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Abstract — The paper considers the problem of online
prediction of a count variable based on real-time explanatory
data of mixed count and categorical nature. The presented
solution is based on (i) recursive Bayesian estimation of a
mixture model of Poisson-distributed explanatory counts,
using the categorical explanatory variable as a measurable
pointer of the mixture, (ii) construction of a mixture of local
Poisson regressions on the clustered data, and (iii) use of the
pre-estimated mixtures for online prediction of the target
count using actual measured explanatory data. The latter is
one of the main contributions of the proposed approach. In
addition, the dynamic model of the categorical explanatory
variable preserves the functionality of the algorithm in
case of its measurement failure. The experiments with
simulations and real data report lower prediction errors
compared to theoretical counterparts.

Keywords — count data; Poisson mixtures; Poisson regres-
sion; recursive Bayesian mixture estimation

I. INTRODUCTION

Count data is a type of discrete data whose values
are non-negative integers generated by counting specific
events. Unlike ordinal categorical data, the number of
possible realizations of a count variable may be relatively
high and may not be known. Because of these specific
features, statistical methods for analyzing count data differ
from those generally used for discrete data [1], [2].
In practice, predicting/estimating a target count variable
depending on explanatory data is a highly desirable task
in application fields, where random independent events
are observed with a constant intensity per time unit.
A significant part of the applications belong to trans-
portation sciences, where count variables are numerously
represented (e.g., counts of vehicles, pedestrians, cyclists,
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passengers, etc.). For example, the number of vehicles on
a key section of urban road should be predicted based
on data from explanatory sections to avoid measurement
errors and improve driving conditions in the city. In
safety research, counts of independent events per time
unit (accidents, aircraft shutdowns, server virus attacks,
crimes, terroristic attacks, etc.) should be analyzed. Other
applications include social sciences and finance (customer
counts, website visits, bankruptcies), medicine (patient
counts, specific diagnoses), etc.

A count random variable is generally described by the
Poisson distribution [3] or, in specific cases, by certain
Poisson-related distributions. The zero-inflated Poisson
model [4] and compound Poisson distributions [5] are
used for count data with a high number of zeros, while
the zero-truncated Poisson distribution with a minimum
at 1 can be applied to data without zeros [6].

For predicting a count variable based on explanatory
data, one of the basic approaches is Poisson regression
[7]–[12]. However, in reality, counts do not often sat-
isfy the Poisson assumption of the equality of mean
and variance, which means that the overdispersion or
underdispersion of the data is observed. In this case,
the trivial use of Poisson regression does not allow to
obtain an accurate model of the target variable, which
leads to a higher prediction error. To cope with over- or
underdispersed data, the following approaches are used.

Negative binomial regression (NB) [13] assumes that
the target count variable is described by the NB dis-
tribution instead of the Poisson one. It uses additional
dispersion parameters estimated by auxiliary least squares
to describe the variance as a function of mean. This model
is widespread and relatively successful. However, studies
[14], [15] report sensitivity to small and large counts.

Mixture models are known as the universal approxi-
mation of nonlinear relation between variables [16]. The
target counts can be described by a mixture of Poisson



distributions [17], which does not require meeting the
equidispersion. However, it does not solve the predic-
tion from explanatory data. Studies dealing with mix-
tures of Poisson regressions [18], [19], Poisson-gamma
models [20] and negative binomial mixtures [17] were
found. Their estimation is solved mainly via the iterative
expectation-maximization (EM) algorithm [21] assuming
offline computations during the data analysis.

Models of mixed distributions is a similar approach, de-
scribing the target and explanatory counts by the mixture
of the Poisson and Gaussian distributions [22]–[24], etc.
Again, to the best of our knowledge, they are estimated
offline using the EM algorithm, even though the attempts
of the online estimation can be found in [25] based on
the recursive Bayesian mixture estimation [26]–[28].

Generalized Poisson Models (GPM), namely, the Con-
sul’s GPM and Famoye’s GPM [29], are suitable for mod-
eling both the overdispersed and underdispersed count
data [30]. They also assume the variance to be a function
of mean via dispersion parameters. However, they do not
possess a closed form for recursive computations.

The presented paper approaches this problem using
paradigms of the recursive Bayesian mixture estimation
theory [26]–[28]. It proposes the algorithm of online pre-
diction of a count variable based on real-time explanatory
data of mixed count and categorical nature. The presented
solution is based on (i) recursive Bayesian estimation of a
mixture model of Poisson-distributed explanatory counts,
using the categorical explanatory variable as a measurable
pointer of the mixture, (ii) construction of a mixture of
local Poisson regressions on the clustered data, and (iii)
use of the pre-estimated mixtures for online prediction
of the target count using actually measured explanatory
data. The latter is one of the main contributions of the
proposed approach. In addition, the dynamic model of the
categorical explanatory variable preserves the functional-
ity of the algorithm in case of its measurement failure.
The experiments with simulations and real data report a
higher accuracy of the online prediction compared to the
Poisson and NB regressions in the offline mode.

The layout of the paper is organized as follows: Section
II-A formulates a problem and introduces the models.
Section III presents the methodology. Section IV provides
results of experiments. Section V provides conclusions.

II. MIXTURE MODEL OF COUNT DATA

A. Problem Formulation
Let us consider a system, which generates values

of the target count variable yt, the vector of explana-
tory independent count variables xt = [x1;t, . . . , xNx;t],
and the explanatory dynamic categorical variable zt ∈
{1, 2, . . . , Nz} at each time instant t = 1, 2, . . . , T . The
measurements of the variables provide data sets {yt}Tt=1,
{xt}Tt=1 and {zt}Tt=1.

The main task is to (i) construct a model describing
the relationship of the target count yt and the explanatory

multivariate count xt and categorical variable zt, (ii)
predict the values of yt online based on the explanatory
data measured at each time t.

B. Models
In order to describe the relationship of the target count

yt and all explanatory variables xt, zt, the joint probability
function (pf) of these variables is decomposed into the
product of the following conditional pfs

f(yt, xt, zt, zt−1) = f(yt|xt, zt)f(xt|zt)f(zt|zt−1), (1)

assuming that yt and xt are independent of zt−1.
In this paper, the last of these pfs is specified as

the dynamic parametrized model in the form of the
conditional categorical distribution

f(zt|β, zt−1) =

zt−1

zt 1 . . . Nz

1 β1|1 . . . β1|Nz

. . . . . . . . . . . .
Nz βNz|1 . . . βNz|Nz

, (2)

where parameters β ≡ {βi|j}Nz
i,j=1 are probabilities of

zt = i under condition that zt−1 = j.
The pf f(xt|zt) from (1) describes the explanatory mul-

tivariate count variable xt depending on zt. The Poisson
distribution is a widely used model for describing count
data. However, it is known that it does not have a general
conditional form that directly covers the dependence of
the variables. In this paper, the dependence of xt on zt in
the pf f(xt|zt) from (1) is considered as a mixture of the
Poisson components existing for each independent count
xl;t ∀l ∈ {1, 2, . . . , Nx} and each realization of zt, i.e.,

f(xl;t|λl, zt = i) = e−λl,i
λ
xl;t

l,i

xl;t!
, i = {1, . . . , Nz}, (3)

where the parameter λl ≡ {λl,i}Nx,Nz

l,i=1 is equal to λl,i

for xl;t under condition that zt = i. This makes the
measurable categorical variable zt a known pointer [26]
of the Poisson mixture, which significantly simplifies a
derivation of the mixture estimation algorithm.

The pf f(yt|xt, zt) from (1) is the main focus of the
study. It describes the relationship between the target yt
and the explanatory counts xl;t, each of which changes
its behavior for each value of zt. This leads to using the
mixture of Poisson regressions that exist in the data space
of each xl;t. Thus, the pf f(yt|xt, zt) is specified as

f(yt|xt, θ, zt = i) =
eytθ

′
ixt

yt!
e−eθ

′
ixt

, (4)

which means that the Poisson regression with the expec-
tation of yt is

E [yt|xt, θ, zt = i] = eθ
′
ixt , ∀i ∈ {1, . . . , Nz} (5)

with θ = {θi}Nz
i=1, and θi is a set of regression coefficients.

In this paper, the Poisson regression (5) will be used for
the point prediction of yt instead of the distribution (4).



Using the introduced models, the solution to the prob-
lem formulated in Section II-A is presented below.

III. METHODOLOGY

A. Model Estimation of Explanatory Data

The first phase of the solution focuses on the analysis
of the explanatory data xt, zt. The main objective here is
to estimate the parameters of the Poisson components (3)
that exist for each value of zt and to find the data xl;t

belonging to these components. As for the estimation of
the parameters of (2), it is needed for the possibility of
predicting zt in case of missing data.

The posterior pf of the unknown parameters of (2)
and (3) is derived using the Bayes and chain rules [31]
according to the recursive Bayesian mixture estimation
methodology [26]–[28], i.e.,

f
(
λl, β|{xl;t}Tt=0, {zt}Tt=0

)
∝ f

(
λl, β, xl;t, zt = i|{xl;t}T−1

t=0 , {zt}T−1
t=0

)
= f (xl;t|λl, zt = i) f

(
λl|{xl;t}T−1

t=0 , zt = i
)

×f
(
zt = i|β, {zt}T−1

t=0

)
f
(
β|{zt}T−1

t=0

)
. (6)

The right side of (6) is the product of (i) the Poisson pf
(3), (ii) the conjugate prior Gamma pf for the estimation
of λl [32], (iii) the categorical model (2) and (iv) the
conjugate prior Dirichlet distribution f(β|{zt}T−1

t=0 ) used
for the recursive estimation of β according to [27].
According to the adopted theory [26]–[28], the relation
(6) is marginalized over the unknown parameters. This
marginalization leads to a recursive update of the statistics
of the involved models with the subsequent computation
of the point estimates of the parameters.

The statistics of the categorical model (2) is actualized
according to [27] ∀i, j ∈ {1, . . . , Nz} as follows:

νi|j;t = νi|j;t−1 + δ(zt|zt−1, i|j), (7)

where νt ≡ {νi|j;t}Tt=1 is the statistics of the dimension
identical to (2), and ν0 is the random initial statistics. The
Kronecker delta function δ(zt|zt−1, i|j) is equal to 1, if
zt = i and zt−1 = j, and it is 0 otherwise. The updated
statistics νt is normalized to obtain the point estimate of
the parameter β [26], [27], i.e.,

β̂i|j;t =
νi|j;t∑Nz

k=1 νk|j;t
. (8)

As for the Poisson pfs (3), the recursive update of their
statistics has been discussed in detail in [33]. With zt as
the known pointer, this update is straightforward

Sl,i;t = Sl,i;t−1 + δ(zt, i)xl;t, κl,i;t = κl,i;t−1 + δ(zt, i)
(9)

starting with the initial statistics Sl,i;0 and κl,i;0 of the
i-th Poisson pf (3) of the count xl;t labeled by the value
zt = i. The Kronecker delta function in (9) is defined

similarly. The point estimate of the parameter λl,i, of each
component (3) of each xl;t is computed as

λ̂l,i;t =
Sl,i;t

κl,i;t
, ∀l ∈ {1, . . . , Nx},∀i ∈ {1, . . . , Nz}, (10)

which gives the recursive version of estimating the Pois-
son expectation.

In this way, this part of the solution is applied to
the data sets {xt}Tt=0, {zt}Tt=0 measured up to the time
t = T . Its results are the identified components of each
explanatory count xl;t.

Remark: With zt as the known pointer, the point
estimate (10) is optional or can be done offline. However,
it serves as preparation for the case of an unmeasured
pointer.

B. Local Poisson Regressions on Data in Components

The second phase of the solution runs completely
offline. The data of each xl;t belonging to its components
detected above are substituted into the vector xt in (5) to
obtain the expectation θi of the Poisson regression for the
i-th value of zt. This is done via the maximum likelihood
(ML) estimation of the parameters θi of Nz local Poisson
regressions using numerical methods [7].

C. Target Count Online Prediction

The third phase is the online prediction of the target
count yt for the time t > T , where its values are no longer
measured, but xt, zt are permanently available. Here, the
value of zt actually measured at time t indicates which
of the pre-estimated local Poisson regressions (5) is to be
used for the prediction. Then the current observations of
all counts xt = [x1;t, . . . , xNx;t] at time t are fed into the
given local model (5). The point prediction of the target
count yt is computed via (5) using the point estimate of
θi corresponding to the value of zt.

Remark 1: If the measurement of zt fails, its point
prediction obtained via the maximum probability in the j-
th row corresponding to the past zt−1 = j of the estimated
model (2) is used instead of a missing value of zt, i.e.,

ẑt = argmax[β̂1|j;t, . . . , β̂Nz|j;t], j = zt−1. (11)

Remark 2: In case of missing values of xt, the point
estimates of λl,i are used instead of them.

The algorithm is summarized below.

D. Algorithm

{Initialization (t = 0)}
Set the number of components Nz = max({zt}Tt=0).
Set the initial statistics νt.
for all l ∈ {1, . . . , Nx} do

for all i ∈ {1, . . . , Nz} do
Set the initial statistics Sl,i;0, κl,i;0.

end for
end for
{Model Estimation of Explanatory Data)}



for t = 1, 2, . . . , T do
Measure the current values of zt and xt.
for all l ∈ {1, . . . , Nx} do

for all i ∈ {1, . . . , Nz} do
Update νt using (7), Sl,i;t and κl,i;t via (9).
Compute β̂t using (8) and λ̂l,i;t via (10).

end for
end for

end for
{Local Poisson Regressions on Data in Components)}
for all zt = i ∈ {1, . . . , Nz} do

Filter the values of xt and substitute them into (5).
Get the ML estimate of θi numerically.

end for
{Target Count Online Prediction)}
for t = T + 1, T + 2, . . . , do

Measure the current value of zt, xt.
if zt is NaN then

Use its prediction ẑt via (11) instead.
end if
For i = zt use (5) to get the point prediction of yt.

end for
The algorithm was implemented in the free and
open source programming environments Scilab (www.
scilab.org) and Python 3 (www.python.org).

IV. EXPERIMENTS

A. Experiments with Simulations

The functionality of the algorithm was first validated
with simulations. To test the target count prediction, data
sets with a capacity of 3.000 values were simulated during
each run of the algorithm for Nz = 4, Nx = 2 using
the dynamic categorical model, Poisson distributions with
random parameters, and Poisson regressions. Fig. 1 (top)
shows histograms of explanatory and target counts from
one of the data sets. Note that while the multimodal nature
of the explanatory data is clearly visible in the figure,
the shape of the histogram of the target counts can be
much smoother. This explains why the first phase of the
solution (see Section III-A) is needed instead of searching
for clusters in the data space of yt.

80% and 20% of each data set from each algorithm run
were used for training and testing. Fig. 1 (bottom) shows
clusters of explanatory count data for each zt value.

To evaluate the contribution of the proposed algorithm,
Poisson regression and NB regression were applied to the
training and testing data sets with all explanatory variables
including zt, i.e., with [x1;t, . . . , xNx;t, zt, 1]. The predic-
tion accuracy was evaluated using the root mean square
error (RMSE), mean absolute error (MAE), mean squared
logarithmic error (MSLE) and negative log likelihood
(NLL). The comparison of the average accuracy metrics
is shown in Table I, which reports improvements in pre-
diction accuracy for all metrics compared. A fragment of
the visual comparison of all predictions and the absolute

Figure 1. Simulated count data histograms (top) and
explanatory count data clusters (bottom)

deviations between simulation and predictions are shown
in Fig. 2. 100 and 50 values are shown for better visibility.
Note that for most values, the proposed algorithm has the
smallest deviations from the simulated values.

Table I. COMPARISON OF AVERAGE ACCURACY METRICS

RMSE MAE MSLE NLL
Proposed algorithm 2.601 1.656 0.242 1120.78
Poisson regression 3.249 2.165 0.402 1338.864

NB regression 4.445 2.656 0.422 1429.255

In the testing data, 3% of the values of the variable
zt were randomly replaced by NaN to simulate missing
explanatory categorical data. In practice, such a situation
can cause the algorithm to fail, since the values of zt
indicate the model to be used for prediction. Testing of
the algorithm with random one-time failures and single
longer failures gave accuracy in predicting missing data
in the range of 70% to 97%. The accuracy of predicting
target counts with missing data remained at the same level
for all models compared.

B. Experiments with Real Traffic Count Data

The potential application is expected mainly in real-
time traffic flow prediction for intelligent transportation
systems. To validate the algorithm with real data, the data
set [34] of traffic counts collected at New York City bridge
crossings and roadways from 2014 to 2020 was used to
test the target count prediction. The capacity of the data
set was 33.409 values. Hourly traffic counts have been



Figure 2. Visual comparison of predictions (top) and absolute
deviations between simulation and prediction (bottom).

recalculated to minutes. The goal of the experiments was
to predict the target traffic counts at the roadways based
on the two explanatory count variables from the roadways
and the categorical traffic state. The latter was unavailable
in the data set and was obtained by discretizing the third
explanatory count variable into 4 quartile-based values
representing traffic states: “free flow”, “stable flow”,
“approaching unstable flow”, and “unstable flow”. Traffic
state from Google’s live traffic maps can also be used.

Two types of experiments were performed: with origi-
nal time series data and with randomly shuffled data. The
prediction accuracy of the target traffic counts obtained
with all compared methods is shown in Table II for the
case of time series data and in Table III for randomly
shuffled data. It can be seen that all accuracy metrics
of all methods increased in the case of shuffled data.
However, in both types of experiments the proposed
prediction algorithm demonstrates higher accuracy than
the compared methods.

Table II. TIME SERIES TRAFFIC COUNTS PREDICTION ACCURACY

RMSE MAE MSLE NLL
Proposed algorithm 3.109 1.901 0.1454 15408.572
Poisson regression 6.837 2.928 0.271 18840.114

NB regression 6.512 2.815 0.262 18725.097

Fig. 3 shows a fragment of the prediction of the
time series (top) and randomly shuffled traffic counts
(bottom). Note that although the deviations of the time

Table III. AVERAGE SHUFFLED TRAFFIC COUNTS PREDICTION
ACCURACY

RMSE MAE MSLE NLL
Proposed algorithm 7.082 3.025 0.179 22830.282
Poisson regression 10.516 4.177 0.295 27321.901

NB regression 10.777 4.129 0.287 27191.462

series predictions in the top plot appear visually higher,
all methods follow the expectations of the counts, and
looking at the y-axis, it can be seen that the deviations are
not significant. The shuffled data deviations in the bottom
plot are much higher (see the y-axis values), but the
predictions appear visually more accurate. This explains
the difference in accuracy between Tables II and III. This
is also confirmed by comparing the absolute deviations
between simulation and prediction in Fig. 4 (see values
on the y-axis).

Figure 3. Fragments of traffic count prediction comparison.

V. CONCLUSION

The study’s goal of validating online count predic-
tion using simulations and real data was successfully
achieved: lower prediction errors are reported compared
to theoretical counterparts. In addition, simulated missing
explanatory data did not affect the prediction accuracy
due to the dynamic categorical model, which allows the
use of predictions instead of missing values.

Note that the variable zt used as the pointer is an aux-
iliary explanatory variable. If it cannot be measured, the
problem becomes recursive Bayesian mixture estimation
with Poisson components and regressions, where the data



Figure 4. Fragments of absolute deviations comparison.

classification is based on estimating the pointer. This case
will be discussed in a separate publication.
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and K. Warwick, K. Eds. Preprints of the 3rd European IEEE
Workshop on Computer-Intensive Methods in Control and Data
Processing, Prague, CZ, 1998, pp. 77–82.
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