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Abstract: The development of traffic state prediction algorithms embedded in
intelligent transportation systems is of great importance for improving traffic con-
ditions for drivers and pedestrians. Despite the large number of prediction meth-
ods, existing limitations still confirm the need to find a systematic solution and its
adaptation to specific traffic data. This paper focuses on the relationship between
traffic flow states in different urban locations, where these states are identified as
clusters of traffic counts. Extending the recursive Bayesian mixture estimation
theory to the Poisson mixtures, the paper uses the mixture pointers to construct
the traffic state prediction model. Using the predictive model, the cluster at the
target urban location is predicted based on the traffic counts measured in real
time at the explanatory urban location. The main contributions of this study are:
(i) recursive identification and prediction of the traffic state at each time instant,
(ii) straightforward Poisson mixture initialization, and (iii) systematic theoretical
background of the prediction approach. Results of testing the prediction algorithm
on real traffic counts are presented.
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1. Introduction

A traffic count is defined as the number of vehicles that pass through a given
section of road during a period of time. The multimodal behavior of traffic counts
(e.g., peak/off-peak, night, congestion due to accidents, restricted traffic flow due
to sports or social city events, etc.) naturally creates clusters that express some
of the traffic flow states. The definitions of the traffic flow states in the literature
vary from free flow to congested flow depending on the specific road characteristics
and flow density [56]. The classification into three traffic flow states is commonly
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used [9, 70], but some sources mention up to six states [66]. The development of
algorithms for identification and early prediction of traffic flow states embedded
in intelligent transportation systems is of great importance for improving traffic
conditions for drivers and pedestrians.

Detailed reviews of existing methods provided by [32, 35, 44] divide traffic flow
prediction methods into (i) statistical approaches, (ii) machine learning algorithms,
and (iii) deep learning techniques.

The most commonly used statistical approaches to traffic flow prediction are
the Kalman filter [17, 61], autoregressive integrated moving average (ARIMA) [63,
64], nonparametric regression [4], and physics of traffic flow [34]. As noted by
[66], statistical approaches often require prior assumptions about the data to be
analyzed, such as normality, due to the large number of models that have been
extensively developed for normally distributed data. This introduces a number of
limitations, especially for non-negative and asymmetrically distributed data such
as traffic counts. The papers [32, 52] mention the lower prediction accuracy of
statistical approaches compared to other state-of-the-art methods.

Another extensive group of methods that have become popular in predicting
traffic flow data due to its non-linear nature are machine learning algorithms [65].
In particular, these include artificial neural networks [31, 33, 43, 55], support vec-
tor machines (SVM) [13, 23, 30, 66, 68], k-nearest neighbors [3, 19, 23, 30, 47],
and random forests [8, 10, 47]. In contrast to statistical approaches, they provide
higher accuracy and flexibility of traffic prediction. However, [30] note the sensi-
tivity of artificial network structure settings to traffic characteristics and the lack
of theoretical background for its formulation. SVM-based methods have better
potential, but [30] mention the high computational cost of these algorithms, which
limits their application.

In recent years, deep learning techniques, which are a powerful extension of
machine learning tools and provide more accurate prediction results, have received
increasing attention [29, 30, 32, 56]. In traffic flow prediction, convolutional neural
networks [7], short-term memory networks [69], encoders [62], graphical convolu-
tional networks [67], and hybrid models that combine several techniques [60] are the
most common. Despite the higher prediction accuracy provided by deep learning
techniques, they have a number of limitations in practical application. As listed
by [30], their shortcomings include the need for a huge amount of data to find
an appropriate model structure, high computational complexity, and poor inter-
pretability of results from a theoretical point of view.

Despite the large number of studies (not limited to those mentioned above),
the limitations of existing approaches discussed by [32, 35, 44] still confirm the
necessity of finding a systematic solution to traffic flow prediction as well as its
adaptation to specific traffic data.

Automatic recorders at various locations in the urban area provide traffic counts
in real time. The dependence between traffic flow at the target and explanatory
urban locations was discussed by [46], who claimed that information from the
target road section is insufficient for predicting traffic flow. [30] assumed the non-
linear relationship between traffic flows on the target and explanatory road sections
and used the maximum information coefficient instead of the correlation coefficient.
The present paper focuses on the relationship between traffic flow states in different
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urban locations, where these states are identified as clusters of traffic counts.

Traffic counts are non-negative discrete count data. In a probabilistic approach,
this type of random variable is well suited for description by the Poisson distribu-
tion. Given the multimodality of traffic counts, a mixture of Poisson distributions
is an appropriate tool for detecting and predicting clusters of count data. The Pois-
son distribution is known for not having a general conditional form, which makes it
difficult to model a relationship between target and explanatory variables. Tradi-
tional approaches in this case is the use of Poisson or negative binomial regressions
[2, 12, 20] as well as the mixtures of them [1, 6]. The latter are well suited for
continuous explanatory variables, but may not be suitable for specific explanatory
multimodal counts.

The presented paper proposes to predict traffic count clusters based on the re-
cursive Bayesian mixture estimation theory [27, 28, 36]. Unlike the commonly used
model-based clustering with mixture estimators using the iterative expectation-
maximization (EM) algorithm [18], the recursive algorithms of the adopted theory
have two key features: (i) they identify and predict clusters at each time instant
and update them with the new data, and (ii) provide the fixed computational time
not limited by the algorithm convergence typical for iterative methods. The recur-
sive Bayesian mixture estimation algorithms are extensively developed for normal
and categorical mixtures [27, 28, 37], etc. [36] generalized the approach for different
types of distributions, which was later developed for exponential [39, 54], uniform
[53], and binomial [26] mixtures. [42, 58] studied recursive clustering algorithms
for predicting Poisson multimodal counts based on discretized normal explanatory
data.

The presented paper extends the aforementioned theory to Poisson mixtures
to model traffic counts at the target and explanatory urban locations. For this
purpose, the conditional model of the mixture pointers is used to construct the
traffic state prediction model. The Poisson proximity [36] computed using the
traffic counts at the explanatory location is incorporated into the weights of the
traffic states. The number of traffic states is allowed to vary between locations. The
predictive model predicts the cluster at the target urban location based on real-
time traffic counts at the explanatory urban location. The models of individual
clusters can also be used to generate traffic count predictions.

Using the categorization of prediction methods in [66], the presented algorithm
combines solutions to traffic flow prediction as a classification problem based on
traffic state along with a regression problem based on specific traffic variables (here,
traffic counts). The main contributions of the study are: (i) recursive identification
and online prediction of traffic count clusters at each time instant, (ii) straightfor-
ward Poisson mixture initialization, and (iii) systematic theoretical background of
the prediction approach.

The paper is organized as follows: Section 2 provides the general theoretical
background of traffic flow state prediction, including the recursive algorithm in
Section 2.3.1. Section 3 demonstrates its application to traffic count data, including
the data set description in Section 3.1, mixture initialization in Section 3.2, results
in Section 3.3, and discussion in Section 3.4. Conclusions in Section 4 conclude the
work.
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2. Theoretical background

2.1 Problem formulation

Let us consider the traffic counts y and x measured at selected urban locations
per unit of time, generally denoted by t = 1, 2, . . . , T . The variable y is the target
count measured at the major urban location to be modeled, and x is the explanatory
count observed at secondary locations. Their observations produce the data sets
{yt}Tt=1 and {xt}Tt=1 to be analyzed. Due to changes in traffic flow behavior (e.g.,
during the day, hour, season, depending on the selected time unit), the data values
have a multimodal character. This means that clusters are created in the traffic
data space that express traffic flow states. If the clusters express only rush hours,
they may naturally be common for both traffic counts y and x. However, due to
special circumstances at the locations where the counts are taken (e.g., a marathon
at one location and an accident at the other) or due to the distance between them,
the clusters may not be common. Having the data of both the variables, the
clusters can be recognized. Estimating the models of the variables, the clusters are
identified and under the condition that the counts are actually measured, they are
classified into the clusters that can also be predicted.

However, the problem is how to predict the occurrence of clusters of the target
traffic count y when its values can no longer be measured. One of the possibilities is
to use its estimated model, but in this case sudden changes in traffic flow behavior
in the current time may not be taken into account. The model describing the
relationship between y and x can be used for cluster prediction, assuming that the
observations of x are still measured. The problem is that the traffic counts y and x
are naturally the non-negative discrete variables. As mentioned above, mixtures of
Poisson distributions are used to model both individually, but not their relationship
due to the lack of the conditional form of the Poisson model. This paper proposes
to use the clusters of the actually measured data of the explanatory variable x,
detected in real time, to predict the clusters of the target variable y.

Verbally, the problem to be solved is formulated as follows:

(i) construct a model describing the dependence of clusters of traffic counts y on
clusters of x
(ii) and predict the clusters of y in real time based on knowledge of x.

The theoretical background for solving this problem is given in the next section.

2.2 Poisson mixture models

Due to the possible different character of the multimodality of the traffic counts
y and x, each of them is individually described by a mixture of the Poisson com-
ponents. This means that each cluster expressing a traffic state generated by the
data of y and x is modeled by a single component belonging to their mixtures. The
individual mixture models considered consist of the Poisson components, i.e., for
y and x, respectively, they are

Poiy (yt, λ, c) = e−λc
λyt
c

yt!
, c = {1, 2, . . . , N},
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Poix (xt, µ, s) = e−µs
µxt
s

xt!
, s = {1, 2, . . . ,M}, (1)

where λ ≡ {λc}Nc=1 and µ ≡ {µs}Ms=1 are the collections of all unknown Poisson
component parameters, where N and M denote fixed numbers of the components.
The random discrete variables c and s are the so-called pointers [28], whose val-
ues indicate the active components that generate the current realizations yt and
xt at the time instant t respectively. This means that each traffic count has its
own pointer. Each pointer is generally modeled by the parameterized categorical
distribution with the probabilities β ≡ {βc}Nc=1 and γ = {γs}Ms=1, which correspond
to the values of the pointers c and s, respectively.

Note that the conditional form of the Poisson component (1), which could be
used to describe the dependence of y on x (or vice versa), is not feasible for this type
of distribution. This paper proposes to model the relationship of these variables
through the dependence of their pointers. Therefore, the joint pointer model in the
form of the probability function denoted by f(·, ·|·) with the unknown parameter

α ≡ {αsc}M,N
s,c=1 is used instead of the marginal pointer models. It is

f(c, s|α) =

H
HHHHs

c
1 2 . . . N

1 α11 α12 . . . α1N

2 α21 α22 . . . α2N

. . . . . . . . . . . . . . .
M αM1 αM2 . . . αMN

, (2)

from which the conditional distributions of the pointers can be derived (either
f(c|s, α) or vice versa f(s|c, α)). In the case that the measurements of the traffic
count y are no longer available and the pointer s is estimated in real time using
the data of x, the conditional distribution f(c|s, α) indicating the occurrence of
clusters of y is used to predict the values of the pointer c for each time point. The
recursive cluster prediction algorithm is introduced in the next section.

2.3 Recursive cluster prediction algorithm

The derivation of the cluster prediction algorithm is based on basic principles of the
recursive Bayesian mixture estimation theory [27, 28, 36]. Here they are elaborated
for Poisson components and conditional pointer prediction.

The learning phase of the algorithm is executed on the data sets {yt}Tt=1 and
{xt}Tt=1 of both variables. Inspired by the adopted methodology [27, 28, 36], the
estimation of the Poisson components (1) and the joint pointer model (2) is based
on the Bayes rule and the chain rule [14, 41]

f (c, s, λ, µ, α|y(t), x(t)) ∝ f (yt, xt, c, s, λ, µ, α|y(t− 1), x(t− 1))

= Poiy (yt, λ, c)︸ ︷︷ ︸
component

Γ (λ|y(t− 1))︸ ︷︷ ︸
gamma prior

×Poix (xt, µ, s)︸ ︷︷ ︸
component

Γ (µ|x(t− 1))︸ ︷︷ ︸
gamma prior

× f (c, s|α)︸ ︷︷ ︸
joint model (2)

Dir (α|y(t− 1), x(t− 1))︸ ︷︷ ︸
Dirichlet prior

, (3)
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where y(t) and x(t) denote the collections of measurements up to time t, including
the prior knowledge needed to recursively update the statistics. The conjugate
prior gamma distributions [21] are used for the recursive Bayesian estimation of
the Poisson component parameters λ and µ. For the pointer model estimation,
the conjugate prior Dirichlet distribution [27] is used. Note that the parallel com-
putations can optionally include the estimation of the marginal pointer models
based on the similar principle. The factorized right-hand side of the relation (3) is
marginalized to obtain the posterior joint pointer distribution

f (c, s|y(t), x(t)) =

∫
λ∗

Poiy (yt, λ, c)︸ ︷︷ ︸
component

Γ (λ|y(t− 1))︸ ︷︷ ︸
gamma prior

dλ

×
∫
µ∗

Poix (xt, µ, s)︸ ︷︷ ︸
component

Γ (µ|x(t− 1))︸ ︷︷ ︸
gamma prior

dµ

×
∫
α∗

f (c, s|α)︸ ︷︷ ︸
(2)

Dir (α|y(t− 1), x(t− 1))︸ ︷︷ ︸
Dirichlet prior

dα

≈ Poiy

(
yt, λ̂c;t−1

)
︸ ︷︷ ︸
proximity my;c

×Poix (xt, µ̂s;t−1)︸ ︷︷ ︸
proximity mx;s

× α̂cs;t−1,︸ ︷︷ ︸
point estimate

∀c = {1, 2, . . . , N}, ∀s = {1, 2, . . . ,M}. (4)

As defined in (4), the concept of the proximity is the value of the Poisson component
calculated from the actual observation (i.e., yt or xt) and the point estimate of this

component parameter (λ̂c;t−1 or µ̂s;t−1) computed on the basis of the past data up
to the time t− 1 [36], i.e.,

my;c = Poiy

(
yt, λ̂c;t−1

)
,∀c = {1, 2, . . . , N},

mx;s = Poix (xt, µ̂s;t−1) ,∀s = {1, 2, . . . ,M}. (5)

The proximity gives the approximate “closeness” of the current realization to each
component (more details can be found in [25, 36, 38]). The normalized proximities
are used as weights

wy;c;t =
my;c∑N
i=1 my;i

, wx;s;t =
mx;s∑M
j=1 mx;j

, (6)

of the components of each mixture at time t.
It is clear that to obtain the estimate of the joint pointer distribution (4), the

point estimates of the component parameters λ̂c;t−1, µ̂s;t−1 and the pointer model
parameters α̂cs;t−1 should be computed, first for the past data and then recom-
puted. As for the component parameters, they are obtained after the recursive
update of statistics of the Poisson components of the mixtures of the variables y
and x, denoted by

Sy;c;t = Sy;c;t−1 + wy;c;tyt, κy;c;t = κy;c;t−1 + wy;c;t, (7)

Sx;s;t = Sx;s;t−1 + wx;s;txt, κx;s;t = κx;s;t−1 + wx;s;t, (8)
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where the recursions start with the initial statistics of the components. The formu-
las (7)–(8) are derived based on the Bayesian mixture estimation theory [27, 28], see
the detailed derivations in [57]. The point estimates of the component parameters
based on the current data at time t are then

λ̂c;t =
Sy;c;t

κy;c;t
and µ̂s;t =

Sx;s;t

κx;s;t
, (9)

which is the recursive recomputation of the Poisson expectation identical to its
maximum likelihood estimate.

The statistic of the joint pointer model (2) is a matrix denoted by νt ≡ {νsc;t}M,N
s,c=1.

Its recursive update has a form similar to the case of the dynamic pointer [37], where
the weighting matrix is composed as the product of the vectors wx;t and wy;t of all
normalized proximities

νt = νt−1 + wx;tw
′
y;t. (10)

The result is used to recalculate the point estimate [27, 28] via the normalization
of the statistic (10)

α̂sc;t =
νsc;t∑M
i=1 νic;t

, (11)

which represents the point estimate of the joint pointer distribution (4) based on
the actual measured data. Now, both the component and the pointer models are
estimated. The recursive phase of the estimation of all models is finished when all
values from the data sets {yt}Tt=1 and {xt}Tt=1 are used.

The prediction phase is based on the learned joint pointer distribution (4), which
takes into account the relationship between the pointers c and s. The proximity (5)
is computed only for the measured count x using its current value xt. The proximity
normalization (6) gives the weights wx;s;t ∀s = {1, 2, . . . ,M}. The conditional
distribution of the pointer c depending on the pointer s is constructed from (4) by
normalizing over columns

f (c|s, y(T ), x(t)) = α̂sc;T∑N
i=1 α̂si;T

, (12)

where the x values are taken online at the current time t as opposed to the y data
that was last available up to time t = T . Then

f (c|s, y(T ), x(t))wx;s;t = wy;c;t, ∀c = {1, 2, . . . , N}, ∀s = {1, 2, . . . ,M}, (13)

returns the prediction of the actual weight of the cth component of the target count
y based on the data xt. The prediction for the pointer c is

ĉt = argmax
c∈{1,...,N}

[wy;1;t, wy;2;t, . . . , wy;N ;t]
′, (14)

which points to the active Poisson component Poiy

(
yt, λ̂ĉt;T

)
describing the clus-

ter of traffic count data y. Either the active distribution or the weighted average
of the components can be used to predict data in clusters. The presented theory
is summarized in the algorithm below.
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2.3.1 Algorithm

The presented algorithm has been tested in Scilab (www.scilab.org), a free and
open-source programming environment for engineering and scientific computations.

Algorithm 1 Presented algorithm.

{Mixture initialization (for t = 1)}
Set the numbers of components M,N .
for all s ∈ {1, . . . ,M}, c ∈ {1, . . . , N} do
Set the initial statistics Sx;s;t, κx;s;t, Sy;c;t, κy;c;t and νsc;t.

Compute the point estimates µ̂s;t, λ̂c;t and α̂sc;t according to (9) and (11).
end for
{Offline learning phase}
for t = 2, 3, . . . , T do
Measure the current realization xt, yt.
for all s ∈ {1, . . . ,M}, c ∈ {1, . . . , N} do

Compute the proximities mx;s,my;c via (5).
Obtain the weights wx;s;t, wy;c;t, according to (6).
Update the statistics Sx;s;t, κx;s;t, Sy;c;t, κy;c;t and νsc;t according to (7)–(8)
and (10).

Recompute the point estimates µ̂s;t, λ̂c;t and α̂sc;t according to (9) and (11).
end for

end for
{Online prediction phase}
for t = T + 1, T + 2, . . . , do
Measure the current realization xt.
for all s ∈ {1, . . . ,M} do
Compute the proximities mx;s via (5).
Compute the weights wx;s;t according to (6).

end for
Predict the weights wy;c;t according to (12) and (13).
Predict the pointer c according to (14).

end for

3. Traffic flow state prediction

This section demonstrates the application of the above algorithm to the predic-
tion of the traffic flow state in the form of clusters based on the data from the
explanatory urban location.

3.1 Data

The data set contains hourly traffic counts measured at 5 traffic stations in Trond-
heim, Norway from December 2018 to January 2020. The data set from [48] de-
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scribed in [49] and related to the paper [50] is used. 9 758 measurements are
available from each of the 5 locations.

Fig. 1(a) shows the traffic count histograms. For better visibility, the histograms
from urban locations 1, 2, and 5, where values from 0 to 5 500 vehicles were
observed, are shown in the top plot, while locations 3 and 4, with values up to 1 000
vehicles, are given in the bottom plot. The figure clearly shows the multimodal
nature of the traffic counts due to the peaks in the distributions. Moreover, the
number of these peaks differs from location to location: locations 1 and 5 show
4 peaks, while only 2 peaks can be guessed from the histograms of the remaining
locations. This confirms that the multimodality of the traffic counts is different
and each of them has the specific number of traffic states. Therefore, they should
be modeled by individual mixtures with the specific number of components, i.e., 4
for locations 1 and 5, and 2 for locations 2, 3, and 4.

The Poisson components with a higher mean (which is natural for hourly traffic
counts) may look symmetric in histograms, but boxplots of the counts in Fig. 1(b)
show their skewness.

3.1.1 Choice of traffic counts for prediction

To test the algorithm, traffic counts from 5 locations were divided into 20 pairs
x-y, so that each of them can be the target variable y, whose clusters are to be
predicted based on the clusters of x. The pairs from all locations show a high
correlation, with Spearman’s rank correlation coefficient ranging from 0.92 to 0.97.
However, in order to be suitable for the proposed algorithm, pairs of counts must
have the mutual influence of their traffic states determined by their pointers. To
find suitable pairs, parallel clustering of individual traffic counts was performed
during the offline learning phase of the algorithm to obtain the point estimates
of the marginal pointers, which indicate the clusters of counts detected during
learning. The contingency tables of the marginal pointers were analyzed using
Goodman & Kruskal’s lambda [16] to show the agreement of the traffic flow states.
The pairs with lambda values Λ ≤ 0.5 listed in Tab. I were not taken for the
prediction because of their weak agreement. The threshold 0.5 for the value of Λ
was chosen to get a representative sample of pairs where both locations can have
both 2 and 4 traffic states. The 14 pairs were used for traffic state prediction.

Location x Location y
1 2 3 4 5

1 – 0.87 0.78 0.836 0.725
2 0.488 – 0.863 0.87 0.376
3 0.492 0.88 – 0.822 0.377
4 0.445 0.86 0.784 – 0.373
5 0.709 0.752 0.846 0.83 –

Tab. I Goodman & Kruskal’s Λ of the contingency tables of the marginal pointers.
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(a)

(b)

Fig. 1 Histograms (a) and boxplots (b) of traffic counts from 5 urban locations.
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3.2 Mixture initialization

Mixture initialization is a critical task that strongly affects the start of the recur-
sive clustering algorithm. The use of individual mixtures [26] has the important
advantage that the mixtures are initialized using histograms of the traffic counts
used for the offline learning phase. For Poisson mixtures, this initialization ap-
proach is simplified due to a single parameter of the distribution. The algorithm
in Section 2.3.1 requires that the number of components of each count mixture
and their initial statistics be specified. The number of components of each mixture
corresponds to the number of traffic flow states at the location. They are set ac-
cording to the peaks of the histograms in Figs. 1 and 2, i.e., the 4 traffic states are
initialized for locations 1 and 5 and the 2 traffic states for the rest. The key point
is to correctly initialize the Poisson component statistics Sx;s;t and Sy;c;t, which is
done based on the centers of the histogram peaks. Looking at the enlarged view
of the histograms in Fig. 2, it can be seen that the initial statistics of the compo-
nents can be set to the vector [168.5 1 543.5 2 643.5 4 293.5]′ for location 1 and
[37.475 382.255 520.125 1 140.675]′ for location 5. The values of the initialized
statistics are placed in the red boxes on the x axis in Fig. 2. The rest of the his-
tograms are not zoomed here, but the initial statistics for them were set similarly
according to the centers of their peaks. The component statistics κx;s;t and κy;c;t

start from 1. The initial statistic of the pointer model νt is set uniformly.

3.3 Results

For each of the 14 traffic count pairs, 5 758 measurements were used for the offline
learning phase and 4 000 for the prediction phase. The correctness of the predicted
clusters cannot be verified directly from the data because they are not measurable.
To verify the predictions, observations of each target count were clustered in par-
allel and then the clusters obtained were compared with the predicted ones. This
evaluation was done in two ways.

Pointer comparison First, the pointer values indicating traffic flow states were
compared using (i) predictions from the conditional pointer model of the proposed
algorithm and (ii) estimates from the marginal pointer model. Fig. 3(a) demon-
strates fragments of the pointer comparison obtained for the target location 5 based
on the counts from the explanatory location 1 (pair 1-5). Fig. 3(b) compares the
pointers of the target location 2 (pair 3-2). The graphical results of the two target
traffic counts that have the different number of clusters are shown. To save space,
the rest of the graphical evaluation of the pointers is not shown. Fragments for
the last 100 hours are displayed for better visibility. In Fig. 3, the target traffic
count at location 5 has 4 clusters, while there are only 2 clusters in the case of
location 2. Due to the different multimodality at the locations obtained during the
initialization, the predicted clusters reflect different traffic flow states. In practice,
they should be expertly assigned according to the specific road characteristics at
the selected locations. The characteristics of the roads are not known to the au-
thors of this paper, so for these experiments the traffic states can be interpreted
verbally according to common practice (see, e.g., [66]) and the number of pointer
values as follows:
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(a)

(b)

Fig. 2 The histograms of traffic counts from locations 1 and 5 used for the initial-
ization purpose.
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(a)

(b)

Fig. 3 The fragments of the pointer prediction for the target locations 5 (a) and 2
(b).

Locations 1, 5:
{
“free flow”︸ ︷︷ ︸
cluster 1

, “stable flow”︸ ︷︷ ︸
cluster 2

, “approaching unstable flow”︸ ︷︷ ︸
cluster 3

,

“unstable flow”︸ ︷︷ ︸
cluster 4

}
,
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Locations 2, 3, 4:
{
“stable flow”’︸ ︷︷ ︸

cluster 1

, “unstable flow”︸ ︷︷ ︸
cluster 2

}
.

In Fig. 3, the pointers show how the active components describing the traffic
count clusters were switching during this time period. The predictions in both
plots follow the trend of the marginal pointers, although after the switch (see
e.g., the intervals around 35 and 55 hours) it takes some time for the weights to
adjust by obtaining new Poisson proximities from the counts at the explanatory
locations (here 1 and 3). A higher number of these switches naturally increases
the number of errors when evaluating the prediction accuracy, which is calculated
as the percentage of errors (PE) obtained when comparing the predicted pointer
values and the estimates of the marginal pointers. The evaluation of the PE was
calculated over the 4 000 hour prediction phase, averaged over 100 runs of the
algorithm. The average PE of the 14 traffic count pairs used at all locations is
7.35%. This means that the data from the explanatory urban locations can serve
well enough to predict the occurrence of traffic flow clusters at the target locations.

However, Fig. 4 reports that the PEs of the pairs where both locations have 4
traffic states (i.e., 5-1 and 1-5) are higher than the others. They are 23% and 16%,
respectively. The PEs of the pairs where either both locations have 2 traffic states
(1-2, 3-2, 4-2, 1-3, 2-3, 4-3, 1-4, 2-4, 3-4) or the locations have a mixed number of
traffic states (5-2, 5-3, 5-4) reach the maximum of 10.4%.

Clustering comparison Second, the predicted clustering was compared with
well-known existing algorithms applied to each target traffic count. Five iterative
methods were chosen: (i) the iterative Poisson mixture estimation based on the EM
algorithm [18], (ii) DBSCAN [11], (iii) k-means [22], (iv) fuzzy c-means [15, 40],

Fig. 4 The average PE of the pointer prediction of the 14 traffic count pairs x-y.
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and (v) k-medoids [24]. The clustering obtained with the marginal pointer model
was also used for the comparison.

The quantitative evaluation of the clustering agreement was done with the help
of clustering validity indices [59]. Three indices based on different approaches were
calculated to evaluate the similarity between the proposed algorithm and existing
methods. They are: (i) the κmax statistic [45], which is an extension of Cohen’s
kappa coefficient [5], (ii) the normalized mutual information (NMI) [51], and (iii)
the Goodman & Kruskal lambda Λ [16]. Their values, averaged over 14 target
urban locations, are given in Tab. II. According to them, the highest degree of
similarity on average is between the predicted clustering and EM. It was rated as
almost perfect agreement by κmax together with Λ and as substantial agreement by
NMI. The lowest agreement is with DBSCAN, ranging from fair by Λ to moderate
by κmax and NMI. The agreement between the predicted clustering and the other
methods ranges from moderate (NMI) to substantial (κmax and Λ).

EM DBSCAN Marginal pointer k-means fuzzy c-means k-medoids

κmax 0.847 0.456 0.837 0.755 0.76 0.755
NMI 0.695 0.408 0.691 0.592 0.597 0.592
Λ 0.831 0.346 0.823 0.746 0.751 0.746

Tab. II Average clustering validity indices.

The graphical comparison of the clusterings is shown in Fig. 5. The figure shows
the results obtained for the target locations 5 and 2 with 4 and 2 clusters, respec-
tively. In this figure, the traffic counts are plotted against the clustering indices of
the compared methods. The clusters obtained using the marginal pointer model
are also shown. In Fig. 5(a), the predicted clusters are more overlapping when
compared to the “true” clusters obtained by the iterative methods directly from
the counts at the target location, which are clearly separated except for DBSCAN.
This is because the proposed probabilistic approach needs some time to adjust the
mixture weights using the proximity from the explanatory location. The overlap is
more evident in clusters 2 and 3 in the Fig. 5(a), where the switch between them
was not precisely determined by the proximities. In Fig. 5(b), the overlap is not
significant in the case of switching between 2 clusters.

Data prediction from active components The above clusters express the
predicted states of the traffic flow. In addition, their models in the form of predicted
active Poisson components can be used to generate traffic count predictions. For
each of the 14 traffic count pairs, the normalized root mean square error (NRMSE)
was computed

NRMSE =

√∑Tp
t=1(yt−ŷt)2

Tp

ymax − ymin
, (15)

where Tp = 4 000 hours denotes the time of the prediction phase, yt are the actual
traffic count values, and ŷt are the data predictions. The average NRMSE for the
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(a)

(b)

Fig. 5 The cluster comparison of the target locations with 4 (a) and 2 (b) traffic
flow states.
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14 pairs is given in Tab. III, where the traffic count at target location 2 has the
lowest average prediction error and location 4 has the highest.

Location 1 Location 2 Location 3 Location 4 Location 5

NRMSE 0.163 0.136 0.199 0.2 0.154

Tab. III Average NRMSE.

Graphical results can be found in Fig. 6, which shows prediction fragments
for 200 hours for better visualization. Fig. 6 (a) shows the traffic prediction for
target location 5 (pair 1-5) with 4 predicted traffic states. The prediction for target
location 3 (pair 2-3) with 2 traffic states is shown in Fig. 6(b). It can be seen that
the predicted values follow the actual traffic counts.

3.4 Discussion

The main objective of the study was to verify the cluster prediction algorithm on
traffic count data to predict clusters expressing traffic flow states. The clusters
at the target urban locations were predicted using the traffic counts measured at
each time instant at the explanatory locations. The proposed prediction algorithm
allows the traffic states to be updated with each new measured traffic count. The
objective was successfully achieved: the experiments conducted provide the ade-
quate correspondence between the predictions and the clusters actually detected
at the target locations.

As reported in Tab. II, the results of the proposed algorithm are closest to
the clusters obtained by the EM algorithm. This is logical given the probabilistic
model-based clustering philosophy to which both EM and the proposed algorithm
belong. However, EM is an iterative method that depends on the convergence of
the algorithm, which is avoided in the presented approach. Worse agreement of pre-
dicted traffic states was achieved with clusters detected by the DBSCAN method.
It is the only algorithm among those compared that does not require a pre-specified
number of clusters. However, it is extremely sensitive to the setting of the neigh-
borhood radius and the minimum number of points to detect the required number
of clusters in the data. This explains the larger differences in clusters. On the
other hand, DBSCAN is more suitable for finding clusters of non-spherical shape
(which is the case of non-Gaussian traffic counts), so it was chosen for comparison
with the proposed algorithm. In contrast to DBSCAN, centroid-based k-means,
fuzzy c-means, and k-medoids detected practically identical clusters without over-
lap. They also differ slightly from the clusters provided by the proposed algorithm,
which predicts overlapping clusters by adaptively computing component weights
online, i.e., taking into account the probabilities with which each traffic flow state
is active at the current time. In contrast to the presented recursive clustering, the
algorithms selected for comparison perform clustering in offline mode, i.e., they
process all data at once. They cannot be used to update the traffic state prediction
with new counts actually measured at the explanatory location, which is one of the
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(a)

(b)

Fig. 6 Fragments of the traffic count prediction for location 5 (a) and location 3
(b).

main contributions of the proposed algorithm, but only to verify the results. For
this reason, the computation time comparison was not performed.

Another significant contribution of the study is a straightforward Poisson mix-
ture initialization procedure. The use of individual Poisson mixtures leads to 1D
clustering of traffic counts. In this case, initialization based on histograms of counts
from different urban locations greatly facilitates the search for initial cluster cen-
ters. As reported in Figs. 1 and 2, the proposed approach takes into account the
different multimodality of the counts, which allows us to distinguish different num-
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bers of traffic states in urban locations. In this paper, the learning data set was
used for initialization, but a relatively small prior or expert knowledge data set can
also be used. It is important to have prior data that includes all traffic states that
may occur in the testing data.

Among the drawbacks of otherwise very successful deep learning prediction
methods, which are known to produce more accurate prediction results, [30] men-
tion the lack of a systematic theoretical approach to model training and the use
of empirical intuitions instead. The additional strong advantage of the proposed
method is the systematic solution through the well-developed Bayesian mixture
estimation theory, potentially extendable to other types of data (e.g., pedestrian
flow), and the generalized recursive clustering approach. Moreover, although [66]
classify the traffic state prediction based on hourly data as a medium-term predic-
tion, the presented theory is not limited by the time unit used.

A practical application of online traffic flow state prediction is mainly seen
in intelligent transportation systems, starting with informing drivers about traffic
forecasts and more efficient routes to reduce travel time, and ending with supporting
traffic control centers in managing the urban road network, depending on the level
of automation.

In terms of limitations, the presented theory obviously requires multimodal
data sets to distinguish individual traffic flow states. However, it is not sensitive
to overestimation in the case of smaller data sets, which is the problem of deep
learning techniques [30]. The correlation between traffic states at the target and
explanatory locations should also be present in the data.

4. Conclusion

The paper is devoted to the prediction of a traffic flow state based on the condi-
tional model of clusters of traffic counts identified at target and explanatory urban
locations. The recursive Bayesian mixture estimation theory has been extended
to Poisson mixtures in order to use the pointers of the mixtures that indicate the
actual traffic flow state. Four and two traffic states related to traffic count clusters
were predicted for target locations using the online prediction algorithm using var-
ious multimodal traffic counts measured at explanatory locations. The algorithm
was also used to predict traffic counts. The recursive clustering based on individ-
ual mixtures also allowed us to use the specific initialization based on histogram
analysis of the available data, which is crucial for the successful execution of the
algorithm.

In addition, the general solution brings the advantage of universality of the pre-
sented algorithm with respect to the data to be predicted. As mentioned in [66],
the given statistical assumptions can be limiting for many applications. Here, the
success of the prediction depends on the amount of useful information contained
in the data sets. The algorithm is not limited by specific types of variables or by
the application domain. The often used normality assumption can be limiting for
many applications. Here, the Poisson distribution was used as the most appropriate
tool for traffic counts. However, alternative types of data distributions with repro-
ducible statistics and a different application domain can be chosen. Data analysis
using discrete mixtures with respect to model dimensionality, possible overdisper-
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sion of data in clusters, and automation of mixture initialization are open problems
to be investigated in this research project.

In addition, [35] noted that current approaches to intelligent transportation
systems lack a universal system capable of handling traffic, pedestrian, and bicycle
data simultaneously. Research in this area still requires new adaptive solutions
that can help to adjust urban traffic plans in time, avoid potential congestion on
urban roads, and improve traffic conditions.
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[42] PETROUŠ M., UGLICKICH E. Modeling of mixed data for Poisson pre-
diction. In: Proceedings of IEEE 14th International Symposium on Applied
Computational Intelligence and Informatics (SACI 2020), 2020, pp. 77–82.
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