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Abstract. The chapter focuses on the description of the relationship of the count
variable and explanatory Gaussian variables. The cluster-based model is pro-
posed, which is constructed on conditionally independent Gaussian clusters cap-
tured in real time using recursive algorithms of the Bayesian mixture estimation
theory. The resulting model is expected to be used for predicting count data using
real time Gaussian observations. The Poisson distribution of the count data is
used as a basic model. However, in reality, count data often do not satisfy the
Poisson assumption of equal mean and variance. For this case, five cluster-based
Poisson-related models of overdispersed data have been studied. The experimen-
tal part of the chapter demonstrates a comparison of the prediction accuracy of
the considered models with two theoretical counterparts for the case of weak
and strong overdispersion with the help of simulations. The paper reports that
the most accurate prediction in average has been provided by the cluster-based
Generalized Poisson models.

Keywords: Cluster-based model · Count data · Overdispersion · Recursive
Bayesian mixture estimation

1 Introduction

The chapter focuses on modeling and predicting count data variables generally
described by the Poisson distribution. From a practical point of view, this task is
required in application areas, dealing with random independent events observed with
a constant intensity per time unit (e.g., social sciences, medicine, transportation, etc.)
[1]. Specific examples of count variables considered per time unit include, e.g., a num-
ber of bankruptcies [2], aircraft shutdowns, specific diagnoses, server virus attacks [3],
website users, customers [4,5], passengers [6], etc.
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In application fields such as, e.g., transportation data analysis, the question of model-
ing count data depending on other observable variables arises. It can bemet, for instance,
in predicting passenger demand [6] or electric vehicle plugin intensity [7], etc. As the
Poisson distribution does not assume general conditional form, the description of the
relationship of the count Poisson-distributed variable with explanatory variables with
the aim of constructing the data prediction model is a complicated task. For this task,
the Poisson regression (as well as those using some of the Poisson-related distributions
of the target variable) is one of the approaches most frequently met in literature e.g.,
[8–13]. In some sources, the application of linear regression techniques to Poisson-
distributed count data due to high number of their possible realizations is also men-
tioned, see, for instance, [14].

Mixture models known as the universal approximation of nonlinear rela-
tion between variables [15] are used as well for the description of multimodal
Poisson-distributed data. In this field, studies focusing on mixtures of Poisson distri-
butions [16], mixtures of Poisson regressions [17,18] and Poisson-gamma models [14]
have been found.

In this chapter, the joint model of the count Poisson and multimodal Gaussian data
is discussed. The similar problem is solved in the papers [19–22] via Gaussian-Poisson
mixtures estimated with the help of the iterative expectation-maximization (EM) algo-
rithm [23]. The prediction with the Poisson model is also considered in the papers
[24,25] and using the Bayesian methodology in [26]. The paper [27] proposed the app-
roach, where the Poisson prediction probability function is constructed using the joint
model of the target Poisson variable and Gaussian explanatory multivariate multimodal
variable. The main features of the proposed algorithm [27] for the model estimation and
data prediction are as follows: (i) the cluster-based discretization of Gaussian measure-
ments, (ii) estimation of local Poisson models corresponding the discretization inter-
vals, which include Gaussian data belonging to the detected clusters, and (iii) predic-
tion of the target variable based on currently measured data discretized in real time.
It should be noted that the cluster-based discretization was investigated, for example,
in the papers [28–31]. In [27], it is based on the recursive mixture estimation [32,33]
under the Bayesian methodology.

The presented chapter is the extended version of the paper [27]. The aim of the
chapter is to present the solution [27] for specific count data, which may be better
described by special distributions based on the Poisson model. For example, to fit count
observations with a high number of zeros, the zero-inflated Poisson model [34] as well
as compound Poisson distributions [35] are used. Data without zeros can be fit by the
zero-truncated Poisson distribution with a minimum at 1, see, e.g., [36]. Moreover, in
reality, count data often do not satisfy the Poisson assumption of the equality of mean
and variance, which means that the overdispersion or underdispersion of the data is
observed.

This chapter focuses on overdispersed data as a more desired issue from the practi-
cal point of view; however, some of the used models are suitable for both the overdis-
persed and underdispersed count data [37]. The Generalized Poisson models [37,38]
and negative binomial regressions [39] are often used for the description of such data.
In this chapter, the prediction of the count variable using the cluster-based discretization
of continuous data [27] is considered for the mentioned Poisson-related distributions
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not requiring equidispersion, namely, the zero-truncated Poisson distribution (ZTP) and
two Generalized Poisson models (GPM). The continuous Rayleigh distribution [40] has
been used as well due to the shape of its probability density function similar to the Pois-
son one and high number of possible realizations of the count variable. The prediction
with the Poisson, ZTP, GPM and Rayleigh distributions is experimentally compared
with results obtained with the traditional Poisson and negative binomial regressions.

The layout of the chapter is organized as follows: Sect. 1.1 formulates the problem
in general for the Poisson distribution. Section 2 provides the general solution with the
cluster-based Poisson model. Its specification for overdispersed data described by the
Poisson-related distributions can be found in Sect. 3. Section 4 discusses results of the
experimental comparison of the mentioned models. Conclusions can be found in Sect. 5.

1.1 Problem Formulation

Let y be the count variable described by the Poisson distribution

f (y = yt) = e−λ λyt

yt!
(1)

with the parameter λ, and let yt ∈ {0, 1, . . .} be a realization of y observed on a multi-
modal system at discrete time instants t = 1, 2, . . . , T .

Let x = [x1, x2, . . . , xNx ]′ be the multivariate Gaussian variable, and
xt = [x1;t, x2;t, . . . , xNx;t]′ contains realizations of the vector x.

Observing the considered multimodal system, for the time instants t > T the real-
izations xt are still being measured, but yt cannot be observed for the time t > T . Thus,
the problem is verbally formulated as follows:

Predict the values of the dependent Poisson variable based on their relationship with
realizations of explanatory Gaussian variables measured at real time t > T .

To solve the problem, the multimodality of realizations xt is going to be used to
describe the relationship of y and x under assumption of conditional independence of
the individual variables x1, . . . , xNx in the vector x. This will be done by the cluster-
based discretization of the individual realizations from xt and estimation of the local
Poisson distributions using the data yt measured at the same time instants as xt in the
detected clusters. The labels of the clusters will represent the discretized values of the
Gaussian variables as it is shown in Fig. 1, which provides an illustrative scheme of
the presented approach of the local model estimation. In this figure, for example, the
blue-colored Poisson distribution covers count data, which have been measured at the
same time with Gaussian data belonging to the cluster described by the blue-colored
Gaussian distribution. The number 1 is the label of this blue cluster, which means that
regarding this Gaussian distribution, the Poisson distribution numbered 1 exists.

This is believed to allow obtaining the conditional model of y depending on x in
clusters in the form of the cluster-based Poisson model and use it for the prediction in
real time. The solution is presented below.
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Fig. 1. The scheme of the estimation of the local Poisson distributions.

2 General Solution with Cluster-Based Poisson Model

Generally, the relationship between the dependent variable y and explanatory multi-
variate variable x = [x1, . . . , xNx ]′ is described by the joint distribution f(y = yt, x),
where the denotation f(y = yt) relates to the discrete random variable y described by
the Poisson distribution (1) with the realization yt. For the continuous Gaussian mul-
tivariate variable x, the denotation of realizations is omitted. This joint distribution is
decomposed with the help of the chain rule [41] in the following way:

f(y = yt, x) = f(y = yt|x1, . . . , xNx)f(x1, . . . , xNx). (2)

The conditional distribution in the right side of (2) is the main focus of the
work. Assuming the conditional independence of the individual variables x1, . . . , xNx ,
according to the Naive Bayes approach [49] it is derived as follows:

f(y = yt|x1, . . . , xNx) ∝
∏Nx

l=1 f(y = yt|xl)
f(y = yt)Nx−1

. (3)

Proof. According to the Bayes rule, see, e.g., [42], it holds

f(y = yt|x1, . . . , xNx) =
f(x1, . . . , xNx |y = yt)f(y = yt)

f(x1, . . . , xNx)
. (4)

Assuming the conditional independence of the individual x1, . . . , xNx , the right side of
the above relation results in

∏Nx

l=1 f(xl|y = yt)f(y = yt)
f(x1, . . . , xNx)

. (5)

Next, applying the Bayes rule to the individual conditional distributions in (5) gives

f(xl|y = yt) =
f(y = yt|xl)f(xl)

f(y = yt)
, ∀l ∈ {1, . . . , Nx}. (6)
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Substituting (6) into (5) provides

Nx∏

l=1

[
f(y = yt|xl)f(xl)

f(y = yt)

]
f(y = yt)

f(x1, . . . , xNx)

=
∏Nx

l=1 f(y = yt|xl)
∏Nx

l=1 f(xl)
f(y = yt)Nx

f(y = yt)
f(x1, . . . , xNx)

=
∏Nx

l=1 f(y = yt|xl)
f(y = yt)Nx−1

∏Nx

l=1 f(xl)
f(x1, . . . , xNx)

∝
∏Nx

l=1 f(y = yt|xl)
f(y = yt)Nx−1

,

(7)

where in view of the modeled variable y in the left side of (3),
∏Nx

l=1 f(xl)
f(x1,...,xNx )

is a constant
value with the substituted realizations of each xl.

In the numerator of the relation (3), the scalar models f(y = yt|xl), l ∈
{1, . . . , Nx} express the dependence of y on the individual variables xl. Since (i) xl

are continuous and (ii) the Poisson distribution does not have a general conditional
form, a discrete-valued condition brings easier solution in the form of the Poisson dis-
tribution defined for each discrete value in the condition. That is why it is proposed to
approximate each of the models f(y = yt|xl) in (3) by the Poisson distribution existing
for each discretized value of each variable xl as follows:

f(y = yt|xl) ≈ f(y = yt|x̃l = i) ≡ fi(y = yt), (8)

where x̃l is the discretized variable of xl and it has realizations i ∈ {1, 2, . . . , Nc;l}.
The recursive cluster-based discretization is used in the paper, which means that the
value i of x̃l is a label of the cluster, to which the observations of the corresponding xl

belong, and Nc;l is the number of its clusters.
In this way, to discretize the data here means to find the clusters. For this aim, the

scalar marginal distributions f(xl) are used. Each of them is approximated by the mix-
ture of Nc;l Gaussian componentsNi(xl;t; θi;l, ri;l) with the collection of the unknown
expectations θi;l. Their variances ri;l are set known and fixed in order to locate tops of
the data hills. The cluster-based discretization is presented below.

2.1 Cluster-Based Discretization of Explanatory Variables

The realizations xt = [x1;t, x2;t, . . . xNx;t]′ observed at time t = 1, . . . , T are used
for this part of the proposed approach. Here, the aim is to discretize these realizations
to the clusters and use labels of the clusters as the values of x̃l for (8). Specifically, this
task covers the estimation of individual expectations θi;l identifying each i-th Gaussian
component of each l-th variable and their labels x̃l.

The cluster-based discretization of realizations of each xl is based on the recursive
Bayesian mixture estimation methodology [32,33,43]. Its significant advantages are:
(i) the recursive running of the clustering algorithms based on actually measured data,
which is suitable in view of the prediction task formulated in Sect. 1.1, and (ii) the
simple and efficient mixture initialization of the univariate components based on prior
knowledge. For the discretization, it worth setting relatively bigger number of compo-
nents, for instance, 10 or 15, in order not to lose the important information in the data.
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According to [32,43], the joint distribution of unknown expectations θi;l and dis-
cretized values x̃l is constructed for the i-th Gaussian component of the l-th variable
using the Bayes and chain rules as follows: ∀i ∈ {1, 2, . . . , Nc;l}, ∀l ∈ {1, . . . , Nx}

f(x̃l;t = i, θi;l|xl(t)) ∝ f(xl;t, x̃l;t = i, θi;l|xl(t − 1))
= f(xl;t|x̃l;t = i, θi;l, xl(t − 1))f(x̃l;t = i|θi;l, xl(t − 1))f(θi;l|xl(t − 1))

= fi(xl;t|θi;l, xl(t − 1))
︸ ︷︷ ︸

Ni(xl;t;θi;l,ri;l)

fi(θi;l|xl(t − 1))
︸ ︷︷ ︸

Ni(θi;l)

fi(x̃l;t = i|xl(t − 1))
︸ ︷︷ ︸

Ui(x̃l)

∝ fi(xl;t|θi;l, xl(t − 1))
︸ ︷︷ ︸

Ni(xl;t;θi;l,ri;l)

fi(θi;l|xl(t − 1))
︸ ︷︷ ︸

Ni(θi;l)

(9)

where

– x̃l;t = i denotes the label of the i-th cluster described by the i-th component and
detected at time t;

– xl(t) = {xl;0, xl;1, . . . , xl;t} is a collection of all data of xl up to the time t with the
prior knowledge xl;0;

– Ni(xl;t; θi;l, ri;l) is the i-th Gaussian component of xl;
– Ni(θi;l) is the prior Gaussian probability density function (pdf);
– Ui(x̃l) is the prior uniform distribution of the discretized variable x̃l of xl, which is

a constant in view of the left side of the expression;
– and x̃l and θi;l are assumed to be mutually independent.

To obtain the estimate of the actual component (i.e., to derive the posterior distribution
of x̃l based on the current data), the decomposed joint distribution from the right side
of (9) is marginalized over the expectations θi;l

fi(x̃l;t = i|xl(t)) ∝
∫

θ∗
fi(xl;t|θi;l, xl(t − 1))
︸ ︷︷ ︸

Ni(xl;t;θi;l,ri;l)

fi(θi;l|xl(t − 1))
︸ ︷︷ ︸

Ni(θi;l)

dθi;l, (10)

where θ∗ means the entire definition space of the expectation. Here, the approximation
with the help of the Dirac delta function δ(θi;l, θ̂i;l;t−1), which allows to substitute the
prior point estimates θ̂i;l;t−1 of the expectations into the Gaussian components, provides
a significant simplification of the solution, see, e.g., [33]. Due to this approximation, the
integral in the right side of (10) can be denoted by

qi;l =
∫

θ∗
fi(xl;t|θi;l, xl(t − 1))
︸ ︷︷ ︸

Ni(xl;t;θi;l,ri;l)

fi(θi;l|xl(t − 1))
︸ ︷︷ ︸

Ni(θi;l)

dθi;l ≈ fi(xl;t|θ̂i;l;t−1, xl(t − 1))
︸ ︷︷ ︸

Ni(xl;t;θ̂i;l;t−1,ri;l)

,

(11)
which is the value of the i-th Gaussian component pdf with the substituted prior point
estimate θ̂i;l;t−1 and current realization xl;t. After the normalization

mi;l =
qi;l

∑Nc;l
k=1 qk;l

, (12)
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it provides the normalized proximity [33] of the current realization xl;t to the i-th com-
ponent of the l-th variable, ∀i ∈ {1, 2, . . . , Nc;l}, ∀l ∈ {1, . . . , Nx}. Then the searched
posterior distribution (10) of the discretized variable x̃l is

fi(x̃l;t = i|xl(t)) ∝ mi;l, (13)

which represents the probability of the membership of the current realization xl;t to
each of the Nc;l components of the variable xl at time t. The point estimate of the
discretized variable x̃l at time t, which labels the Poisson distributions is the argument
of the maxima of (13)

x̃l;t = argmax
i

fi(x̃l;t = i|xl(t)). (14)

In this way, the continuous realizations of each variable xl at time t are now represented
by the discrete labels x̃l of its clusters described by the components.

The cluster-based discretization (10)–(14) is performed in the recursive way sim-
ilarly to [32,43] to re-compute the point estimates of the expectations θi;l and dis-
cretized variables x̃l at time t. For this end, statistics of the prior Gaussian pdfs
{Vi;l;t−1,κi;l;t−1} conjugate to the i-th individual components describing the clusters
of the variables xl are updated with the new realizations weighted by the proximities as
follows:

Vi;l;t = Vi;l;t−1 +mi;lxl;t, κi;l;t = κi;l;t−1 +mi;l. (15)

They are used for re-computing the point estimates of the expectations at time t

θ̂i;l;t =
Vi;l;t

κi;l;t
, ∀i ∈ {1, 2, . . . , Nc;l},∀l ∈ {1, . . . , Nx} (16)

to be used in (11). The recursive discretization (10)–(14) runs until the time t = T , i.e.,
for a data set with realizations of xl and y observed at the same time. As a result, the
point estimates of x̃l (14), which discretize the Gaussian realizations, are now used to
label the Poisson distributions (8). This is explained in the next section.

2.2 Estimation of the Local Poisson Distributions on Clusters

The cluster-based Poisson model is constructed using observations of the individual
variables xl discretized to their clusters and the realizations yt measured at the same
time instants as the clustered data up to the time t = T . The searched Poisson distribu-
tions (8) labeled by the point estimates i of the discretized variable x̃l from (14)

fi(y = yt)︸ ︷︷ ︸
Poi(yt;λi;l)

(17)

are given by the point estimates of their parameters λi;l, which are the averages of the
realizations yt measured simultaneously with the data xl;t belonging to each i-th cluster,
∀ i ∈ {1, 2, . . . , Nc;l}, ∀l ∈ {1, . . . , Nx}.
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2.3 Prediction with the Cluster-Based Poisson Model

According to the problem formulation in Sect. 1.1, the prediction of the realizations yt
for time t > T should be based on the new data xl;t. The cluster-based Poisson model
is used for the prediction in real time t > T as follows:

1. The current realizations of each xl are measured;
2. The actual proximities mi;l to their components are computed;
3. The Poisson distributions (17) estimated in Sect. 2.2 are used to obtain their

weighted averages ∀l ∈ {1, . . . , Nx}

f(y = yt|xl) =
Nc;l∑

i=1

mi;l fi(y = yt)︸ ︷︷ ︸
Poi(yt;λi;l)

, (18)

which is the resulting cluster-based Poisson model for the variable xl.
4. To obtain the predictive model, the individual models (18) with each xl in the con-

dition are substituted into (3), where the denominator contains values of the Poisson
distribution for all previously available realizations yt.

5. The result of (3) is either the predictive distribution f(y = yt|x1, . . . , xNx) or the
point prediction of the realization yt in real time t > T as the argument of the
maxima

ŷt = argmax
j

f(y = yt|x1, . . . , xNx), j ∈ {0, 1, . . . , Ny}, (19)

where Ny is the maximum observed value of the count variable. This is the main
result according to the problem formulation in Sect. 1.1.

3 Cluster-Based Models of Overdispersed Count Data

This section is devoted to the specification of the solution presented in Sect. 2 to distri-
butions describing count observations, where the Poisson assumption of the equality of
mean and variance is violated, i.e., overdispersion or underdispersion is present. In real
applications, the overdispersion is frequently met, that is why this section focuses on
this case. The distributions considered in the section are suitable for modeling overdis-
persed count data because, even though they are based on the Poisson distribution, they
allow the variance to be a function of mean as a rule through an additional dispersion
parameter.

In this chapter, the following distributions are used to describe the count variable y
defined in Sect. 1.1, which is assumed to be overdispersed.

3.1 Cluster-Based Zero-Truncated Poisson Model

The zero-truncated Poisson distribution (ZTP) is taken in the chapter using the follow-
ing denotation

f(y = yt|yt > 0) =
λyt

(eλ − 1)yt!
(20)
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with the parameter λ and the mean

E[y] =
λ

1 − e−λ
(21)

and the variance as a function of the mean

D[y] =
λ + λ2

1 − e−λ
− λ2

(1 − e−λ)2
= E[y](1 + λ − E[y]). (22)

The ZTP distribution (20) excludes zero realizations yt = 0 of the variable y. For
this reason, the data recoding via their shifting to a minimum at 1 is necessary to use
this model instead of the Poisson distribution (1) in the presented approach. For the
prediction accuracy evaluation, the re-shift at zero must be applied.

The ZTP model (20) is estimated locally on the clusters instead of the Poisson dis-
tributions in (17) (see Sect. 2.2) and substituted into (18) in the prediction part of the
algorithm (see Sect. 2.3). According to [44], the maximum likelihood estimation of the
parameter λ is obtained numerically via solving the equation (21) using the sample
mean instead of E[y]. This model has been tested for the approach in Sect. 4; however,
for bigger values of the parameter λ, the mean is approximately equal to this parameter,
and consequently, D[y] ≈ E[y] in (22) is obtained. The proposed approach with the
ZTP model (20) is therefore restricted for small values of λ.

3.2 Cluster-Based Consul’s Generalized Poisson Model

The Consul’s Generalized Poisson model (GP1) [38] is used in this work in the form of
the following probability function

f(y = yt) =
e−(λ+ayt)(λ + ayt)yt−1

yt!
, (23)

where λ is the parameter of GP1 and a is the dispersion parameter. The mean and
variance of the distribution are respectively

E[y] =
λ

1 − a
, D[y] =

λ

(1 − a)3
. (24)

The dispersion parameter a is estimated according to the following formula [38,45,46]

a =

∑T̃
t=T+1

(
|yt−ŷt|√

ŷt
− 1

)

(T̃ − T ) − Nx − 1
, (25)

where ŷt are the predictions obtained either with the cluster-based Poisson model or the
traditional Poisson regression for the testing data set of yt and xt measured for time
t = T +1, . . . , T̃ , andNx is the number of the explanatory variables. Further, the point
estimate of a is substituted along with the sample mean instead ofE[y] in (24) to obtain
the estimate of the parameter λ.

Similarly, within the presented approach, the parameter λ of the GP1 model is esti-
mated locally on the clusters instead of the Poisson distributions in (17) from Sect. 2.2
and substituted into (18) in the prediction part of the algorithm (see Sect. 2.3).
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3.3 Cluster-Based Famoye’s Generalized Poisson Model

Famoye’s Generalized Poisson model (GP2) [38] is the next distribution tested within
the bounds of the presented approach. It has the form

f(y = yt) =
λ

1 + aλ

(λ + ayt)yt−1

yt!
e

−λ(1+ayt)
1+aλ , (26)

where λ is the parameter of the GP2 model. This distribution has the following mean
and variance:

E[y] = λ, D[y] = λ(1 + aλ)2, (27)

while the dispersion parameter a is estimated according to [38,45,46] as follows:

a =

∑T̃
t=T+1

(
|yt−ŷt|√

ŷt
− 1

)
1
ŷt

(T̃ − T ) − Nx − 1
, (28)

with ŷt and the rest of denotations defined similarly as for (25). Here, the estimation
of the parameter λ is straightforward due to the use of the sample mean in (27) locally
on the clusters similarly to (17). In the prediction part, it is again substituted into (18)
according to Sect. 2.3.

3.4 Cluster-Based Rayleigh Model

The continuous Rayleigh distribution suitable for non-negative data has the shape of
the probability density function relatively close to the Poisson distribution. With a high
number of possible realizations of the count data it can serve as an approximation of
the modeled variable. That is why it is used in this work to test the proposed approach.
The Rayleigh distribution has the following form

f(y = yt) =
yt
σ2

e−y2
t /(2σ2), (29)

where σ is the parameter of the Rayleigh distribution. Its mean and variance are approx-
imately connected with σ through the following relations:

E[y] ≈ 1.253σ, D[y] ≈ 0.429σ2. (30)

The parameter estimation is performed according to [47] using

σ ≈

√√√√ 1
2T

T∑

t=1

y2t , (31)

which is calculated locally on the clusters similarly to (17) and then substituted into
(18) instead of the Poisson distribution according to Sect. 2.3.
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3.5 Theoretical Counterparts

The distributions introduced in the above sections are used as the cluster-based models
instead of the Poisson distribution according to Sect. 2. Results of predicting based on
these models are compared with (i) the Poisson regression (which can be used if the
equality of mean and variance is not violated) and (ii) the negative binomial regression
suitable for overdispersed data.

Poisson Regression. The Poisson regression assumes that the relation between the
Poisson parameter λ = E[y] = D[y] and realizations of the explanatory variables in
the vector xt has the following form

ln(λ) = θ′xt = b0 + b1x1;t + b2x2;t + . . .+ bNxxNx;t, (32)

where the vector θ = [b0 b1 b2 . . . bNx ]′ contains regression coefficients. Here, they
are estimated with the help of the linearization of the Poisson regression and subsequent
application of the least square estimator in the following form:





ln(y1)
ln(y2)
. . .

ln(yT )





︸ ︷︷ ︸
Y

=





1 x1;1 . . . xNx;1

1 x1;2 . . . xNx;2

. . . . . . . . . . . .
1 x1;T . . . xNx;T





︸ ︷︷ ︸
X





b0
b1
. . .
bNx





︸ ︷︷ ︸
θ

. (33)

The vector of the regression coefficients is estimated using

θ = (X ′X)−1X ′Y, (34)

see, e.g., [41]. The prediction is then obtained using the observations of the explanatory
variables for t > T as follows:

ŷt = eθ′xt . (35)

Negative Binomial Regression. The negative binomial regression is a generalization
of the Poisson regression, which does not require the assumption of equidispersion to be
satisfied. It assumes that the count variable y follows the negative binomial distribution
(NB)

f(y = yt) =
(
yt + r − 1

r − 1

)
(1 − p)ytpr, (36)

where p and r are parameters of the distribution. The NB distribution can be also defined
with the alternative parametrization through the mean µ and variance σ2

f(y = yt) =
(
yt + µ2

σ2−µ − 1
yt

) (
σ2 − µ

σ2

)yt ( µ

σ2

)µ2/(σ2−µ)
. (37)

The NB regression with the target variable y is given by the relation

µ = exp{ln t+ b0 + b1x1;t + b2x2;t + . . .+ bNxxNx;t}, (38)
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or

ln(µ) = θ′
[
t
xt

]
= t+ b0 + b1x1;t + b2x2;t + . . .+ bNxxNx;t, (39)

where, similarly to the Poisson regression, the vector θ = [1 b0 b1 b2 . . . bNx ]′
contains regression coefficients. After the linearization, the regression coefficients are
estimated similarly to (33–34) with the corresponding arrangements. The prediction is
done according to (35) using the extended vector of the explanatory variables instead
of xt.

Two types of the NB regression is distinguished [48]: the first one denoted by NB1
has the variance

D[y] = E[y](1 + anb1), (40)

and the second one denoted by NB2 has the variance

D[y] = E[y] + anb2 ∗ E[y]2, (41)

while the mean is the same for both of them. According to [48], the dispersion parameter
anb1 for the NB1 model with the variance (40) is estimated using auxiliary least squares
(similarly to (34)) with the equation

(yt − ŷt)2 − ŷt
ŷt

= anb1 + 0, (42)

where ŷt is the prediction obtained with the Poisson regression in (35). The column of
the values of the left side of this equation for each time instant t is denoted by Y ; the
unit vector of the corresponding dimension is denoted by X and the intercept is equal
to zero.

The dispersion parameter anb2 for the NB2 regression with the variance (41) is
estimated in a similar way, see, e.g., [48], with the help of auxiliary least squares solved
for the equation

(yt − ŷt)2 − ŷt
ŷt

= anb2ŷt + 0, (43)

where the columns of the observations and predictions are denoted as follows: Y =
(yt−ŷt)

2−ŷt

ŷt
, B1 = anb2, X = ŷt, B0 = 0, and it holds Y = B1x+B0.

In this work, the NB1 regression with the variance (40) is used.

Remark: The cluster-based NB model has been also tested with the bounds of the
presented approach, assuming the usage of the NB distribution instead of the Poisson
model according to Sect. 2. However, due to the computational complexity caused by
complex numbers because of the negative number in factorial this attempt has been
stopped so far.

The following section demonstrates results of experiments with the introduced
models.
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4 Experiments

The presented experiments have been conducted in a free and open source programming
environment Scilab (www.scilab.org) aimed at engineering and scientific computations.
The aim of the experiments was to verify the presented algorithm with the simulated
data and compare the accuracy of predicting the count variable y using all of the given
models.

4.1 Simulations

3000 data items have been simulated within an individual data set. Each of the data sets
contains realizations of the count variable y and four-dimensional multimodal Gaus-
sian variable x = [x1, x2, x3, x4]′, i.e., Nx = 4. For the cluster-based discretization
of the Gaussian single variables, a different number of components have been chosen
during the simulation for each of them. Four variables had 10, 12, 3 and 15 components
respectively in order to test both the high and low number of components.

Realizations of the count variable y have been simulated so that to have different
values of the Poisson parameter λ for all of the clusters of each Gaussian variable. The
equality of the mean and variance of the resulting count simulations were not supposed
due to their multimodal nature, otherwise a single Poisson distribution would be enough
to describe the data, which is irrelevant within the bounds of the considered problem.
However, the interesting issue is the variances of the overdispersed count data used
for the estimation of parameters of the considered distributions corresponding to the
clusters of the Gaussian variables.

Approximately 100 data sets have been simulated for the case of weaker and stronger
overdispersion of count data. Examples of the data mean and variances of both the cases
are given in Table 1, while examples of histograms are shown in Fig. 2.

Table 1. Examples of the data means and variances of the data sets.

Data overdispersion Mean Variance

Weak 4.9023333 6.8630822

Strong 34.140667 275.99821

The following section demonstrates results of the prediction of the count variable
according to the presented algorithm from Sect. 2 and its comparison with the Poisson
and NB regressions.

4.2 Results and Discussion

Prediction of Weakly Overdispersed Count Data. In this section, the presented algo-
rithm has been applied to approximately 100 data sets of 3000 values of x and y, where
the values of y have been generated with the weak overdispersion. For each data set,
2800 data items have been utilized for the cluster-based discretization and local model
estimation according to Sects. 2.1 and 2.2, i.e., T = 2800. The rest of 200 values have
been used for the prediction algorithm according to Sect. 2.3 with the given models.
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Fig. 2. Histogram examples of data with a weak (top) and strong (bottom) overdispersion.

The results of the experiments have been compared from the prediction accuracy
point of view with the help of the following criteria:

root-mean-square error RMSE =

√√√√
∑T̃

t=T+1(yt − ŷt)2

T̃ − T
, (44)
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where ŷt stands for the predicted value obtained with each model, and T̃ = 3000;

relative-prediction error RPE =
D[yt − ŷt]

D[yt]
, (45)

where D denotes variance, and t = T + 1, . . . , T̃ ;

Akaike information criterion AIC = −2 ln(L) + 2Nx (46)

and
Bayesian information criterion BIC = −2 ln(L) +Nx ln(T̃ − T ), (47)

where L denotes the likelihood.
Table 2 demonstrates the comparison of the prediction accuracy with the weakly

overdispersed data among all of the considered models, including the cluster-based
Poisson model and Poisson regression. Due to the smaller values of the count vari-
able, the cluster-based ZTP model has been used as well. The average values of RMSE,
RPE, AIC and BIC calculated on the used sets of simulations are presented.

Table 2. The average prediction accuracy for weakly overdispersed data.

Model RMSE RPE AIC BIC

Cluster-based Poisson model 2.7724659 0.6870497 974.28897 987.50218

Cluster-based ZTP model 2.7760525 0.6887404 1001.3196 1014.5328

Cluster-based GP1 model 2.7965864 0.6901744 1802.6274 1815.8406

Cluster-based GP2 model 2.9883688 0.701766 1082.8114 1096.0246

Cluster-based Rayleigh model 5.5489679 0.7176861 1259.2657 1272.4789

Poisson regression 3.2819422 0.8568735 1131.8207 1148.3372

NB1 regression 3.1889111 0.8374878 1067.8391 1084.3556

It can be seen in Table 2 that all of the compared models provide the relatively high
prediction error in view of the small mean and variance of the weakly dispersed data
with the average range 20 and the minimum at 0. However, to evaluate the comparison
among the obtained results, it can be noted that regarding RMSE and RPE, the cluster-
based models (except the Rayleigh model) show the higher prediction accuracy than
the traditional Poisson and NB1 regressions. The lowest RMSE, RPE, AIC and BIC
have been obtained naturally with the cluster-based Poisson model. It is explained by
the weak overdispersion, which means that the data distributions obtained on clusters
were close to the Poisson one.

If one omits the cluster-based Poisson model and Poisson regression in view of the
overdispersion, the cluster-based ZTP model has the lowest RMSE, RPE, AIC as well
as BIC and shows improvements against the NB1 regression. However, it is sensitive to
bigger values of the count data (see Sect. 3.1).

From this point of view, the cluster-based GP2 model shows the most balanced
improvements of the prediction accuracy in the comparison with the rest of the models
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for the case of the weakly overdispersed data: it has the lowest RMSE and RPE. Its AIC
and BIC are insignificantly higher than the NB1 regression results.

The comparison of variances of the count data captured on clusters of individual
Gaussian variables during the discretization shows that they are close to the variances
of the GP2 distributions on these clusters. However, the corresponding test of hypothesis
has not been performed because of the small number of components. For the illustration,
Table 3 demonstrates the means, variances of data and GP2 variances on clusters of the
variables x1, x2 and x3 obtained with one of the data sets. The variable x4 was omitted
to save space. The histograms of the count data collected on the clusters of the variable
x3 are shown in Fig. 3 as an example of the distributions on the clusters.

Table 3. The mean, variance of data and the GP2 variances on clusters of the variables.

Mean Variance of data GP2 variance on clusters of x1

3.2553606 3.4327105 3.1201919

3.7605893 4.5366727 3.5805055

3.9872204 4.9470364 3.7849268

4.3664596 5.196118 4.1241545

4.6079734 5.7258029 4.3383356

4.45 5.9447368 4.1984032

5.0644068 6.9176064 4.7391929

4.2 3.2 3.9756952

5.2034483 7.1107147 4.8602884

5.8913043 7.4323671 5.4524133

Mean Variance of data GP2 variance on clusters of x2

2.952 3.3686452 2.8407398

2.7964602 2.9492731 2.6965651

3.35 3.2589744 3.2069019

3.7756654 4.6097872 3.5941437

3.8919861 5.0407397 3.6991806

4.1469194 5.1565107 3.9282105

4.2212121 5.285263 3.9946516

4.2061856 5.9054538 3.9812241

4.4304348 6.019157 4.1810295

4.5490909 6.3725813 4.2862496

4.689243 5.6870438 4.4100846

4.9888889 6.6206939 4.6732235

Mean Variance of data GP2 variance on clusters of x3

3.5916667 4.4086896 3.4273074

4.3343109 5.7217864 4.0955355

4.6511628 6.2274282 4.3764856
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Prediction of Strongly Overdispersed Count Data. In this section, results of predict-
ing of strongly overdispersed count data are discussed. In this part of the experiments,
the cluster-based Poisson and ZTP models as well as Poisson regression were not used
due to the violated Poisson assumption and higher values of the counts (see Sect. 3.1).
The experiments have been conducted under the same conditions as specified in the
previous section.

Fig. 3. The histograms of the count data collected on the clusters of the variable x3.

Table 4. The average prediction accuracy for strongly overdispersed data.

Model RMSE RPE AIC BIC

Cluster-based GP1 model 5.3527321 0.2450608 2586.4615 2599.6747

Cluster-based GP2 model 10.156487 0.4225181 2988.1786 3001.3918

Cluster-based Rayleigh model 8.5742296 0.5272263 6235.3781 6248.5913

NB1 regression 8.6107072 0.6270219 1784.7504 1801.267

Table 4 provides the comparison of the average values of RMSE, RPE, AIC and BIC
of the models calculated on the sets of simulations. Here, it can be seen, that the lowest
RMSE and RPE have been obtained with the cluster-based GP1 model. However, its
AIC and BIC are in the second place after the NB1 regression.

For the illustration, a fragment of the prediction is shown in Fig. 4, where the GP1
predictions follow the simulations. Figure 5 compares the histograms of the data from
one of the testing sets with the GP1 and NB1 predictions. Both the simulations and
GP1 predictions have the values approximately from 5 to 50, while the NB1 histogram
provides the values from 10 to 44.
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For the strongly overdispersed data, there is not the similar concordance in the vari-
ances of data and distributions on clusters as observed for weak overdispersion. It is
explained by a high measure of the uncertainty in such data.

Fig. 4. The prediction with the cluster-based GP1 (top) and NB1 (bottom) models.
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Fig. 5. The histograms of data from the testing set (top), the cluster-based GP1 (middle) and NB1
(bottom) predictions.
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5 Conclusion

The presented chapter describes the prediction of the count variable with overdispersed
realizations with the help of the five Poisson-related cluster-based models and compares
them experimentally with the Poisson and negative binomial regressions. The cluster-
based models are constructed using the relationship of the count variable with multi-
modal multivariate Gaussian observations, using their cluster-based discretization. For
the discretization, recursive algorithms of the Bayesian mixture estimation theory are
applied. Experiments show that the cluster-based models excepting one of them demon-
strate improvements in the prediction in the comparison with theoretical counterparts.
In practice, the cluster-based Generalized Poisson models seem to be a balanced choice
for predicting the considered type of data.

One of the main contributions of the proposed approach consists in the use of real-
time continuous data to predict the target count variable described either by the Poisson
or Poisson-related distributions. This advantage can be beneficial in specific applica-
tions, especially in view of its extension to other count data distributions, which do not
have general conditional form.
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