The first three layers are followed by a batch normalization
and a 0.2 dropout, only the first two layers are followed by
a 2 × 2 max pooling. The spatial dimension in the fourth
layer is eliminated by Global Average Pooling and the last 0.2
dropout is applied before the softmax output. This architecture
has 31,155 learnable parameters. For optimization, the Adam
algorithm is used and the model with the highest accuracy on
the validation set in 200 epochs is chosen.

The results are summarized in Table I. All models were
trained 5 times and we show the mean results on the test set
along with the standard deviation, maximum and minimum.

Although the results of Radon S × 2S are better than, for
instance, the popular H-Net in [13] or others ( [10], [20], [21]),
it is not our purpose to possibly compete with state of the art
models [14] and [16] by optimizing all the network settings
and possible architectures.

model mean std max min

Radon S × 2S 98,54 % 0,08 % 98,62 % 98,41 %

Radon S × S 98,35 % 0,09 % 98,48 % 98,24 %

Polar 1
2
S × 2S 97,79 % 0,08 % 97,88 % 97,67 %

Polar 1
2
S × 4S 97,11 % 0,07 % 97,22 % 97,01 %

Cartesian S × S 94,60 % 0,11 % 94,76 % 94,43 %

TABLE I
ROTATED MNIST ACCURACIES OF CNNS BASED ON RADON

TRANSFORM, POLAR TRANSFORM AND CARTESIAN COORDINATES. THE
ACCURACIES ARE REPORTED ON THE TEST SET AND THE MODEL WITH

THE HIGHEST ACCURACY ON THE VALIDATION SET IS TAKEN.

B. MNIST

Classic MNIST has 60000 training samples and 10000 test
samples and all of them have a standard orientation. We took
10000 images from the training test for validation.

The network architecture and the optimization procedure
were the same as in rotated MNIST, but we ran only 100
epochs since the training set is much larger. The classic
CNN trained on Cartesian coordinates achieved an accuracy
of 99.39 % and the invariant CNN an accuracy of 99.21 %
on the test set. These results are not surprising; MNIST has a
large training set with rather simple visual content. However,
we show in Figure 3 how rotating the test set influences the
accuracy of the models. While the invariant CNN is almost not
influenced at all by rotations (with a minimum of 98.93 % due
to interpolation errors), the classic CNN deteriorates to almost
a random classifier with 15.90 % for a rotation of 99 degrees.
For simplicity, we show only the angles from [0, 180] in Figure
3 since the other half is almost symmetrical.

We do not use the ensemble for MNIST, as the basic
assumption is not met – the invariant CNN performs similarly
to the classic one on nontransformed images. Therefore, there
is no point in involving the ensemble and one can just use the
invariant network when rotations might occur.

C. CIFAR-10

CIFAR-10 contains RGB images of size 32 × 32 × 3, it
has 50000 images for training and 10000 for testing. We took
10000 images from the training test for validation. The image
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Fig. 3. Both networks with the same architecture (except for padding) were
trained on standard MNIST without any augmentation. The graph shows their
accuracy on the test set where all images were rotated by the same angle.
The invariant network based on the Radon transform keeps almost the same
accuracy along all angles.

content is much more complex compared to MNIST. And
since all objects have a background, it was necessary to mask
all images by the inscribed circle for all training, validating
and testing. Otherwise, the artificial rotations would be easily
recognizable.

We used a slightly more powerful CNN consisting of 6 con-
volutional layers (32, 32, 64, 64, 128, 128 channels) with the
same kernel size and activation function. Batch normalization
follows after each layer. A 2 × 2 max pooling and dropout
(0.2 and 0.3) is applied after the second and the fourth layer.
The important part is Global Average Pooling after the last
layer followed by a 0.4 dropout and the softmax output. This
network has 289,194 trainable parameters. The optimization
is the same as before with 100 epochs.

The dependence of the classic and invariant CNNs per-
formance on the angle of rotation is depicted in Figure 4.
Since, similarly as in Figure 3, the graph would be almost
symmetric along 180°, we focus only on the interval [0, 180]
for simplicity. The accuracy of the classic CNN goes from
85.00 % for no rotation down to 24.77 % for the 124
degrees rotation. The invariant CNN is not as stable as in the
previous subsection and it decreases from 73.80 % down to a
minimum of 65.98% for the 126 degrees rotation. However,
the results are almost identical for 0, 90 and 180 degrees
rotation. Therefore, we assume this is caused by interpolation
errors that are stronger than those in the MNIST dataset. This
explanation is also supported by a small irregular performance
gain of the classic CNN around 90 degrees.

Nevertheless, the results suggest to apply the proposed en-
semble because the classic CNN performs significantly better
on nonrotated images (by circa 11 %), but also significantly
worse on images rotated by higher angles.

First, we need to define the ground truth β for combining the
models. By the procedure described in Section III-A, we need
to find an angle µ where the accuracies of both models are
approximately equal. This will be µ = 22° with accuracies of
68.16 % and 68.21 %. Then we choose l1 = l2 = 6 where the
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Fig. 4. A classic CNN and an invariant CNN with the same architecture
(except for padding) were trained on CIFAR-10 without any augmentation.
Moreover, an ensemble combining both models was constructed by procedure
from Section III-A. The graph shows accuracy of all three models on the test
set where all images were rotated by the same angle. The invariant CNN
is not that stable anymore, probably due to bigger interpolation errors. The
ensemble, however, almost copies the maximum of both models.

accuracies are still not that far away from each other. Hence,
the ground truth β will be 1 for angles in [0, 16] and 0 for
[28, 180]. Let aα be the accuracy of the classic CNN at angle
α. Then for α ∈ [16, 28], we let β be

aα − a28
a16 − a28

to copy the decrease of the CNN performance on this interval.

Input

15 2482
Random
angle

Standard CIFAR-10 images

· · ·

Ground
truth β

· · ·

Image deformations for learning β

0 1 0.38

Fig. 5. For training the CNN that outputs β, all images are randomly rotated
and the corresponding label is assigned by the described procedure.

Second, we have to train a model that predicts the cor-
responding β for a rotated CIFAR-10 image. We used the
same CNN as for the classification, but with a single sigmoid
node in the output. The optimization was set to 40 epochs, i.e.
less than for the classification. The training set was the same,
but with each image randomly rotated (see Figure 5) by an
integer angle so that the intervals [0, 3], [4, 28], [88, 112] and
[178, 180] are chosen with probabilities 0.2, 0.3, 0.33 and 0.1,
respectively. This distribution was chosen heuristically because
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Fig. 6. A network computing β(I) for the ensemble was trained on CIFAR-
10 images. The graph shows the mean of β on the test (red crosses) where all
images were rotated by a certain angle. The blue dots refer to ground truth
β as we defined it for each angle.

with a uniform distribution, the network seemingly tends to
learn interpolation errors too much (they are strong in 32×32
images). For instance, the angle 0 is then treated as angles
90 or 180 and the learned β is too small. Therefore, we put
a higher weight on intervals with distinct β and the same
intensity of interpolation errors to force the network to focus
more on the object orientation.

In Figure 6, we show the mean values of β on the rotated test
set for all integer angles. The learned β in the intervals [0, 16]
and [90, 116] is further from the ground truth β than in the rest
of [0, 180]. We assume that this is a realistic scenario (since
these two intervals have different β and similar interpolation
errors) and the rest would probably behave similarly on
datasets of higher resolution. Nevertheless, even when taking
this into account, the ensemble is still able to achieve almost
the maximum of the two combined models, as can be seen
in Figure 4. It is very close to the performance of the classic
CNN on nonrotated images, but it is much more robust to
rotations, as it mostly relies on the invariant network when
rotations by higher angles are met. Let us also remark that in
the interval [16, 28] where the ground truth β decreases from
1 to 0, the ensemble is even a bit better than the individual
CNNs (the maximum gain is 3.88% for 23°).

V. CONCLUSION

We proposed an ensemble of two networks to achieve
robustness to rotation. Both of them are trained without any
data augmentation, which is the most important benefit of the
method. One of the networks is a rotation-invariant CNN that
we proposed and it uses the Radon transform of an image
as input. The main idea of the ensemble is the design of the
auxiliary network, which estimates the rotation angle of an
input image and yields the parameter for the network fusion.
We demonstrated that the ensemble works significantly better
than each individual network.

The presented idea is general and can be used for other
deformations than just a rotation if a proper invariant model
is used in the combination.
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