
Fuzzy Sets and Systems 498 (2025) 109153

Contents lists available at ScienceDirect

Fuzzy Sets and Systems

journal homepage: www.elsevier.com/locate/fss

Uncertainty merging with basic uncertain information in 

probability environment

LeSheng Jin a, Yi Yang b,∗, Zhen-Song Chen c,d,∗, Muhammet Deveci e,f ,g, 
Radko Mesiar h,i

a Business School, Nanjing Normal University, Nanjing, China
b Changsha Social Laboratory of Artificial Intelligence, Hunan University of Technology and Business, Changsha, 410083, China
c School of Civil Engineering, Wuhan University, Wuhan 430072, China
d Faculty of Business, City University of Macau, Macau SAR, China
e Department of Industrial Engineering, Turkish Naval Academy, National Defence University, 34942 Tuzla, Istanbul, Turkey
f Royal School of Mines, Imperial College London, London SW7 2AZ, UK
g Department of Information Technologies, Western Caspian University, Baku 1001, Azerbaijan
h Faculty of Civil Engineering, Slovak University of Technology, Radlinského 11, 81005 Bratislava, Slovakia
i Institute of Information Theory and Automation of the Academy of Sciences of the Czech Republic, Prague, Czech Republic

A R T I C L E I N F O A B S T R A C T

Keywords:

Aggregation
Basic uncertain information
Information fusion
Probabilistic uncertainty
Probability merging
Uncertainty merging

Basic uncertain information is a recently introduced and significant type of uncertainty that 
proves particularly valuable in decision-making environments with inherent uncertainties. In this 
study, we propose the concept of uncertainty cognition merging, which effectively combines basic 
uncertain information granules with probability measures to generate new probability measures 
within the same probability space. Additionally, we present a degenerated method that merges 
basic uncertain information granules with unit intervals to create new subintervals. We introduce 
four distinct uncertainty cognition merging methods and thoroughly compare and analyze their 
respective properties, limitations, and advantages. To demonstrate the practical application 
potential of our proposals, we provide numerical examples alongside further mathematical results.

1. Introduction

The introductory section initially discusses a comprehensive framework for uncertain evaluation, encompassing both primary 
uncertain information and supplementary reference information. Subsequently, we provide a concise overview of the main objective 
of this study: namely, merging basic uncertain information and probability information into a new probability distribution.

1.1. Two sources of evaluation information in uncertain decision making

In management and decision-making, a large amount of numerical evaluation or prediction is often required [1–5], which in-
creasingly involves more uncertainty. As a result, the core decision-making group in companies or organizations often cannot provide 
definitive evaluation or prediction [6]. Therefore, they frequently seek external investigation and consulting agencies to obtain refer-
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ence information that can help them adjust their initial evaluation or prediction values. These external agencies often have access to 
statistical and probabilistic information based on history or big data, which generally gives them certain advantages such as appearing 
more objective and closer to reality and the market. However, there are also obvious drawbacks: these data are more general and may 
not be well-suited for specific decision-making scenarios; moreover, these data tend to be delayed, increasing the error rate of deci-
sions. On the other hand, the core decision-making group within an organization is usually composed of internal experts or specially 
invited professionals who provide evaluations and predictions that are more specialized and relevant to the company’s products. The 
downside of expert evaluations is that they tend to be subjective and with a significant amount of uncertainty. In summary, both 
internal evaluations and external consultations are important means of obtaining evaluation or prediction data.

If internal experts assess that there is no uncertainty, decision-makers often tend to forgo seeking external consulting firms, even 
though these assessments may have some subjectivity, due to the high consultancy fees charged by such firms. However, in many cases, 
constrained by factors such as individual knowledge, experience, abilities, time and dedication of each expert, expert assessments 
carry significant uncertainties. This necessitates the reliance on statistical or probabilistic information provided by external consulting 
firms in order to make more informed assessments and decisions. The integration and merging of this external consulting information 
with the initial uncertain evaluations made by internal experts to obtain a more reasonable assessment result is the issue that will be 
discussed in this article.

1.2. Using basic uncertain information with additional reference information

The uncertain information addressed in this study pertains to the recently proposed uncertain data paradigm, known as the Basic 
Uncertain Information (BUI) [7,8]. Several extended forms of BUI have soon been developed [9,10] and BUI is also applied to soft 
set environment [11] and aggregation theory [12,13]. BUI can be readily applied in practical decision-making and evaluation within 
companies, or after minor adaptation or standardization. Recall that a BUI granule is with a pair (𝑥, 𝑐) ∈ [0, 1]2 in which x is the 
evaluation value while c is the certainty degree (or certainty) of x; 1 − 𝑐 is called the uncertainty degree (or uncertainty) of x. The 
restriction of the discourse of 𝑥 to the compact unit interval [0, 1] primarily stems from its practical advantages over non-compact sets 
and its relevance to fuzzy sets theory. For instance, when predicting the future market share of a product, it is customary to express 
it as a percentage value such as 100𝑥% with a certain level of confidence (certainty) denoted by 𝑐. Researchers also developed some 
applied forms for BUI in both theory and application, e.g., the basic uncertain linguistic information (BULI) [13–19]. BUI has been 
further studied and demonstrates significant application potential across various fields [20–22].

Several recent studies have investigated methodologies for aggregating and merging BUI inputs. Jin et al. [23] employed some 
special techniques to discuss the Choquet integral with BUI inputs. Jin et al. [24] proposed a heuristic approach to define a type of 
OWA operators with BUI inputs. Additionally, Jin et al. [25] introduced generalized Sugeno integrals of BUI inputs using distinct 
techniques and aggregation frames. Furthermore, Jin et al. [26] presented three distinct aggregation paradigms for BUI inputs.

A simple aggregation mechanism for BUI inputs is to firstly transform all BUI granules into some intervals and then take some 
representative real values for those intervals and finally take aggregation operators for the obtained real values, as discussed in 
the known literature [27,28]. A direct advantage of such mechanism lies in that it can apply all existing aggregation operators 
rather then the mere weighted averaging operators. Nevertheless, such BUI-interval transformation method cannot be well applied 
to the situation where additional probability considerations are introduced. For instance, in corporate decision-making processes, 
traditional aggregation theory can easily combine different opinions from managers or experts if they provide evaluations with full 
certainty (i.e., complete confidence). However, since opinions often involve uncertainties (allowing the use of BUI inputs), decision-
makers frequently seek consultation from external agencies that analyze historical data or conduct thorough market surveys to 
provide statistical or probabilistic information. Probability information and related merging techniques are particularly important 
in numerous applications and theoretical studies [29–32]. Aggregation theory for both real and uncertain information is important 
[33–35] and some probability related theory has also been applied in aggregation theory [36].

Therefore, it is imperative to propose and analyze suitable approaches for aggregating that can effectively operate in a probabilistic 
environment while adhering to general human cognition principles. Additionally, it is intriguing to observe that if the given proba-
bility follows a uniform distribution, these approaches can seamlessly degenerate into corresponding aggregation methods without 
considering probability. Therefore, we will propose three BUI-probability merging methods and analyze their related mathematical 
properties.

The contribution of this work lies in the following aspects: We propose an uncertain evaluation framework that incorporates two 
sources of information, e.g., inner BUI and outer probability information. We present some approaches for generating and merging 
probability distributions within the uncertain evaluation framework with BUI and probability. The present study makes contributions 
to the fields of uncertain information fusion theory and uncertain decision making.

The remainder of this work is organized as follows. Section 2 presents some preliminary knowledge. In Section 3, we introduce the 
concept of uncertainty cognition merging and discuss its application in BUI environment without incorporating probability. Section 4
explores two methods for uncertainty cognition merging considering the influence of probabilistic environments. Section 5 proposes 
and analyzes the substitution uncertainty cognition merging method. Section 6 briefly discusses the proposed methods in uncertain 
and probabilistic decision-making environments. In Section 7, we provide further discussion and comparison of the proposed methods 
2

for uncertainty cognition merging. Finally, in Section 8, we conclude and remark on this work.
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2. Preparations

Denote by ℕ the set of all natural numbers, ℝ the set of all real numbers, and define [𝑛] = {1, 2, ..., 𝑛}. Sequence form 𝐚 =
(𝑎𝑖)𝑛𝑖=1 ∈ [0, 1]𝑛 denotes a vector of n elements which take values in unit interval. The characteristic function of A is denoted by 
𝜒𝐴 ∶ [0, 1] → {0, 1} such that 𝜒𝐴(𝑦) = 1 if and only if 𝑦 ∈𝐴.

Basic uncertain information (BUI) is a recently proposed uncertain data type. A BUI granule is with a pair (𝑥, 𝑐) ∈ [0, 1]2 in which 
x is the evaluation value while c is the certainty degree (or certainty) of x; 1 − 𝑐 is called the uncertainty degree (or uncertainty) of 
x. The set of all BUI granules is denoted by . A BUI vector (or a vector of BUI granules) is written in the form (𝐱, 𝐜) =

(
(𝑥𝑖, 𝑐𝑖)

)𝑛
𝑖=1

where 𝐱 = (𝑥𝑖)𝑛𝑖=1 ∈ [0, 1]𝑛 and 𝐜 = (𝑐𝑖)𝑛𝑖=1 ∈ [0, 1]𝑛 are the vector of evaluation values (evaluation vector) and the vector of certainty 
degrees (certainty vector), respectively.

The interval values (closed intervals) considered in this work are closed subintervals [𝑎, 𝑏] ⊆ [0, 1], and the set of all such interval 
values is denoted by . We may also consider some simple operations for closed interval. For any 𝑎1 , 𝑎2, 𝑏1, 𝑏2, 𝑘 ∈ [0, +∞) we consider 
the operation 𝑘[𝑎1, 𝑏1] = [𝑘𝑎1, 𝑘𝑏1] = [𝑎1, 𝑏1]𝑘 and the operation [𝑎1, 𝑏1] + [𝑎2, 𝑏2] = [𝑎1 + 𝑎2, 𝑏1 + 𝑏2]; sometimes we may restrict the 
operation results to [0,1] for closeness. For the degenerated intervals, we write [𝑎, 𝑎] = 𝑎 for all 𝑎 ∈ [0, 1].

Throughout this work, the concerned probability spaces (ℝ, , 𝑃 ) are equipped with 𝜎-algebra  of the set of all Borel measurable 
subsets of ℝ, and P are probability measures that are concentrated on [0,1] (i.e., 𝑃 ([0, 1]) = 1). The uniform distribution 𝑈[𝑎,𝑏] ∶ →
[0, 1] on an interval [𝑎, 𝑏] is defined such that 𝑈[𝑎,𝑏](𝐴) =

𝜆(𝐴
⋂
[𝑎,𝑏])

𝜆([𝑎,𝑏]) where 𝜆 is the Lebesgue measure on ℝ. For a degenerated interval 
[𝑎, 𝑎] = {𝑎}, note that 𝑈[𝑎,𝑎] = 𝑈{𝑎} = 𝛿𝑎, where 𝛿𝜔 is the Dirac measure for a point 𝜔 ∈ [0, 1], i.e., 𝛿𝜔(𝐴) = 1 if 𝜔 ∈ 𝐴 and 𝛿𝜔(𝐴) = 0
otherwise.

Denote by M1 the set of all probability measures on the measurable space (ℝ, ), and denote by C1 (C1 ⊂ M1) the set of all 
continuous probability measures on (ℝ, ); that is, for any 𝑃 ∈ 𝐶1 and any singleton {𝑥}, 𝑃 ({𝑥}) = 0 (note also that 𝑃 need not 
be absolutely continuous). Denote by F1 the set of all non-decreasing functions 𝐹 ∶ℝ → [0, 1] such that 𝐹 (−∞) = 0 and 𝐹 (+∞) = 1; 
denote by CF1(⊂ F1) the set of all continuous non-decreasing functions 𝐹 ∶ ℝ → [0, 1] such that 𝐹 (0−) = 0 and 𝐹 (1) = 1. For any 
probability measure 𝑃 ∈M1, recall its distribution function 𝐹𝑃 ∈ F1 satisfying 𝐹𝑃 (𝑡) = 𝑃 ((−∞, 𝑡]). Recall that not all of the functions 
in F1 can be cumulative distribution functions, and a function in F1 can derive a probability measure only when it is continuous from 
the right.

3. Uncertainty cognition merging methods for BUI without considering probability environments

In this section, we introduce the concept of uncertainty cognition merging (UCM), which has significant implications in probability 
environments and can be applied to all types of aggregation operators with obtained anticipated or expected values. Broadly speaking, 
given an uncertain environment (interval or probability information), we can merge any BUI granule into the uncertain environment 
and generate new resultant uncertain information that remains within the interval or probability framework. Conversely, when there 
is no uncertainty involved in a BUI granule (i.e., c = 1), then the entire merging process degenerates into the evaluation value x of 
the BUI granule; thus resulting in either a degenerated interval [𝑥, 𝑥] = {𝑥} or Dirac distribution 𝛿𝑥.

The philosophic principle of UCM is relatively direct but which may have more derivations and embodiments: if an evaluation 
value x is obtained or evaluated with uncertainty but it is sure that the evaluation value is contained in a larger set S (called uncertain 
environment, which for example may be an interval or a probability space (𝑆,  , 𝑃 )), then we may merge this evaluation value (with 
uncertainty) into the uncertain environment S and obtain a resultant subset V of S or obtain a resultant new probability space (𝑆,  , 𝑚)
as the uncertainty cognition merging result. Note that in the later definitions we will still apply the probability spaces (ℝ, , 𝑃 ) (or 
(ℝ, , 𝑚)) but with 𝑆 = [0, 1] ⊂ℝ,  being the  restricted to [0,1] and P (or m) concentrated on [0,1].

For example, since the evaluation value x in a BUI granule (𝑥, 𝑐) is known to be necessarily within the defining space [0,1] (an 
uncertain environment S), then if x is obtained or evaluated with full uncertainty (i.e., 𝑐 = 0), it is natural that we can regard [0,1] 
as its UCM result; if x is not with full uncertainty (i.e., 𝑐 > 0), then we can in general regard a subset 𝑉 ⊆ [0, 1] as its UCM result 
(e.g., 𝐼𝑥,1−𝑐 = 𝑐[𝑥, 𝑥] + (1 − 𝑐)[0, 1] = [𝑐𝑥, 𝑐𝑥 + 1 − 𝑐] whose length is 1 − 𝑐). Furthermore, with considering probability environment, 
we can flexibly obtain some probability spaces (ℝ, , 𝑚) as UCM results by some reasonable cognitions and techniques, as later 
analyzed. Subsequently, with such obtained subset V or probability spaces (ℝ, , 𝑚), we can select, if necessary, some representative 
or anticipated value for V or take the expected value of the identity random variable 𝑋𝑖𝑑 (i.e., 𝑋𝑖𝑑 (𝑡) = 𝑡) with (ℝ, , 𝑚) as some 
comprehensive evaluation results that consider both BUI and probability environment in a merged manner.

Without considering additional probability information, for any BUI granule we may take the uncertain environment [0,1] and 
have the following UCM method.

UCM method 1 (without probability) Given a BUI granule (𝑥, 𝑐) ∈, we find a subinterval

𝐼𝑥,1−𝑐 = 𝑐[𝑥,𝑥] + (1 − 𝑐)[0,1] = [𝑐𝑥, 𝑐𝑥+ 1 − 𝑐] (1)

of [0,1] as the UCM result according to both x and c of a BUI granule.

In the UCM method, our objective is to obtain a merged subinterval (or probability environment) as a whole in order to derive 
3

representative values from it later on. Therefore, if a BUI has smaller certainty c (larger uncertainty), it is natural for us to consider a 
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wider subinterval (or broader domain for the probability environment), and thus we use 1 − 𝑐 (actually we can also further consider 
a monotonic mapping of 1 − 𝑐 but for simplicity in this work we only consider this most representative case).

With the obtained interval 𝐼𝑥,1−𝑐 in decision making problems we can often take the middle point of it as the representative or 
anticipated value for x. Observe that the middle point of 𝐼𝑥,1−𝑐 = [𝑎, 𝑏] is 𝑀𝐼𝐷(𝐼𝑥,1−𝑐 ) = (𝑎 +𝑏)∕2 = (𝑐𝑥 +𝑐𝑥 +1 −𝑐)∕2 = 𝑐𝑥 +0.5(1 −𝑐). 
Hence, we have the following BUI aggregation method for BUI vectors which is applicable to all known aggregation operators [28, 29] 
and is based on the principle of UCM. For any aggregation operator 𝐹 ∶ [0, 1]𝑛 → [0, 1], we define a BUI aggregation 𝐻 ∶𝑛 → [0, 1]
such that 𝐻((𝐱, 𝐜)) = 𝐹 (𝐳) where 𝐳 = (𝑧𝑖)𝑛𝑖=1 ∈ [0, 1]𝑛 satisfying

𝑧𝑖 = 𝑐𝑖𝑥𝑖 + 0.5(1 − 𝑐𝑖) (2)

That is, 𝑧𝑖 is the middle point of 𝐼𝑥𝑖,1−𝑐𝑖 for each 𝑖 ∈ [𝑛].
When there is no uncertainty involved to 𝑥𝑖 (i.e., 𝑐𝑖 = 1), then 𝑧𝑖 = 𝑥𝑖. Moreover, it is easy to note that the map 𝑥 ↦𝑀𝐼𝐷(𝐼𝑥,1−𝑐)

is non-decreasing, and the two maps 𝑥 ↦𝑀𝐼𝐷(𝐼𝑥,1−𝑐) and 𝑐 ↦𝑀𝐼𝐷(𝐼𝑥,1−𝑐) are continuous.

Example 1. For BUI granules (0, 0.7), (0.2, 0.5), (0.5, 0.2), (0.8, 1) ∈, we have

𝐼0,0.3 = [0,0.3] and 𝑀𝐼𝐷(𝐼0,0.3) = 0.15; 𝐼0.2,0.5 = [0.1,0.6] and 𝑀𝐼𝐷(𝐼0.2,0.5) = 0.35;

𝐼0.5,0.8 = [0.1,0.9] and 𝑀𝐼𝐷(𝐼0.5,0.8) = 0.5; 𝐼0.8,0 = [0.8,0.8] and 𝑀𝐼𝐷(𝐼0.8,0) = 0.8.

4. Some UCM methods for BUI in probability environments

This section discusses two UCM methods considering the influence of probability environments.

4.1. Two UCM methods considering probability information

This segment proposes two UCM methods to generate new merged probability measure with the influence of given additional 
probability measure.

The two methods are both grounded in the cognitive principle: greater uncertainty inherent in the initial evaluation (i.e., BUI 
granule with smaller certainty degree c) prompts decision makers to seek more objective information (i.e., additional probability 
information referenced from external investigative institutions). The subsequent UCM method employs a direct merging style through 
a simple convex combination.

UCM method 2 With the additional probability information (ℝ, , 𝑃 ) (P concentrated on [0,1]), for any BUI granule 
(𝑥, 𝑐) ∈, we form a new probability measure 𝑚 (defined on (ℝ, ) and concentrated on [0,1]) as the UCM result:

𝑚 = 𝑐𝛿𝑥 + (1 − 𝑐)𝑃 (3)

Remark. The obtained new probability measure is formed by two measures and related to x, c, and P. Precisely we should write it 
as the parameterized form 𝑚(𝑥,𝑐,𝑃 ). For convenience, sometimes when there is no confusion arises we apply the concise form without 
parameters.

Example 2. Let P be defined such that 𝑃 = 0.5𝑃1 + 0.5𝛿0.5 where 𝑃1 has density function 𝑝(𝑡) = 2𝑡. For BUI granules (0, 0.7), (0.2, 0.5),
(0.5, 0.2), (0.8, 1) ∈, we have

𝑚(0.0.7,𝑃 ) = 0.15𝑃1 + 0.15𝛿0.5 + 0.7𝛿0;𝑚(0.2.0.5,𝑃 ) = 0.25𝑃1 + 0.25𝛿0.5 + 0.5𝛿0.2;

𝑚(0.5,0.2,𝑃 ) = 0.4𝑃1 + 0.6𝛿0.5;𝑚(0.8,1,𝑃 ) = 𝛿0.8.

In comparison to the first combination method, the next alternative method is based on the following cognition: we actually only 
wish to consider “a part” of P on the neighborhood 𝐼𝑥,1−𝑐 of x; it is plausible that the mass of the P on 𝐼𝑥,1−𝑐 has more influence on 
the evaluation value x than those mass that is far from it. Moreover, normalization is often needed since the “part” of P may only be a 
positive measure which might not be a probability measure. Hence, conditional probability will be applied, and uniform distributions 
4

will also be used when conditional probability cannot be defined.
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UCM method 3 With the additional probability information (ℝ, , 𝑃 ), for any BUI granule (𝑥, 𝑐) ∈ , we form a new 
probability measure 𝑚 as the UCM result such that

𝑚(𝐴) =
𝑃 (𝐴

⋂
𝐼𝑥,1−𝑐)

𝑃 (𝐼𝑥,1−𝑐)
(𝐴 ∈)) when 𝑃 (𝐼𝑥,1−𝑐) > 0; 𝑚 =𝑈𝐼𝑥,1−𝑐

when 𝑃 (𝐼𝑥,1−𝑐) = 0; (4)

where 𝑈𝐼𝑥,1−𝑐
is the uniform distribution on 𝐼𝑥,1−𝑐 .

Remark. When 𝑃 (𝐼𝑥,1−𝑐 ) = 0 and 𝑐 = 1, note that 𝑚 = 𝛿𝑥.

Remark. For the definition “𝑚 =𝑈𝐼𝑥,1−𝑐
, when 𝑃 (𝐼𝑥,1−𝑐) = 0 and 𝑐 < 1”, we actually applied some cognitive “substitution”; that is, if 

𝑃 (𝐼𝑥,1−𝑐) = 0, then there is no “mass” of P concentrated on 𝐼𝑥,1−𝑐 and hence we may substitute it with the uniform distribution 𝑈𝐼𝑥,1−𝑐
. 

This substitution is “full” and “immediate”, and does not depend on the certainty degree c and the length of the interval 𝐼𝑥,1−𝑐 . In 
the next section we will discuss another substitution method that depends on certainty degree c and the length of the interval 𝐼𝑥,1−𝑐 .

Remark. Note that when 𝑃 (𝐼𝑥,1−𝑐 ) > 0, 𝑚(𝐴) = 𝑃 (𝐴
⋂

𝐼𝑥,1−𝑐 )
𝑃 (𝐼𝑥,1−𝑐 )

= 𝑃 (𝐴|𝐼𝑥,1−𝑐) is the conditional probability of A given 𝐼𝑥,1−𝑐 and hence 
we may also alternatively have a concise form 𝑚 = 𝑃 (⋅|𝐼𝑥,1−𝑐).

With the merged probability measure m, for a BUI granule (𝑥, 𝑐) we can take the expected value of the identity map 𝑋𝑖𝑑 ∶ℝ →ℝ
(𝑋𝑖𝑑 (𝑡) = 𝑡) w.r.t. (ℝ, , 𝑚) as a more reasonable evaluation result than the original evaluation value x. That is, we can take 𝐸(𝑋𝑖𝑑 ) =∫ 𝑋𝑖𝑑𝑑𝑚 = ∫[0,1]𝑋𝑖𝑑𝑑𝑚. For a BUI vector (𝐱, 𝐜) = ((𝑥𝑖, 𝑐𝑖))𝑛𝑖=1 under aggregation, we may respectively obtain 𝑚(𝑥𝑖,𝑐𝑖,𝑃 ) and calculate 
𝐸𝑖 = ∫[0,1]𝑋𝑖𝑑𝑑𝑚

(𝑥𝑖,𝑐𝑖,𝑃 ), and then we can apply any existing aggregation operator to aggregate the obtained vector (𝐸𝑖)𝑛𝑖=1.

In view of the related expected value, for both UCM method 2 and UCM method 3 the map 𝑥 ↦ ∫[0,1]𝑋𝑖𝑑𝑑𝑚
(𝑥,𝑐,𝑃 ) can be regarded 

as a generalization of the map 𝑥 ↦ 𝑀𝐼𝐷(𝐼𝑥,1−𝑐). That is, the map 𝑥 ↦ 𝑐𝑥 + 0.5(1 − 𝑐) can be regarded as the special case when 
𝑃 =𝑈[0,1] being the uniform distribution on [0,1].

Proposition 1. ∫[0,1]𝑋𝑖𝑑𝑑𝑚
(𝑥,𝑐,𝑈[0,1]) = 𝑐𝑥 + 0.5(1 − 𝑐) holds for both UCM method 2 and UCM method 3.

Proof. (i) (with UCM method 2) Observe that for all 𝑥, 𝑐 ∈ [0, 1], 𝑚(𝑥,𝑐,𝑈[0,1]) = 𝑐𝛿𝑥 + (1 − 𝑐)𝑈[0,1],

∫
[0,1]

𝑋𝑖𝑑𝑑𝑚
(𝑥,𝑐,𝑈[0,1]) = 𝑐 ∫

[0,1]

𝑋𝑖𝑑𝑑𝛿𝑥 + (1 − 𝑐) ∫
[0,1]

𝑋𝑖𝑑𝑑𝑈[0,1] = 𝑐𝑥+ 0.5(1 − 𝑐).

(ii) (with UCM method 3) Note that when 𝑐 = 1, then 𝑃 (𝐼𝑥,1−𝑐) = 0, and that when 𝑐 < 1, then 𝑃 (𝐼𝑥,1−𝑐) > 0. Therefore, when 
𝑐 < 1, we have

∫
[0,1]

𝑋𝑖𝑑𝑑𝑚
(𝑥,𝑐,𝑈[0,1]) = ∫

[0,1]

𝑋𝑖𝑑𝑑𝑈𝐼𝑥,1−𝑐
=𝐸(𝑋𝑖𝑑 |𝐼𝑥,1−𝑐) =𝑀𝐼𝐷(𝐼𝑥,1−𝑐) = 𝑐𝑥+ 0.5(1 − 𝑐)

(where 𝐸(𝑋𝑖𝑑 |𝐼𝑥,1−𝑐) is the conditional expectation of 𝑋𝑖𝑑 given 𝐼𝑥,1−𝑐 ).
When 𝑐 = 1, we have

∫
[0,1]

𝑋𝑖𝑑𝑑𝑚
(𝑥,𝑐,𝑈[0,1]) = ∫

[0,1]

𝑋𝑖𝑑𝑑𝛿𝑥 = 𝑥 =𝑀𝐼𝐷(𝐼𝑥,0).

Example 3. Let P be defined such that 𝑃 = 0.5𝑃1 + 0.5𝛿0.5 where 𝑃1 has density function 𝑝(𝑡) = 2𝑡. For BUI granules (0, 0.7), (0.2, 0.5),
(0.5, 0.2), (0.8, 1) ∈, we have

𝑚(0.0.7,𝑃 ) being with density 𝑞(𝑡) = 𝑡

0.045
⋅ 𝜒[0,0.3];

𝑚(0.2.0.5,𝑃 ) = 1
0.675

0.175𝑄+ 1
0.675

0.5𝛿0.5 =
7
27

𝑄+ 20
27

𝛿0.5 where Q has density 𝑞(𝑡) = 𝑡

0.175
⋅ 𝜒[0.1,0.6];

𝑚(0.5,0.2,𝑃 ) = 1
0.9

0.4𝑄+ 1
0.9

0.5𝛿0.5 =
4
9
𝑄+ 5

9
𝛿0.5 where Q has density 𝑞(𝑡) = 𝑡

0.4
⋅ 𝜒[0.1,0.9];
5

𝑚(0.8,0.1,𝑃 ) = 𝛿0.8.
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4.2. Some properties and analyses for the two UCM methods

We mainly discuss continuities and monotonicities related to the two UCM methods. For each 𝑃 ∈ M1, recall its distribution 
function 𝐹𝑃 ∈ F1 such that 𝐹𝑃 (𝑡) = 𝑃 ((−∞, 𝑡]). We use the Levy’s metric as the distance 𝑑 ∶ M1

2 → [0, +∞) for the discussion of 
continuity. Recall that for any two probability measures 𝜇, 𝜈 ∈M1,

𝑑(𝜇, 𝜈) = inf{𝜀 > 0 ∶ 𝐹𝜇(𝑡) ≤ 𝐹𝜈(𝑡+ 𝜀) + 𝜀 and 𝐹𝜈(𝑡) ≤ 𝐹𝜇(𝑡+ 𝜀) + 𝜀 for all 𝑡 ∈ℝ}.

Recall that a sequence (𝑃𝑟)∞𝑟=1 in M1 is said to converges weakly to 𝑃 ∈M1 (i.e., w−lim𝑟→∞ 𝑃𝑟 = 𝑃 if ∫ 𝑓𝑑𝑃 = lim𝑟→∞ ∫ 𝑓𝑑𝑃𝑟 for 
all bounded continuous functions 𝑓 ∶ ℝ → [0, +∞). Then, we know that if w−lim𝑟→∞ 𝑃𝑟 = 𝑃 then (i) lim𝑟→∞ 𝑑(𝑃𝑟, 𝑃 ) = 0 and (ii) 
𝐹𝑃 (𝑡) = lim𝑟→∞ 𝐹𝑃𝑟

(𝑡) whenever 𝐹𝑃 is continuous.

Proposition 2. Let 𝑚(𝑥,𝑐,𝑃 ) be the probability measure obtained in UCM method 2 and Eq. (3), then

(i) the map 𝑥 ↦𝑚(𝑥,𝑐,𝑃 ) is continuous on [0,1];

(ii) the map 𝑐 ↦𝑚(𝑥,𝑐,𝑃 ) is continuous on [0,1];

(iii) the map 𝑃 ↦𝑚(𝑥,𝑐,𝑃 ) is continuous on M1.

Proof. (i) This holds simply because 𝑥 ↦ 𝛿𝑥 is continuous on [0,1].
(ii) For each 𝑐 ∈ [0, 1] and any sequence (𝑐𝑟)∞𝑟=1 with lim

𝑟→∞
𝑐𝑟 = 𝑐, we have for all 𝑡 ∈ℝ

lim
𝑟→∞

𝐹𝑚(𝑥,𝑐𝑟,𝑃 ) (𝑡) = lim
𝑟→∞

𝐹𝑐𝑟𝛿𝑥+(1−𝑐𝑟)𝑃 (𝑡) = lim
𝑟→∞

(
𝑐𝑟𝐹𝛿𝑥

(𝑡) + 𝐹𝑃 (𝑡) − 𝑐𝑟𝐹𝑃 (𝑡)
)
=
(
𝐹𝛿𝑥

(𝑡) − 𝐹𝑃 (𝑡)
)
lim
𝑟→∞

𝑐𝑟 + 𝐹𝑃 (𝑡)

=
(
𝐹𝛿𝑥

(𝑡) − 𝐹𝑃 (𝑡)
)
𝑐 + 𝐹𝑃 (𝑡) = 𝑐𝐹𝛿𝑥

(𝑡) + 𝐹𝑃 (𝑡) − 𝑐𝐹𝑃 (𝑡) = 𝐹𝑐𝛿𝑥+(1−𝑐)𝑃 (𝑡) = 𝐹𝑚(𝑥,𝑐,𝑃 ) (𝑡)

and hence lim𝑟→∞ 𝑑(𝑚(𝑥,𝑐𝑟,𝑃 ), 𝑚(𝑥,𝑐,𝑃 )) = 0.
(iii) For each 𝑃 ∈M1 and any sequence (𝑃𝑟)∞𝑟=1 with w−lim𝑟→∞ 𝑃𝑟 = 𝑃 , we have lim𝑟→∞ 𝐹𝑃𝑟

(𝑡) = 𝐹𝑃 (𝑡) whenever 𝐹𝑃 is continuous 
at t. Since 𝐹𝑃 is continuous at t if and only if 𝐹𝑚(𝑥,𝑐,𝑃 ) is continuous at t, then

lim
𝑟→∞

𝐹𝑚(𝑥,𝑐,𝑃𝑟) (𝑡) = lim
𝑟→∞

𝐹𝑐𝛿𝑥+(1−𝑐)𝑃𝑟 (𝑡) = 𝑐𝐹𝛿𝑥
(𝑡) + (1 − 𝑐) lim

𝑟→∞
𝐹𝑃𝑟

(𝑡)

= 𝑐𝐹𝛿𝑥
(𝑡) + (1 − 𝑐)𝐹𝑃 (𝑡) = 𝐹𝑐𝛿𝑥+(1−𝑐)𝑃 (𝑡) = 𝐹𝑚(𝑥,𝑐,𝑃 ) (𝑡)

whenever 𝐹𝑚(𝑥,𝑐,𝑃 ) is continuous at t. Hence, lim𝑟→∞ 𝑑(𝑚(𝑥,𝑐𝑟,𝑃 ), 𝑚(𝑥,𝑐,𝑃 )) = 0.

Remark. Viewing 𝑚(𝑥,𝑐,𝑃 ) as parameterized with x, c and P, the weak-convergence obtained in the above proposition immediately 
implies that the expectation related maps 𝑥 ↦ ∫ 𝑋𝑖𝑑𝑑𝑚

(𝑥,𝑐,𝑃 ), 𝑐 ↦ ∫ 𝑋𝑖𝑑𝑑𝑚
(𝑥,𝑐,𝑃 ) and 𝑃 ↦ ∫ 𝑋𝑖𝑑𝑑𝑚

(𝑥,𝑐,𝑃 ) are all continuous.

Proposition 3. For any two BUI granules (𝑥1, 𝑐), (𝑥2, 𝑐) ∈  with 𝑥1 < 𝑥2, let 𝑚(𝑥1 ,𝑐,𝑃 ) and 𝑚(𝑥2,𝑐,𝑃 ) be the probability measures obtained 
using UCM method 2 and Eq. (3), respectively. Then, 𝐸1 = ∫ 𝑋𝑖𝑑𝑑𝑚

(𝑥1 ,𝑐,𝑃 ) ≤ ∫ 𝑋𝑖𝑑𝑑𝑚
(𝑥2 ,𝑐,𝑃 ) =𝐸2.

Proof.

𝐸1 = ∫ 𝑋𝑖𝑑𝑑𝑚
(𝑥1 ,𝑐,𝑃 ) = ∫ 𝑋𝑖𝑑𝑑

(
𝑐𝛿𝑥1

+ (1 − 𝑐)𝑃
)
= 𝑐 ∫ 𝑋𝑖𝑑𝑑𝛿𝑥1

+ (1 − 𝑐)∫ 𝑋𝑖𝑑𝑑𝑃

= 𝑐𝑥1 + (1 − 𝑐)∫ 𝑋𝑖𝑑𝑑𝑃 ≤ 𝑐𝑥2 + (1 − 𝑐)∫ 𝑋𝑖𝑑𝑑𝑃 = ∫ 𝑋𝑖𝑑𝑑𝑚
(𝑥2 ,𝑐,𝑃 ) =𝐸2.

As we showed UCM method 2 has some properties, the drawback of it lies in that the probability distribution P itself plays little role 
in the measure merging process while it is its related expected value that matters. Indeed, for any two different probability distributions 
𝑃1, 𝑃2 ∈ M1, if ∫ 𝑋𝑖𝑑𝑑𝑃1 = ∫ 𝑋𝑖𝑑𝑑𝑃2, then we have ∫ 𝑋𝑖𝑑𝑑𝑚

(𝑥,𝑐,𝑃1) = ∫ 𝑋𝑖𝑑𝑑𝑚
(𝑥,𝑐,𝑃2) for any BUI granule (𝑥, 𝑐), irrespective of the 

detailed distributions of 𝑃1 and 𝑃2; it will be easy to observe that this is not the case of the UCM method 3.
Although some continuity properties hold for UCM method 2, they do not hold for UCM method 3. Let 𝑚(𝑥,𝑐,𝑃 ) be the probability 

measure obtained in UCM method 3 and Eq. (4), and we consider the following examples to show discontinuities: (i) When 𝑃 =𝑈[0.5,1], 
𝑥 ↦𝑚(𝑥,0.5,𝑃 ) is not continuous at 0 and 𝑐 ↦𝑚(0,𝑐,𝑃 ) is not continuous at 0.5. (ii) When 𝑥 = 0 and 𝑐 = 0.5, 𝑃 ↦𝑚(𝑥,𝑐,𝑃 ) is not continuous 
at 𝑈[0.5,1].

We can prove that the desired monotonicity also holds for UCM method 3.

Proposition 4. For any two BUI granules (𝑥1, 𝑐), (𝑥2, 𝑐) ∈  with 𝑥1 < 𝑥2, let 𝑚(𝑥1 ,𝑐,𝑃 ) and 𝑚(𝑥2,𝑐,𝑃 ) be the probability measures obtained 
using UCM method 3 and Eq. (4), respectively. Then, for any 𝑃 ∈M1, 𝐸1 = ∫[0,1]𝑋𝑖𝑑𝑑𝑚

(𝑥1 ,𝑐,𝑃 ) ≤ ∫[0,1]𝑋𝑖𝑑𝑑𝑚
(𝑥2 ,𝑐,𝑃 ) =𝐸2.
6

Proof. For any 𝑐 ∈ [0, 1], note that sup𝐼𝑥1 ,1−𝑐 ≤ sup𝐼𝑥2 ,1−𝑐 and inf 𝐼𝑥1 ,1−𝑐 ≤ inf 𝐼𝑥2 ,1−𝑐 .



Fuzzy Sets and Systems 498 (2025) 109153L. Jin, Y. Yang, Z.-S. Chen et al.

When 𝑐 = 1, 𝐸1 = ∫[0,1]𝑋𝑖𝑑𝑑𝛿𝑥1
= 𝑥1 < 𝑥2 = ∫[0,1]𝑋𝑖𝑑𝑑𝛿2 =𝐸2.

For any 𝑐 < 1, note that 𝜆(𝐼𝑥1 ,1−𝑐) = 𝜆(𝐼𝑥2 ,1−𝑐) > 0. If 𝐼𝑥1 ,1−𝑐
⋂

𝐼𝑥2 ,1−𝑐 = ∅, then we immediately know 𝐹
𝑚(𝑥1 ,𝑐,𝑃 ) ≥ 𝐹

𝑚(𝑥2 ,𝑐,𝑃 ) since 
sup𝐼𝑥1 ,1−𝑐 ≤ inf 𝐼𝑥2 ,1−𝑐 . If 𝐼𝑥1 ,1−𝑐

⋂
𝐼𝑥2 ,1−𝑐 = 𝐵 ≠ ∅ (which is a closed interval), for convenience we take the notations 𝐼𝑥1 ,1−𝑐∖𝐼𝑥2 ,1−𝑐 =

𝐴 and 𝐼𝑥2 ,1−𝑐∖𝐼𝑥1 ,1−𝑐 = 𝐶 . Then, we discuss the following five situations, respectively.

(i) If 𝑃 (𝐼𝑥1 ,1−𝑐) = 𝑃 (𝐼𝑥2 ,1−𝑐) = 0, then 𝑚(𝑥1 ,𝑐,𝑃 ) =𝑈𝐼𝑥1 ,1−𝑐
and 𝑚(𝑥2 ,𝑐,𝑃 ) =𝑈𝐼𝑥2 ,1−𝑐

. Therefore, it is evident that 𝐹
𝑚(𝑥1 ,𝑐,𝑃 ) ≥ 𝐹

𝑚(𝑥2 ,𝑐,𝑃 ) .

(ii) If 𝑃 (𝐼𝑥1 ,1−𝑐) > 0 while 𝑃 (𝐼𝑥2 ,1−𝑐) = 0, then we immediately know that 𝑃 (𝐵) = 0 and then 𝑚(𝑥1 ,𝑐,𝑃 ) is concentrated on A while 
𝑚(𝑥2 ,𝑐,𝑃 ) is concentrated on 𝐵

⋃
𝐶 . Hence, 𝐹

𝑚(𝑥1 ,𝑐,𝑃 ) ≥ 𝐹
𝑚(𝑥2 ,𝑐,𝑃 ) .

(iii) If 𝑃 (𝐼𝑥2 ,1−𝑐) > 0 while 𝑃 (𝐼𝑥1 ,1−𝑐) = 0, then with a similar manner to (ii) we also have 𝐹
𝑚(𝑥1 ,𝑐,𝑃 ) ≥ 𝐹

𝑚(𝑥2 ,𝑐,𝑃 ) .

(iv) If 𝑃 (𝐼𝑥1 ,1−𝑐) ≥ 𝑃 (𝐼𝑥2 ,1−𝑐) > 0, then firstly we easily note that 𝐹
𝑚(𝑥1 ,𝑐,𝑃 ) (𝑡) ≥ 𝐹

𝑚(𝑥2 ,𝑐,𝑃 ) (𝑡) for all 𝑡 ∈ 𝐴 
⋃

𝐶 (since 𝑚(𝑥1 ,𝑐,𝑃 ) is con-

centrated on 𝐴 
⋃

𝐵 while 𝑚(𝑥2 ,𝑐,𝑃 ) is concentrated on 𝐵
⋃

𝐶). Secondly, for any 𝑡 ∈ 𝐵 note that 𝑚(𝑥1 ,𝑐,𝑃 )([inf 𝐼𝑥2 ,1−𝑐 , 𝑡]) =
𝑃 ([inf 𝐼𝑥2 ,1−𝑐 ,𝑡])

𝑃 (𝐼𝑥1 ,1−𝑐 )
, 𝑚(𝑥2 ,𝑐,𝑃 )([inf 𝐼𝑥2 ,1−𝑐 , 𝑡]) =

𝑃 ([inf 𝐼𝑥2 ,1−𝑐 ,𝑡])
𝑃 (𝐼𝑥2 ,1−𝑐 )

. Then, we also note that for any 𝑡 ∈ 𝐵,

𝑚(𝑥1 ,𝑐,𝑃 )([inf 𝐼𝑥2 ,1−𝑐 , 𝑡]) =
𝑃 (𝐼𝑥2 ,1−𝑐 )
𝑃 (𝐼𝑥1 ,1−𝑐 )

𝑚(𝑥2 ,𝑐,𝑃 )([inf 𝐼𝑥2 ,1−𝑐 , 𝑡]), which implies for any 𝑡 ∈ 𝐵,

𝑚(𝑥1 ,𝑐,𝑃 )(𝐵∖[inf 𝐼𝑥2 ,1−𝑐 , 𝑡]) =
𝑃 (𝐼𝑥2 ,1−𝑐 )
𝑃 (𝐼𝑥1 ,1−𝑐 )

𝑚(𝑥2 ,𝑐,𝑃 )(𝐵∖[inf 𝐼𝑥2 ,1−𝑐 , 𝑡]). Hence, for any 𝑡 ∈𝐵,

𝑚(𝑥1 ,𝑐,𝑃 )([inf 𝐼𝑥1 ,1−𝑐 , 𝑡]) = 1 −𝑚(𝑥1 ,𝑐,𝑃 )(𝐵∖[inf 𝐼𝑥2 ,1−𝑐 , 𝑡]) ≥ 1 −𝑚(𝑥2 ,𝑐,𝑃 )(𝐵∖[inf 𝐼𝑥2 ,1−𝑐 , 𝑡])

=𝑚(𝑥2 ,𝑐,𝑃 )([inf 𝐼𝑥2 ,1−𝑐 , 𝑡]
⋃

𝐶) ≥𝑚(𝑥2 ,𝑐,𝑃 )([inf 𝐼𝑥2 ,1−𝑐 , 𝑡]) =𝑚(𝑥2 ,𝑐,𝑃 )([inf 𝐼𝑥1 ,1−𝑐 , 𝑡]).

Consequently, for all 𝑡 ∈ 𝐵 we have 𝐹
𝑚(𝑥1 ,𝑐,𝑃 ) (𝑡) ≥ 𝐹

𝑚(𝑥2 ,𝑐,𝑃 ) (𝑡). In summary, 𝐹
𝑚(𝑥1 ,𝑐,𝑃 ) ≥ 𝐹

𝑚(𝑥2 ,𝑐,𝑃 ) .
(v) If 𝑃 (𝐼𝑥2 ,1−𝑐) ≥ 𝑃 (𝐼𝑥1 ,1−𝑐) > 0, then with a similar manner to (iv) we also have 𝐹

𝑚(𝑥1 ,𝑐,𝑃 ) ≥ 𝐹
𝑚(𝑥2 ,𝑐,𝑃 ) .

Finally, since 𝐹
𝑚(𝑥1 ,𝑐,𝑃 ) ≥ 𝐹

𝑚(𝑥2 ,𝑐,𝑃 ) , then from measure theory we know

𝐸1 = ∫
[0,1]

𝑋𝑖𝑑𝑑𝑚
(𝑥1 ,𝑐,𝑃 ) = 1 − 1

2 ∫
[0,1]

(𝐹
𝑚(𝑥1 ,𝑐,𝑃 ) (𝑡) + 𝐹

𝑚(𝑥1 ,𝑐,𝑃 ) (𝑡−))𝜆(𝑑𝑡) = 1 − ∫
[0,1]

𝐹
𝑚(𝑥1 ,𝑐,𝑃 )𝑑𝜆

≤ 1 − ∫
[0,1]

𝐹
𝑚(𝑥2 ,𝑐,𝑃 )𝑑𝜆 = ∫

[0,1]

𝑋𝑖𝑑𝑑𝑚
(𝑥2 ,𝑐,𝑃 ) =𝐸2,

where for any probability distribution function 𝐹 , 𝐹 (𝑡−) = lim
𝑦→𝑡−

𝐹 (𝑦) = sup{𝐹 (𝑦) ∶ 𝑦 ∈ (−∞, 𝑡)}.

5. The substitution UCM method

After analysis, it can be observed that UCM method 2 possesses some related continuity properties which other UCM methods may 
not have; however, the method is just with a simple combination, making it easier to overlook the distinctive “shapes” of different 
distributions when calculating expected values. On the other hand, UCM method 3 may lack some continuity properties but places 
more emphasis on considering the role played by the unique “shapes” of various distributions while obtaining merged measures.

Actually, we have applied a simple “substitution” in UCM method 3 with “𝑚 = 𝑈𝐼𝑥,1−𝑐
, when 𝑃 (𝐼𝑥,1−𝑐) = 0”. As discussed, this 

substitution is too direct and sensitive, which makes it lack continuity properties. That is, even if 𝑃 (𝐼𝑥,1−𝑐 ) = 𝜀 > 0 is very small but 
positive, the merged measure 𝑚(𝑥,𝑐,𝑃 ) will have the similar “shape” to P on 𝐼𝑥,1−𝑐 , i.e., 𝑚(𝑥,𝑐,𝑃 ) is a multiple of 𝑃 on 𝐼𝑥,1−𝑐 . Nevertheless, 
when value P vanishes at 𝐼𝑥,1−𝑐 (i.e., 𝑃 (𝐼𝑥,1−𝑐) = 0), the merged measure 𝑚(𝑥,𝑐,𝑃 ) abruptly becomes a uniform one 𝑈𝐼𝑥,1−𝑐

.
In consideration of the characteristics exhibited by the aforementioned two methods, this section proposes an alternative UCM 

method employing substitution that not only ensures some continuity properties but also takes into account the distinct roles played 
by different “shapes” within various distributions.

UCM method 4 With an additional probability information (ℝ, , 𝑃 ), for any BUI granule (𝑥, 𝑐) ∈ , we form a new 
probability measure 𝑚 as the UCM result such that

𝑚 = 𝑃 (⋅|𝐼𝑥,1−𝑐 ) when 𝑃 (𝐼𝑥,1−𝑐) ≥ 𝜆(𝐼𝑥,1−𝑐) > 0;

𝑚 =
𝑃 (𝐼𝑥,1−𝑐)
𝜆(𝐼𝑥,1−𝑐)

𝑃 (⋅|𝐼𝑥,1−𝑐 ) + 𝜆(𝐼𝑥,1−𝑐) − 𝑃 (𝐼𝑥,1−𝑐)
𝜆(𝐼𝑥,1−𝑐)

𝑈𝐼𝑥,1−𝑐
when 𝜆(𝐼𝑥,1−𝑐) > 𝑃 (𝐼𝑥,1−𝑐) > 0;

𝑚 =𝑈𝐼𝑥,1−𝑐
when 𝑃 (𝐼𝑥,1−𝑐) = 0 and 𝜆(𝐼𝑥,1−𝑐) > 0;

𝑚 = 𝛿𝑥 when 𝜆(𝐼𝑥,1−𝑐) = 0 and 𝑃 (𝐼𝑥,1−𝑐) ≥ 0. (5)
7
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Remark. One can check that the above four situations about values of 𝑃 (𝐼𝑥,1−𝑐 ) and 𝜆(𝐼𝑥,1−𝑐) together form the total of all possible 
situations; that is, given any 𝑃 (𝐼𝑥,1−𝑐 ), there is one and only one situation among the four situations for it to be related to 𝜆(𝐼𝑥,1−𝑐 ).

Remark. Recall the probability measure 𝑃 (⋅|𝐼𝑥,1−𝑐 ) ∶ → [0, 1] (𝑃 (𝐼𝑥,1−𝑐) > 0) is defined by 𝑃 (𝐴|𝐼𝑥,1−𝑐) = 𝑃 (𝐴
⋂

𝐼𝑥,1−𝑐 )
𝑃 (𝐼𝑥,1−𝑐 )

(𝐴 ∈). 
Recall also that 𝜆(𝐼𝑥,1−𝑐 ) = 1 − 𝑐.

Remark. Note that different from the simple substitution in UCM method 3, the substitution applied in UCM methods depends on 
certainty degree c.

Remark. There have some equivalent definitions for UCM method 4. For example, we may also equivalently define for the third and 
fourth conditions: 𝑚 = 𝑈𝐼𝑥,1−𝑐

when 𝑃 (𝐼𝑥,1−𝑐 ) = 0 and 𝜆(𝐼𝑥,1−𝑐) ≥ 0; 𝑚 = 𝛿𝑥 when 𝜆(𝐼𝑥,1−𝑐) = 0 and 𝑃 (𝐼𝑥,1−𝑐) > 0.

Example 4. Let P be defined such that 𝑃 = 0.5𝑃1 + 0.5𝛿0.5 where 𝑃1 has density function 𝑝(𝑡) = 2𝑡. For BUI granules (0, 0.7), (0.2, 0.5),
(0.5, 0.2), (0.8, 1) ∈, we have the following computations, respectively.

(i) 𝐼0,0.3 = [0, 0.3]; since 𝜆(𝐼𝑥,1−𝑐) = 𝜆([0, 0.3]) = 0.3 > 𝑃 (𝐼𝑥,1−𝑐) = 𝑃 ([0, 0.3]) = 0.045 > 0 then

𝑚(0.0.7,𝑃 ) = 𝑃 ([0,0.3])
𝜆([0,0.3])

𝑃 (⋅|[0,0.3]) + 𝜆([0,0.3]) − 𝑃 ([0,0.3])
𝜆([0,0.3])

𝑈[0,0.3]

= 0.045
0.3

𝑃 (⋅|[0,0.3]) + 0.265
0.3

𝑈[0,0.3].

Since 𝑃 (⋅|[0, 0.3]) has density 𝑞(𝑡) = 𝑡

0.045 ⋅ 𝜒[0,0.3](𝑡), and 𝑈[0,0.3] has density 𝑠(𝑡) = 1
0.3𝜒[0,0.3](𝑡), then 𝑚(0.0.7,𝑃 ) is absolutely 

continuous with density 𝑝1(𝑡) =
[
10
3 𝑡+

53
18

]
⋅ 𝜒[0,0.3](𝑡).

(ii) 𝐼0.2,0.5 = [0.1, 0.6]; since 𝑃 (𝐼𝑥,1−𝑐 ) = 0.675 ≥ 𝜆(𝐼𝑥,1−𝑐) = 0.5 > 0 then 𝑚(0.2.0.5,𝑃 ) = 𝑃 (⋅|[0.1, 0.6]) = 7
27𝑄 + 20

27 𝛿0.5 where Q has 
density 𝑞(𝑡) = 𝑡

0.175 ⋅ 𝜒[0.1,0.6](𝑡) as computed in Example 3.

(iii) 𝐼0.5,0.8 = [0.1, 0.9]; since 𝑃 (𝐼𝑥,1−𝑐) = 0.9 ≥ 𝜆(𝐼𝑥,1−𝑐) = 0.8 > 0, then 𝑚(0.5,0.2,𝑃 ) = 4
9𝑄 + 5

9 𝛿0.5 where Q has density 𝑞(𝑡) = 𝑡

0.4 ⋅
𝜒[0.1,0.9](𝑡) as computed in Example 3.

(iv) 𝐼0.8,0 = [0.8, 0.8]; 𝜆(𝐼𝑥,1−𝑐) = 0 and 𝑃 (𝐼𝑥,1−𝑐) ≥ 0, then 𝑚(0.8,0.1,𝑃 ) = 𝛿0.8.

We find UCM method 4 also degenerates into UCM method 1 in sense of calculating expectation.

Proposition 5. ∫[0,1]𝑋𝑖𝑑𝑑𝑚
(𝑥,𝑐,𝑈[0,1]) = 𝑐𝑥 + 0.5(1 − 𝑐) holds for UCM method 4.

Proof. Note that 𝑈[0,1](𝐼𝑥,1−𝑐) = 𝜆(𝐼𝑥,1−𝑐). When 𝑈[0,1](𝐼𝑥,1−𝑐) > 0 (i.e., 𝑐 < 1), we have 𝑚(𝑥,𝑐,𝑈[0,1]) = 𝑈[0,1](⋅|𝐼𝑥,1−𝑐) = 𝑈𝐼𝑥,1−𝑐
; when 

𝑈[0,1](𝐼𝑥,1−𝑐) = 0 (i.e., 𝑐 = 1), then 𝑚(𝑥,𝑐,𝑈[0,1]) =𝑈𝐼𝑥,1−𝑐
= 𝛿𝑥. Using the same deduction to Proposition 1 (ii), the result holds.

The maps related to UCM method 4 still do not have continuity properties in all situations as the following examples indicate. 
When 𝑐 = 0.5 and 𝑃 = 𝛿0, it is easy to observe that the map 𝑥 ↦ 𝑚(𝑥,𝑐,𝑃 ) is not continuous at 0; when 𝑥 = 0 and 𝑃 = 𝛿0.5, the map 
𝑐 ↦𝑚(𝑥,𝑐,𝑃 ) is not continuous at 0.5; when 𝑥 = 0 and 𝑐 = 0.5, the map 𝑃 ↦𝑚(𝑥,𝑐,𝑃 ) is not continuous at 𝛿0.5.

However, unlike UCM method 3 which lacks all continuity properties, UCM method 4 retains certain desirable continuity properties 
(when the considered probability measure is continuous). Recall that C1 (C1 ⊂M1) is the set of all continuous probability measures 
on (ℝ, ).

Proposition 6. Let 𝑚(𝑥,𝑐,𝑃 ) be the probability measure obtained in UCM method 4 and Eq. (5), then the map 𝑥 ↦𝑚(𝑥,𝑐,𝑃 ) is continuous on 
[0,1] when 𝑃 ∈ C1.

Proof. Fixing 𝑐 ∈ [0, 1] and 𝑃 ∈ C1, let (𝑥𝑟)∞𝑟=1 be an arbitrary sequence with lim
𝑟→∞

𝑥𝑟 = 𝑥; we discuss four situations, respective. 
(Firstly, since all the concerned probability measures are concentrated on [0,1], then it is direct that lim

𝑟→∞
𝐹𝑚(𝑥𝑟,𝑐,𝑃 ) (𝑡) = 𝐹𝑚(𝑥,𝑐,𝑃 ) (𝑡)

holds for all 𝑡 ∈ (−∞, 0) 
⋃
(1, ∞).)

(a) If 𝑃 (𝐼𝑥,1−𝑐 ) > 𝜆(𝐼𝑥,1−𝑐) > 0, then from the continuity of P we easily observe that for any 𝑡 ∈ [0, 1],

lim
𝑟→∞

𝐹𝑚(𝑥𝑟,𝑐,𝑃 ) (𝑡) = lim
𝑟→∞

𝑃 ([0, 𝑡]|𝐼𝑥𝑟,1−𝑐) = lim
𝑟→∞

𝑃 ([0, 𝑡]
⋂

𝐼𝑥𝑟,1−𝑐)
𝑃 (𝐼𝑥𝑟,1−𝑐)

=
lim
𝑟→∞

𝑃 ([0, 𝑡]
⋂

𝐼𝑥𝑟,1−𝑐)

lim
𝑟→∞

𝑃 (𝐼𝑥𝑟,1−𝑐)

=
lim
𝑟→∞

𝐹𝑃 (𝑡) − lim
𝑟→∞

𝐹𝑃 (inf 𝐼𝑥𝑟,1−𝑐)

lim
𝑟→∞

𝐹𝑃 (sup𝐼𝑥𝑟,1−𝑐) − lim
𝑟→∞

𝐹𝑃 (inf 𝐼𝑥𝑟,1−𝑐)
=

𝐹𝑃 (𝑡) − 𝐹𝑃 (inf 𝐼𝑥,1−𝑐)
𝐹𝑃 (sup𝐼𝑥,1−𝑐) − 𝐹𝑃 (inf 𝐼𝑥,1−𝑐)

=
𝑃 ([0, 𝑡]

⋂
𝐼𝑥,1−𝑐)

𝑃 (𝐼𝑥,1−𝑐)
8

= 𝑃 ([0, 𝑡]|𝐼𝑥,1−𝑐 ) = 𝐹𝑚(𝑥,𝑐,𝑃 ) (𝑡).
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(b) If 𝜆(𝐼𝑥,1−𝑐 ) > 𝑃 (𝐼𝑥,1−𝑐) > 0, then for any 𝑡 ∈ [0, 1],

lim
𝑟→∞

𝐹𝑚(𝑥𝑟,𝑐,𝑃 ) (𝑡) = lim
𝑟→∞

𝑃 ([0, 𝑡]|𝐼𝑥𝑟,1−𝑐)
= lim

𝑟→∞

𝑃 (𝐼𝑥𝑟,1−𝑐)
𝜆(𝐼𝑥𝑟,1−𝑐)

⋅
𝑃 ([0, 𝑡]

⋂
𝐼𝑥𝑟,1−𝑐)

𝑃 (𝐼𝑥𝑟,1−𝑐)
+ lim

𝑟→∞

𝜆(𝐼𝑥𝑟,1−𝑐) − 𝑃 (𝐼𝑥𝑟,1−𝑐)
𝜆(𝐼𝑥𝑟,1−𝑐)

⋅
𝜆([0, 𝑡]

⋂
𝐼𝑥𝑟,1−𝑐)

𝜆(𝐼𝑥𝑟,1−𝑐)

= lim
𝑟→∞

𝑃 ([0, 𝑡]
⋂

𝐼𝑥𝑟,1−𝑐)
1 − 𝑐

+ lim
𝑟→∞

1 − 𝑐 − 𝑃 (𝐼𝑥𝑟,1−𝑐)
1 − 𝑐

⋅
𝜆([0, 𝑡]

⋂
𝐼𝑥𝑟,1−𝑐)

1 − 𝑐

=
lim
𝑟→∞

𝑃 ([0, 𝑡]
⋂

𝐼𝑥𝑟,1−𝑐)

1 − 𝑐
+

1 − 𝑐 − lim
𝑟→∞

𝑃 (𝐼𝑥𝑟,1−𝑐)

1 − 𝑐
⋅
lim
𝑟→∞

𝜆([0, 𝑡]
⋂

𝐼𝑥𝑟,1−𝑐)

1 − 𝑐

=
𝑃 ([0, 𝑡]

⋂
𝐼𝑥,1−𝑐)

1 − 𝑐
+

1 − 𝑐 − 𝑃 (𝐼𝑥,1−𝑐)
1 − 𝑐

⋅
𝜆([0, 𝑡]

⋂
𝐼𝑥,1−𝑐)

1 − 𝑐

=
𝑃 (𝐼𝑥,1−𝑐)
𝜆(𝐼𝑥,1−𝑐)

⋅
𝑃 ([0, 𝑡]

⋂
𝐼𝑥,1−𝑐)

𝑃 (𝐼𝑥,1−𝑐)
+

𝜆(𝐼𝑥,1−𝑐) − 𝑃 (𝐼𝑥,1−𝑐)
𝜆(𝐼𝑥,1−𝑐)

⋅
𝜆([0, 𝑡]

⋂
𝐼𝑥,1−𝑐)

𝜆(𝐼𝑥,1−𝑐)
= 𝑃 ([0, 𝑡]|𝐼𝑥,1−𝑐 ) = 𝐹𝑚(𝑥,𝑐,𝑃 ) (𝑡).

(c) If 𝜆(𝐼𝑥,1−𝑐 ) = 𝑃 (𝐼𝑥,1−𝑐) > 0, then there always exists a 𝑁 > 0 such that (𝑥𝑟)∞𝑟=𝑁 is the possible union of one, two or three 
of the subsequences: (𝑥𝜎1(𝑟))

∞
𝑟=1, (𝑥𝜎2(𝑟))

∞
𝑟=1 and (𝑥𝜎3(𝑟))

∞
𝑟=1 such that lim

𝑟→∞
𝑥𝜎1(𝑟) = 𝑥 and 𝑃 (𝐼𝑥𝜎1(𝑟) ,1−𝑐) > 𝜆(𝐼𝑥𝜎1(𝑟) ,1−𝑐) > 0 for all 𝑟 ∈ ℕ, 

lim
𝑟→∞

𝑥𝜎2(𝑟) = 𝑥 and 𝜆(𝐼𝑥𝜎2(𝑟),1−𝑐) > 𝑃 (𝐼𝑥𝜎2(𝑟),1−𝑐) > 0 for all 𝑟 ∈ ℕ, and lim
𝑟→∞

𝑥𝜎3(𝑟) = 𝑥 and 𝑃 (𝐼𝑥𝜎3(𝑟),1−𝑐) = 𝜆(𝐼𝑥𝜎3(𝑟) ,1−𝑐) > 0 for all 𝑟 ∈ ℕ, 
respectively. (That is, for each 𝑟 ≥𝑁 , r satisfies one and only one of the following seven conditions: 𝑟 ∈ 𝜎1(ℕ), 𝑟 ∈ 𝜎2(ℕ), 𝑟 ∈ 𝜎3(ℕ), 
𝑟 ∈ 𝜎1(ℕ) 

⋃
𝜎2(ℕ), 𝑟 ∈ 𝜎2(ℕ) 

⋃
𝜎3(ℕ), 𝑟 ∈ 𝜎1(ℕ) 

⋃
𝜎3(ℕ), 𝑟 ∈ 𝜎1(ℕ) 

⋃
𝜎2(ℕ) 

⋃
𝜎3(ℕ).) Note that for the possible three subsequences, 

we can apply the same deduction in (a) to prove for any 𝑡 ∈ℝ, lim
𝑟→∞

𝐹
𝑚
(𝑥
𝜎1(𝑟)

,𝑐,𝑃 ) (𝑡) = 𝐹𝑚(𝑥,𝑐,𝑃 ) (𝑡) and lim
𝑟→∞

𝐹
𝑚
(𝑥
𝜎3(𝑟)

,𝑐,𝑃 ) (𝑡) = 𝐹𝑚(𝑥,𝑐,𝑃 ) (𝑡), and 
apply the same deduction in (b) to prove for any 𝑡 ∈ℝ, lim

𝑟→∞
𝐹
𝑚
(𝑥
𝜎2(𝑟)

,𝑐,𝑃 ) (𝑡) = 𝐹𝑚(𝑥,𝑐,𝑃 ) (𝑡). Consequently, for any 𝑡 ∈ℝ, lim
𝑟→∞

𝐹
𝑚
(𝑥
𝑟
,𝑐,𝑃 ) (𝑡) =

𝐹𝑚(𝑥,𝑐,𝑃 ) (𝑡).

(d) If 𝑃 (𝐼𝑥,1−𝑐 ) = 0 and 𝜆(𝐼𝑥,1−𝑐) > 0, then there always exists a 𝑁 > 0 such that (𝑥𝑟)∞𝑟=𝑁 is the possible union of one or two of 
the subsequences: (𝑥𝜎1(𝑟))

∞
𝑟=1 and (𝑥𝜎2(𝑟))

∞
𝑟=1 such that lim

𝑟→∞
𝑥𝜎1(𝑟) = 𝑥 and 𝜆(𝐼𝑥𝜎1(𝑟) ,1−𝑐) > 𝑃 (𝐼𝑥𝜎1(𝑟) ,1−𝑐) > 0 for all 𝑟 ∈ ℕ, and lim

𝑟→∞
𝑥𝜎2(𝑟) =

𝑥 and 𝜆(𝐼𝑥𝜎2(𝑟) ,1−𝑐) > 𝑃 (𝐼𝑥𝜎2(𝑟),1−𝑐) = 0 for all 𝑟 ∈ ℕ, respectively. (It is impossible that there exists a subsequence (𝑥𝜏(𝑟))∞𝑟=1 with 
lim
𝑟→∞

𝑥𝜏(𝑟) = 𝑥 and 𝑃 (𝐼𝑥𝜏(𝑟) ,1−𝑐) ≥ 𝜆(𝐼𝑥𝜏(𝑟),1−𝑐) > 0. Indeed, if there exists, then we have 0 < lim
𝑟→∞

𝑃 (𝐼𝑥𝜏(𝑟) ,1−𝑐) ≤ lim
𝑟→∞

𝑃 (𝐼𝑥,1−𝑐
⋃

𝐼𝑥𝜏(𝑟),1−𝑐) =

𝑃

(⋂∞
𝑟=1(𝐼𝑥,1−𝑐

⋃
𝐼𝑥𝜏(𝑟),1−𝑐)

)
= 𝑃 (𝐼𝑥,1−𝑐) = 0, which leads to contradiction.) Note that for the subsequence (𝑥𝜎1(𝑟))

∞
𝑟=1, we apply a 

similar but different deduction in (b); for any 𝑡 ∈ [0, 1],

lim
𝑟→∞

𝐹
𝑚
(𝑥
𝜎1(𝑟)

,𝑐,𝑃 ) (𝑡) = lim
𝑟→∞

𝑃 ([0, 𝑡]|𝐼𝑥𝜎1(𝑟) ,1−𝑐)
= lim

𝑟→∞

𝑃 (𝐼𝑥𝜎1(𝑟) ,1−𝑐)

𝜆(𝐼𝑥𝜎1(𝑟) ,1−𝑐)
⋅
𝑃 ([0, 𝑡]

⋂
𝐼𝑥𝜎1(𝑟),1−𝑐

)

𝑃 (𝐼𝑥𝜎1(𝑟) ,1−𝑐)
+ lim

𝑟→∞

𝜆(𝐼𝑥𝜎1(𝑟) ,1−𝑐) − 𝑃 (𝐼𝑥𝜎1(𝑟) ,1−𝑐)

𝜆(𝐼𝑥𝜎1(𝑟) ,1−𝑐)
⋅
𝜆([0, 𝑡]

⋂
𝐼𝑥𝜎1(𝑟) ,1−𝑐

)

𝜆(𝐼𝑥𝜎1(𝑟),1−𝑐)

=
lim
𝑟→∞

𝑃 ([0, 𝑡]
⋂

𝐼𝑥𝜎1(𝑟) ,1−𝑐
)

1 − 𝑐
+

1 − 𝑐 − lim
𝑟→∞

𝑃 (𝐼𝑥𝜎1(𝑟) ,1−𝑐)

1 − 𝑐
⋅
lim
𝑟→∞

𝜆([0, 𝑡]
⋂

𝐼𝑥𝜎1(𝑟),1−𝑐
)

1 − 𝑐

=
𝑃 ([0, 𝑡]

⋂
𝐼𝑥,1−𝑐)

1 − 𝑐
+

1 − 𝑐 − 𝑃 (𝐼𝑥,1−𝑐)
1 − 𝑐

⋅
𝜆([0, 𝑡]

⋂
𝐼𝑥,1−𝑐)

1 − 𝑐

= 0
1 − 𝑐

+ 1 − 𝑐 − 0
1 − 𝑐

⋅
𝜆([0, 𝑡]

⋂
𝐼𝑥,1−𝑐)

1 − 𝑐
=

𝜆([0, 𝑡]
⋂

𝐼𝑥,1−𝑐)
𝜆(𝐼𝑥,1−𝑐)

=𝑈𝐼𝑥,1−𝑐
([0, 𝑡]) = 𝐹𝑈𝐼𝑥,1−𝑐

(𝑡) = 𝐹𝑚(𝑥,𝑐,𝑃 ) (𝑡).

For the subsequence (𝑥𝜎2(𝑟))
∞
𝑟=1, note that 𝑚(𝑥𝜎2(𝑟) ,𝑐,𝑃 ) = 𝑈𝐼𝑥𝜎2(𝑟) ,1−𝑐

for each 𝑟 ∈ ℕ, and it is easy to know that 𝑤 − lim
𝑟→∞

𝑚
(𝑥𝜎2(𝑟) ,𝑐,𝑃 ) =

𝑤 − lim
𝑟→∞

𝑈𝐼𝑥𝜎2(𝑟) ,1−𝑐
=𝑈𝐼𝑥,1−𝑐

=𝑚(𝑥,𝑐,𝑃 ).

(e) If 𝜆(𝐼𝑥,1−𝑐 ) = 0 and 𝑃 (𝐼𝑥,1−𝑐) ≥ 0, then 𝑚(𝑥𝑟,𝑐,𝑃 ) = 𝛿𝑥𝑟
for each 𝑟 ∈ ℕ, and it is evident that 𝑤 − lim

𝑟→∞
𝑚(𝑥𝑟,𝑐,𝑃 ) = 𝑤 − lim

𝑟→∞
𝛿𝑥𝑟

=

𝛿𝑥 =𝑚(𝑥,𝑐,𝑃 ).
In summary, in any situation we have 𝑤 − lim

𝑟→∞
𝑚(𝑥𝑟,𝑐,𝑃 ) =𝑚(𝑥,𝑐,𝑃 ).

Proposition 7. Let 𝑚(𝑥,𝑐,𝑃 ) be the probability measure obtained in UCM method 4 and Eq. (5), then the map 𝑐 ↦ 𝑚(𝑥,𝑐,𝑃 ) is continuous on 
9

[0,1] when 𝑃 ∈ C1.
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Proof. Fixing 𝑥 ∈ [0, 1] and 𝑃 ∈ C1, let (𝑐𝑟)∞𝑟=1 be an arbitrary sequence with lim
𝑟→∞

𝑐𝑟 = 𝑐; we discuss five situations, respectively.

If (a) 𝑃 (𝐼𝑥,1−𝑐 ) > 𝜆(𝐼𝑥,1−𝑐) > 0, or (b) 𝜆(𝐼𝑥,1−𝑐) > 𝑃 (𝐼𝑥,1−𝑐) > 0, or (c) 𝜆(𝐼𝑥,1−𝑐) = 𝑃 (𝐼𝑥,1−𝑐) > 0, or (d) 𝑃 (𝐼𝑥,1−𝑐) = 0 and 𝜆(𝐼𝑥,1−𝑐) >
0, then using the very similar deductions in the (a), (b), (c) and (d) of the proof of Proposition 6, respectively, we also have 𝑤 −
lim
𝑟→∞

𝑚(𝑥,𝑐𝑟,𝑃 ) = 𝑚(𝑥,𝑐,𝑃 ). But when (e) 𝜆(𝐼𝑥,1−𝑐) = 0 and 𝑃 (𝐼𝑥,1−𝑐) ≥ 0, we observe that for any 𝑡 ∈ (−∞, 𝑥) 
⋃
(𝑥, ∞), lim

𝑟→∞
𝐹
𝑚
(𝑥
𝑟
,𝑐,𝑃 ) (𝑡) =

𝐹𝑚(𝑥,𝑐,𝑃 ) (𝑡).
In summary, in any situation we have 𝑤 − lim

𝑟→∞
𝑚(𝑥𝑟,𝑐,𝑃 ) =𝑚(𝑥,𝑐,𝑃 ).

Proposition 8. Let 𝑚(𝑥,𝑐,𝑃 ) be the probability measure obtained in UCM method 4 and Eq. (5), then the map 𝑃 ↦𝑚(𝑥,𝑐,𝑃 ) is continuous on 
C1 (with respect to Levy’s metric).

Proof. Fixing 𝑥 ∈ [0, 1] and 𝑐 ∈ [0, 1], let (𝑃𝑟)∞𝑟=1 be an arbitrary sequence with 𝑤 − lim
𝑟→∞

𝑃𝑟 = 𝑃 ; we discuss five situations, respectively.

(a) If 𝑃 (𝐼𝑥,1−𝑐 ) > 𝜆(𝐼𝑥,1−𝑐) > 0, then we observe that for any 𝑡 ∈ [0, 1],

lim
𝑟→∞

𝐹𝑚(𝑥,𝑐,𝑃𝑟) (𝑡) = lim
𝑟→∞

𝑃𝑟([0, 𝑡]|𝐼𝑥,1−𝑐) = lim
𝑟→∞

𝑃𝑟([0, 𝑡]
⋂

𝐼𝑥,1−𝑐)
𝑃𝑟(𝐼𝑥,1−𝑐)

=
lim
𝑟→∞

𝑃𝑟([0, 𝑡]
⋂

𝐼𝑥,1−𝑐)

lim
𝑟→∞

𝑃𝑟(𝐼𝑥,1−𝑐)

=
lim
𝑟→∞

𝐹𝑃𝑟
(𝑡) − lim

𝑟→∞
𝐹𝑃𝑟

(inf 𝐼𝑥,1−𝑐)

lim
𝑟→∞

𝐹𝑃𝑟
(sup𝐼𝑥,1−𝑐) − lim

𝑟→∞
𝐹𝑃𝑟

(inf 𝐼𝑥,1−𝑐)
=

𝐹𝑃 (𝑡) − 𝐹𝑃 (inf 𝐼𝑥,1−𝑐)
𝐹𝑃 (sup𝐼𝑥,1−𝑐) − 𝐹𝑃 (inf 𝐼𝑥,1−𝑐)

=
𝑃 ([0, 𝑡]

⋂
𝐼𝑥,1−𝑐)

𝑃 (𝐼𝑥,1−𝑐)

= 𝑃 ([0, 𝑡]|𝐼𝑥,1−𝑐 ) = 𝐹𝑚(𝑥,𝑐,𝑃 ) (𝑡).

(b) If 𝜆(𝐼𝑥,1−𝑐 ) > 𝑃 (𝐼𝑥,1−𝑐) > 0, then for any 𝑡 ∈ [0, 1],

lim
𝑟→∞

𝐹𝑚(𝑥,𝑐,𝑃𝑟) (𝑡) = lim
𝑟→∞

𝑃𝑟([0, 𝑡]|𝐼𝑥,1−𝑐)
= lim

𝑟→∞

𝑃𝑟(𝐼𝑥,1−𝑐)
𝜆(𝐼𝑥,1−𝑐)

⋅
𝑃𝑟([0, 𝑡]

⋂
𝐼𝑥,1−𝑐)

𝑃𝑟(𝐼𝑥,1−𝑐)
+ lim

𝑟→∞

𝜆(𝐼𝑥,1−𝑐) − 𝑃𝑟(𝐼𝑥,1−𝑐)
𝜆(𝐼𝑥,1−𝑐)

⋅
𝜆([0, 𝑡]

⋂
𝐼𝑥𝑟,1−𝑐)

𝜆(𝐼𝑥𝑟,1−𝑐)

=
𝑃 (𝐼𝑥,1−𝑐)
𝜆(𝐼𝑥,1−𝑐)

⋅
𝑃 ([0, 𝑡]

⋂
𝐼𝑥,1−𝑐)

𝑃 (𝐼𝑥,1−𝑐)
+

𝜆(𝐼𝑥,1−𝑐) − 𝑃 (𝐼𝑥,1−𝑐)
𝜆(𝐼𝑥,1−𝑐)

⋅
𝜆([0, 𝑡]

⋂
𝐼𝑥,1−𝑐)

𝜆(𝐼𝑥,1−𝑐)
= 𝑃 ([0, 𝑡]|𝐼𝑥,1−𝑐 ) = 𝐹𝑚(𝑥,𝑐,𝑃 ) (𝑡).

(c) If 𝜆(𝐼𝑥,1−𝑐 ) = 𝑃 (𝐼𝑥,1−𝑐) > 0, then there always exists a 𝑁 > 0 such that (𝑃𝑟)∞𝑟=𝑁 is the possible union of one, two or three 
of the subsequences: (𝑃𝜎1(𝑟))

∞
𝑟=1, (𝑃𝜎2(𝑟))

∞
𝑟=1 and (𝑃𝜎3(𝑟))

∞
𝑟=1 such that 𝑤 − lim

𝑟→∞
𝑃𝜎1(𝑟) = 𝑃 and 𝑃𝑟(𝐼𝑥,1−𝑐) > 𝜆(𝐼𝑥,1−𝑐) > 0 for all 𝑟 ∈ ℕ, 

𝑤 − lim
𝑟→∞

𝑃𝜎2(𝑟) = 𝑃 and 𝜆(𝐼𝑥,1−𝑐) > 𝑃𝑟(𝐼𝑥,1−𝑐) > 0 for all 𝑟 ∈ ℕ, and 𝑤 − lim
𝑟→∞

𝑃𝜎3(𝑟) = 𝑃 and 𝑃 (𝐼𝑥,1−𝑐) = 𝜆(𝐼𝑥,1−𝑐) > 0 for all 𝑟 ∈ ℕ, 
respectively. (That is, for each 𝑟 ≥𝑁 , r satisfies one and only one of the following seven conditions: 𝑟 ∈ 𝜎1(ℕ), 𝑟 ∈ 𝜎2(ℕ), 𝑟 ∈ 𝜎3(ℕ), 
𝑟 ∈ 𝜎1(ℕ) 

⋃
𝜎2(ℕ), 𝑟 ∈ 𝜎2(ℕ) 

⋃
𝜎3(ℕ), 𝑟 ∈ 𝜎1(ℕ) 

⋃
𝜎3(ℕ), 𝑟 ∈ 𝜎1(ℕ) 

⋃
𝜎2(ℕ) 

⋃
𝜎3(ℕ).) Note that for the possible three subsequences, 

we can apply the same deduction in (a) to prove for any 𝑡 ∈ℝ, lim
𝑟→∞

𝐹
𝑚
(𝑥,𝑐,𝑃𝜎1(𝑟))

(𝑡) = 𝐹𝑚(𝑥,𝑐,𝑃 ) (𝑡) and lim
𝑟→∞

𝐹
𝑚
(𝑥,𝑐,𝑃𝜎3(𝑟))

(𝑡) = 𝐹𝑚(𝑥,𝑐,𝑃 ) (𝑡), and 
apply the same deduction in (b) to prove for any 𝑡 ∈ℝ, lim

𝑟→∞
𝐹
𝑚
(𝑥
𝜎2(𝑟)

,𝑐,𝑃 ) (𝑡) = 𝐹𝑚(𝑥,𝑐,𝑃 ) (𝑡). Consequently, for any 𝑡 ∈ℝ, lim
𝑟→∞

𝐹𝑚(𝑥,𝑐,𝑃𝑟) (𝑡) =
𝐹𝑚(𝑥,𝑐,𝑃 ) (𝑡).

(d) If 𝑃 (𝐼𝑥,1−𝑐 ) = 0 and 𝜆(𝐼𝑥,1−𝑐) > 0, then there always exists a 𝑁 > 0 such that (𝑥𝑟)∞𝑟=𝑁 is the possible union of one or two 
of the subsequences: (𝑃𝜎1(𝑟))

∞
𝑟=1 and (𝑃𝜎2(𝑟))

∞
𝑟=1 such that 𝑤 − lim

𝑟→∞
𝑃𝜎1(𝑟) = 𝑃 and 𝜆(𝐼𝑥,1−𝑐) > 𝑃𝜎1(𝑟)(𝐼𝑥,1−𝑐) > 0 for all 𝑟 ∈ ℕ, and 𝑤 −

lim
𝑟→∞

𝑃𝜎2(𝑟) = 𝑃 and 𝜆(𝐼𝑥,1−𝑐) > 𝑃𝜎2(𝑟)(𝐼𝑥,1−𝑐) = 0 for all 𝑟 ∈ ℕ, respectively. (It is impossible that there exists a subsequence (𝑃𝜏(𝑟))∞𝑟=1
with 𝑤 − lim

𝑟→∞
𝑃𝜏(𝑟) = 𝑃 and 𝑃𝜏(𝑟)(𝐼𝑥,1−𝑐) ≥ 𝜆(𝐼𝑥,1−𝑐) > 0. Suppose there exists; since 𝐹𝑃 is continuous on ℝ, then lim

𝑟→∞
𝐹𝑃𝜏(𝑟)

(𝑡) = 𝐹𝑃 (𝑡)
holds for all 𝑡 ∈ 𝐼𝑥,1−𝑐 , and therefore 0 = lim

𝑟→∞
𝐹𝑃𝜏(𝑟)

(sup𝐼𝑥,1−𝑐) − 𝐹𝑃 (sup𝐼𝑥,1−𝑐) ≥ 𝜆(𝐼𝑥,1−𝑐) > 0, which leads to contradiction.) Note 
that for the subsequence (𝑃𝜎1(𝑟))

∞
𝑟=1, we apply a similar but different deduction in (b); for any 𝑡 ∈ [0, 1],

lim
𝑟→∞

𝐹
𝑚
(𝑥,𝑐,𝑃𝜎1(𝑟))

(𝑡) = lim
𝑟→∞

𝑃 ([0, 𝑡]|𝐼𝑥,1−𝑐 )
= lim

𝑟→∞

𝑃𝜎1(𝑟)(𝐼𝑥,1−𝑐)
𝜆(𝐼𝑥,1−𝑐)

⋅
𝑃𝜎1(𝑟)([0, 𝑡]

⋂
𝐼𝑥,1−𝑐)

𝑃𝜎1(𝑟)(𝐼𝑥,1−𝑐)
+ lim

𝑟→∞

𝜆(𝐼𝑥,1−𝑐) − 𝑃𝜎1(𝑟)(𝐼𝑥,1−𝑐)
𝜆(𝐼𝑥,1−𝑐)

⋅
𝜆([0, 𝑡]

⋂
𝐼𝑥,1−𝑐)

𝜆(𝐼𝑥,1−𝑐)

=
lim
𝑟→∞

𝑃𝜎1(𝑟)([0, 𝑡]
⋂

𝐼𝑥,1−𝑐)

1 − 𝑐
+

1 − 𝑐 − lim
𝑟→∞

𝑃𝜎1(𝑟)(𝐼𝑥,1−𝑐)

1 − 𝑐
⋅
lim
𝑟→∞

𝜆([0, 𝑡]
⋂

𝐼𝑥,1−𝑐)

1 − 𝑐

=
𝑃 ([0, 𝑡]

⋂
𝐼𝑥,1−𝑐)

1 − 𝑐
+

1 − 𝑐 − 𝑃 (𝐼𝑥,1−𝑐)
1 − 𝑐

⋅
𝜆([0, 𝑡]

⋂
𝐼𝑥,1−𝑐)

1 − 𝑐

0 1 − 𝑐 − 0 𝜆([0, 𝑡]
⋂

𝐼𝑥,1−𝑐) 𝜆([0, 𝑡]
⋂

𝐼𝑥,1−𝑐)
10

=
1 − 𝑐

+
1 − 𝑐

⋅
1 − 𝑐

=
𝜆(𝐼𝑥,1−𝑐)
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=𝑈𝐼𝑥,1−𝑐
([0, 𝑡]) = 𝐹𝑈𝐼𝑥,1−𝑐

(𝑡) = 𝐹𝑚(𝑥,𝑐,𝑃 ) (𝑡).

For the subsequence (𝑃𝜎2(𝑟))
∞
𝑟=1, note that 𝑚(𝑥,𝑐,𝑃𝜎2(𝑟)) ≡𝑈𝐼𝑥,1−𝑐

=𝑚(𝑥,𝑐,𝑃 ) for each 𝑟 ∈ ℕ.

(e) If 𝜆(𝐼𝑥,1−𝑐 ) = 0 and 𝑃 (𝐼𝑥,1−𝑐) ≥ 0, then 𝑚(𝑥,𝑐,𝑃𝑟) ≡ 𝛿𝑥 =𝑚(𝑥,𝑐,𝑃 ) for each 𝑟 ∈ ℕ.
In summary, in any situation we have 𝑤 − lim

𝑟→∞
𝑚(𝑥𝑟,𝑐,𝑃 ) =𝑚(𝑥,𝑐,𝑃 ).

The corresponding monotonicity still holds for UCM method 4.

Proposition 9. For any two BUI granules (𝑥1, 𝑐), (𝑥2, 𝑐) ∈  with 𝑥1 < 𝑥2, let 𝑚(𝑥1 ,𝑐,𝑃 ) and 𝑚(𝑥2,𝑐,𝑃 ) be the probability measures obtained 
using UCM method 4 and Eq. (5), respectively. Then, for any 𝑃 ∈M1, 𝐸1 = ∫[0,1]𝑋𝑖𝑑𝑑𝑚

(𝑥1 ,𝑐,𝑃 ) ≤ ∫[0,1]𝑋𝑖𝑑𝑑𝑚
(𝑥2 ,𝑐,𝑃 ) =𝐸2.

Proof. For any 𝑐 ∈ [0, 1], note that sup𝐼𝑥1 ,1−𝑐 ≤ sup𝐼𝑥2 ,1−𝑐 and inf 𝐼𝑥1 ,1−𝑐 ≤ inf 𝐼𝑥2 ,1−𝑐 .
When 𝑐 = 1, 𝐸1 = ∫[0,1]𝑋𝑖𝑑𝑑𝛿𝑥1

= 𝑥1 < 𝑥2 = ∫[0,1]𝑋𝑖𝑑𝑑𝛿2 =𝐸2.

For any 𝑐 < 1, note that 𝜆(𝐼𝑥1 ,1−𝑐) = 𝜆(𝐼𝑥2 ,1−𝑐) > 0. If 𝐼𝑥1 ,1−𝑐
⋂

𝐼𝑥2 ,1−𝑐 = ∅, then we immediately know 𝐹
𝑚(𝑥1 ,𝑐,𝑃 ) ≥ 𝐹

𝑚(𝑥2 ,𝑐,𝑃 ) since 
sup𝐼𝑥1 ,1−𝑐 ≤ inf 𝐼𝑥2 ,1−𝑐 . If 𝐼𝑥1 ,1−𝑐

⋂
𝐼𝑥2 ,1−𝑐 = 𝐵 ≠ ∅ (which is a closed interval), for convenience we take the notations 𝐼𝑥1 ,1−𝑐∖𝐼𝑥2 ,1−𝑐 =

𝐴 and 𝐼𝑥2 ,1−𝑐∖𝐼𝑥1 ,1−𝑐 = 𝐶 . Then, we discuss the following nine situations, respectively.

(1A) If 𝑃 (𝐼𝑥1 ,1−𝑐) ≥ 𝑃 (𝐼𝑥2 ,1−𝑐) ≥ 𝜆(𝐼𝑥1 ,1−𝑐) = 1 − 𝑐, then note that 𝐹
𝑚(𝑥1 ,𝑐,𝑃 ) (𝑡) ≥ 𝐹

𝑚(𝑥2 ,𝑐,𝑃 ) (𝑡) = 0 for all 𝑡 ∈ 𝐴; 1 = 𝐹
𝑚(𝑥1 ,𝑐,𝑃 ) (𝑡) ≥

𝐹
𝑚(𝑥2 ,𝑐,𝑃 ) (𝑡) for all 𝑡 ∈ 𝐶 . For any 𝑡 ∈𝐵, we observe that

𝑚(𝑥1 ,𝑐,𝑃 )((𝑡,∞)) = 𝑃 ((𝑡,∞)|𝐼𝑥1 ,1−𝑐) = 𝑃 ((𝑡,∞)
⋂

𝐼𝑥1 ,1−𝑐)
𝑃 (𝐼𝑥1 ,1−𝑐)

=
𝑃 ((𝑡, sup𝐵)

⋂
𝐼𝑥1 ,1−𝑐)

𝑃 (𝐼𝑥1 ,1−𝑐)
=

𝑃 ((𝑡, sup𝐵))
𝑃 (𝐼𝑥1 ,1−𝑐)

≤ 𝑃 ((𝑡, sup𝐶))
𝑃 (𝐼𝑥2 ,1−𝑐)

=
𝑃 ((𝑡,∞)

⋂
𝐼𝑥2 ,1−𝑐)

𝑃 (𝐼𝑥2 ,1−𝑐)
= 𝑃 ((𝑡,∞)|𝐼𝑥2 ,1−𝑐) ≤𝑚(𝑥2 ,𝑐,𝑃 )((𝑡,∞)).

Therefore, 𝐹
𝑚(𝑥1 ,𝑐,𝑃 ) (𝑡) = 1 − 𝑚(𝑥1 ,𝑐,𝑃 )((𝑡, ∞)) ≥ 1 − 𝑚(𝑥2 ,𝑐,𝑃 )((𝑡, ∞)) = 𝐹

𝑚(𝑥2 ,𝑐,𝑃 ) (𝑡) for all 𝑡 ∈ 𝐵. Consequently, 𝐹
𝑚(𝑥1 ,𝑐,𝑃 ) (𝑡) ≥ 𝐹

𝑚(𝑥2 ,𝑐,𝑃 ) (𝑡)
for all 𝑡 ∈ℝ.

(1B) If 𝑃 (𝐼𝑥2 ,1−𝑐) > 𝑃 (𝐼𝑥1 ,1−𝑐) ≥ 1 − 𝑐, then we can apply a similar deduction in (1A) to show 𝐹
𝑚(𝑥1 ,𝑐,𝑃 ) (𝑡) ≥ 𝐹

𝑚(𝑥2 ,𝑐,𝑃 ) (𝑡) for all 𝑡 ∈ℝ.

(2A) If 𝑃 (𝐼𝑥1 ,1−𝑐) ≥ 1 − 𝑐 > 𝑃 (𝐼𝑥2 ,1−𝑐) > 0, then it is easy to note that 𝐹
𝑚(𝑥1 ,𝑐,𝑃 ) (𝑡) ≥ 𝐹

𝑚(𝑥2 ,𝑐,𝑃 ) (𝑡) = 0 for all 𝑡 ∈𝐴 
⋃

𝐶 . For any 𝑡 ∈𝐵, 
we have the following deduction

𝑚(𝑥1 ,𝑐,𝑃 )((𝑡,∞)) =𝑚(𝑥1 ,𝑐,𝑃 )((𝑡, sup𝐵]) = 𝑃 ((𝑡, sup𝐵]|𝐼𝑥1 ,1−𝑐) = 𝑃 ((𝑡, sup𝐵]
⋂

𝐼𝑥1 ,1−𝑐)
𝑃 (𝐼𝑥1 ,1−𝑐)

=
𝑃 ((𝑡, sup𝐵])
𝑃 (𝐼𝑥1 ,1−𝑐)

≤ 𝑃 ((𝑡, sup𝐵])
𝜆(𝐼𝑥1 ,1−𝑐)

≤ 𝑃 (𝐼𝑥2 ,1−𝑐)
𝜆(𝐼𝑥2 ,1−𝑐)

𝑃 ((𝑡, sup𝐵])
𝑃 (𝐼𝑥2 ,1−𝑐)

+
𝜆(𝐼𝑥2 ,1−𝑐) − 𝑃 (𝐼𝑥2 ,1−𝑐)

𝜆(𝐼𝑥2 ,1−𝑐)
𝜆((𝑡, sup𝐵])
𝜆(𝐼𝑥2 ,1−𝑐)

=
𝑃 (𝐼𝑥2 ,1−𝑐)
𝜆(𝐼𝑥2 ,1−𝑐)

𝑃 ((𝑡, sup𝐵]|𝐼𝑥2 ,1−𝑐) + 𝜆(𝐼𝑥2 ,1−𝑐) − 𝑃 (𝐼𝑥2 ,1−𝑐)
𝜆(𝐼𝑥2 ,1−𝑐)

𝑈𝐼𝑥2 ,1−𝑐
((𝑡, sup𝐵])

=𝑚(𝑥2 ,𝑐,𝑃 )((𝑡, sup𝐵])) ≤𝑚(𝑥2 ,𝑐,𝑃 )((𝑡,∞)).

Therefore, 𝐹
𝑚(𝑥1 ,𝑐,𝑃 ) (𝑡) ≥ 𝐹

𝑚(𝑥2 ,𝑐,𝑃 ) (𝑡) for all 𝑡 ∈ℝ.

(2B) If 𝑃 (𝐼𝑥2 ,1−𝑐) ≥ 1 − 𝑐 > 𝑃 (𝐼𝑥1 ,1−𝑐) > 0, then we can apply a similar deduction in (2A).

(3A) If 1 − 𝑐 > 𝑃 (𝐼𝑥1 ,1−𝑐) ≥ 𝑃 (𝐼𝑥2 ,1−𝑐) > 0, it is easy to note that 𝐹
𝑚(𝑥1 ,𝑐,𝑃 ) (𝑡) ≥ 𝐹

𝑚(𝑥2 ,𝑐,𝑃 ) (𝑡) = 0 for all 𝑡 ∈ 𝐴 
⋃

𝐶 . For any 𝑡 ∈ 𝐵, we 
have

𝑚(𝑥1 ,𝑐,𝑃 )((𝑡,∞)) =𝑚(𝑥1 ,𝑐,𝑃 )((𝑡, sup𝐵])

=
𝑃 (𝐼𝑥1 ,1−𝑐)
𝜆(𝐼𝑥1 ,1−𝑐)

𝑃 ((𝑡, sup𝐵]|𝐼𝑥1 ,1−𝑐) + 𝜆(𝐼𝑥1 ,1−𝑐) − 𝑃 (𝐼𝑥1 ,1−𝑐)
𝜆(𝐼𝑥1 ,1−𝑐)

𝑈𝐼𝑥1 ,1−𝑐
((𝑡, sup𝐵])

=
𝑃 (𝐼𝑥1 ,1−𝑐)
𝜆(𝐼𝑥1 ,1−𝑐)

𝑃 ((𝑡, sup𝐵]
⋂

𝐼𝑥1 ,1−𝑐)
𝑃 (𝐼𝑥1 ,1−𝑐)

+
𝜆(𝐼𝑥1 ,1−𝑐) − 𝑃 (𝐼𝑥1 ,1−𝑐)

𝜆(𝐼𝑥1 ,1−𝑐)
𝜆((𝑡, sup𝐵])
𝜆(𝐼𝑥1 ,1−𝑐)

=
𝑃 ((𝑡, sup𝐵])

1 − 𝑐
+

1 − 𝑐 − 𝑃 (𝐼𝑥1 ,1−𝑐)
1 − 𝑐

𝜆((𝑡, sup𝐵])
1 − 𝑐

≤ 𝑃 (𝐼𝑥2 ,1−𝑐)
1 − 𝑐

𝑃 ((𝑡, sup𝐶])
𝑃 (𝐼𝑥2 ,1−𝑐)

+
1 − 𝑐 − 𝑃 (𝐼𝑥2 ,1−𝑐)

1 − 𝑐

𝜆((𝑡, sup𝐶])
1 − 𝑐

𝑃 (𝐼𝑥2 ,1−𝑐) 𝑃 ((𝑡, sup𝐶]
⋂

𝐼𝑥2 ,1−𝑐) 𝜆(𝐼𝑥2 ,1−𝑐) − 𝑃 (𝐼𝑥2 ,1−𝑐) 𝜆((𝑡, sup𝐶])
11

=
𝜆(𝐼𝑥2 ,1−𝑐) 𝑃 (𝐼𝑥2 ,1−𝑐)

+
𝜆(𝐼𝑥2 ,1−𝑐) 𝜆(𝐼𝑥2 ,1−𝑐)
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=
𝑃 (𝐼𝑥2 ,1−𝑐)
𝜆(𝐼𝑥2 ,1−𝑐)

𝑃 ((𝑡, sup𝐶]|𝐼𝑥2 ,1−𝑐) + 𝜆(𝐼𝑥2 ,1−𝑐) − 𝑃 (𝐼𝑥2 ,1−𝑐)
𝜆(𝐼𝑥2 ,1−𝑐)

𝑈𝐼𝑥2 ,1−𝑐
((𝑡, sup𝐶])

=𝑚(𝑥2 ,𝑐,𝑃 )((𝑡, sup𝐶]) =𝑚(𝑥2 ,𝑐,𝑃 )((𝑡,∞)).

Therefore, 𝐹
𝑚(𝑥1 ,𝑐,𝑃 ) (𝑡) ≥ 𝐹

𝑚(𝑥2 ,𝑐,𝑃 ) (𝑡) for all 𝑡 ∈ℝ.

(3B) If 1 − 𝑐 > 𝑃 (𝐼𝑥2 ,1−𝑐) > 𝑃 (𝐼𝑥1 ,1−𝑐) > 0, then we can apply a similar deduction in (3A).

(4A) If 𝑃 (𝐼𝑥1 ,1−𝑐) > 𝑃 (𝐼𝑥2 ,1−𝑐) = 0, then we immediately observe that 𝑚(𝑥1 ,𝑐,𝑃 ) is concentrated on A while 𝑚(𝑥2 ,𝑐,𝑃 ) is concentrated 
on 𝐵

⋃
𝐶 . Hence, 𝐹

𝑚(𝑥1 ,𝑐,𝑃 ) (𝑡) ≥ 𝐹
𝑚(𝑥2 ,𝑐,𝑃 ) (𝑡) for all 𝑡 ∈ℝ.

(4B) If 𝑃 (𝐼𝑥2 ,1−𝑐) > 𝑃 (𝐼𝑥1 ,1−𝑐) = 0, the result holds using similar observation in (4A).

(5) If 𝑃 (𝐼𝑥1 ,1−𝑐) = 𝑃 (𝐼𝑥2 ,1−𝑐) = 0, then 𝑚(𝑥1 ,𝑐,𝑃 ) =𝑈𝐼𝑥1 ,1−𝑐
and 𝑚(𝑥2 ,𝑐,𝑃 ) =𝑈𝐼𝑥2 ,1−𝑐

, and it trivially holds that 𝐹
𝑚(𝑥1 ,𝑐,𝑃 ) (𝑡) ≥ 𝐹

𝑚(𝑥2 ,𝑐,𝑃 ) (𝑡)
for all 𝑡 ∈ℝ.

Finally, since 𝐹
𝑚(𝑥1 ,𝑐,𝑃 ) ≥ 𝐹

𝑚(𝑥2 ,𝑐,𝑃 ) , then from the same analysis as discussed earlier

𝐸1 = ∫
[0,1]

𝑋𝑖𝑑𝑑𝑚
(𝑥1 ,𝑐,𝑃 ) = 1 − 1

2 ∫
[0,1]

(𝐹
𝑚(𝑥1 ,𝑐,𝑃 ) (𝑡) + 𝐹

𝑚(𝑥1 ,𝑐,𝑃 ) (𝑡−))𝜆(𝑑𝑡) = 1 − ∫
[0,1]

𝐹
𝑚(𝑥1 ,𝑐,𝑃 )𝑑𝜆

≤ 1 − ∫
[0,1]

𝐹
𝑚(𝑥2 ,𝑐,𝑃 )𝑑𝜆 = ∫

[0,1]

𝑋𝑖𝑑𝑑𝑚
(𝑥2 ,𝑐,𝑃 ) =𝐸2.

6. UCM methods in uncertain and probabilistic decision environment

Assuming a high-end vehicle manufacturer is considering increasing production of its branded electric bicycles, the decision-
making process depends on the predicted repurchase rate of these bicycles. If the forecasted repurchase rate exceeds a certain threshold 
𝐾1, then mass production will occur; if it reaches 𝐾2 but is less than 𝐾1, then limited production will take place; otherwise, no 
additional production will be made. The manufacturer has four internal experts (𝐸𝑖)4𝑖=1 who each predict the repurchase rate with 
some uncertainty (forming a 4-dimensional BUI vector (𝐱, 𝐜) = ((𝑥𝑖, 𝑐𝑖))4𝑖=1). To eliminate this uncertainty in their predictions, the 
manufacturer decides to consult a professional market research firm that can provide a probability distribution P based on historical 
data and market research to estimate the repurchase rate. Using UCM method, the manufacturer can fuse four BUI granules and 
probability distribution P to generate a 4-dimensional real prediction vector which can be weighted averaged to obtain an ultimate 
comprehensive result as reasonable predicted value for repurchase rates and be applied to make further decisions accordingly.

For each BUI granule (𝑥(𝑖), 𝑐(𝑖)) (𝑖 ∈ [4]), 100𝑥(𝑖)% represents the predicted repurchase rate by 𝐸𝑖 and 𝑐(𝑖) is his/her certainty 
about the prediction. Suppose 𝑃 = 0.5𝑃1 + 0.5𝛿0.5 and (𝐱, 𝐜) = ((0,0.7), (0.2,0.5), (0.5,0.2), (0.8,1)) as in Example 4. We next compute 
the expected repurchase rates respectively.

𝐸1 = ∫ 𝑋𝑖𝑑𝑑𝑚
(0.0.7,𝑃 ) = ∫ 𝑡 ⋅ 𝑝1(𝑡)𝑑𝑡 = ∫

[0,0.3]

𝑡 ⋅
[10
3
𝑡+ 53

18

]
𝑑𝑡

= 10
3 ∫

[0,0.3]

𝑡2𝑑𝑡+ 53
18 ∫

[0,0.3]

𝑡𝑑𝑡 = 10
3

0.33
3

+ 53
18

0.32
2

= 0.03 + 0.1325 = 0.1625;

𝐸2 = ∫ 𝑋𝑖𝑑𝑑𝑚
(0.2.0.5,𝑃 ) = ∫ 𝑋𝑖𝑑𝑑

[ 7
27

𝑄+ 20
27

𝛿0.5

]
= 7

27 ∫
[0,1]

𝑋𝑖𝑑𝑑𝑄+ 20
27 ∫

[0,1]

𝑋𝑖𝑑𝑑𝛿0.5

= 7
27 ∫

[0.1,0.6]

𝑡
𝑡

0.175
𝑑𝑡+ 20

27
⋅ 0.5 = 7

27(0.175)

[
0.62
2

− 0.12
2

]
+ 20

27
⋅ 0.5 ≐ 0.26 + 0.37 = 0.63;

𝐸3 = ∫ 𝑋𝑖𝑑𝑑𝑚
(0.5,0.2,𝑃 ) = ∫ 𝑋𝑖𝑑𝑑

[4
9
𝑄+ 5

9
𝛿0.5

]
= 4

9 ∫ 𝑋𝑖𝑑𝑑𝑄+ 5
9
⋅ 0.5

= 4
9 ∫
[0.1,0.9]

𝑡
𝑡

0.4
𝑑𝑡+ 5

9
⋅ 0.5 ≐ 10

9

[
0.92
2

− 0.12
2

]
+ 0.278≐ 0.444 + 0.278 = 0.722;

𝐸4 = ∫ 𝑋𝑖𝑑𝑑𝑚
(0.8,0.1,𝑃 ) = ∫ 𝑋𝑖𝑑𝑑𝛿0.8 = 0.8.

With the obtained four expected repurchase rates, we take their mean 𝐸 = (1∕4) 
∑4

𝑖=1𝐸𝑖 = 0.25(0.1625 + 0.63 + 0.722 + 0.8) =
0.578625. That means the resultant comprehensive expected repurchase rate is 57.8625%. If we set 𝐾1 = 70% and 𝐾2 = 50%, then the 
recommended course of action is to manufacture a limited quantity of the branded electric bicycles.

This uncertainty merging method reflects the decision makers’ preference order, which prioritizes the predictions of internal 
12

experts (as they are more trusted). If the experts hold a certain attitude, their predictions are fully believed (i.e., BUI degenerates into 
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real value). If the experts are partially certain, their predictions still dominate (this can be seen from some conditional probability 
definitions in UCM method), while the predictions from external market research agencies serve as supplementary information. 
However, if the experts are completely uncertain, we have no choice but to rely entirely on data from market research agencies. The 
evaluation and decision model based on UCM method is more practical for real-world decision-making problems.

7. Some discussion and comparison of the three UCM methods

The proposed three UCM methods (in probability environment) have their respective characteristics which may matter in the 
choice of them in decision making.

For any fixed 𝑥 ∈ [0, 1] and 𝑐 ∈ [0, 1], let 𝐻<𝑗>

(𝑥,𝑐) ∶ M1 →M1 be related to UCM method j with 𝐻<𝑗>

(𝑥,𝑐)(𝑃 ) = 𝑚(𝑥,𝑐,𝑃 ) and 𝑗 = 2, 3, 4, 
respectively. We first note that for any 𝑥 ∈ [0, 1], 𝐻<𝑗>

(𝑥,1)(𝑃 ) = 𝛿𝑥 for all 𝑃 ∈M1 and all 𝑗 ∈ {2, 3, 4}. We also note that for any 𝑥 ∈ [0, 1], 
𝐻

<𝑗>

(𝑥,0)(𝑃 ) = 𝑃 for all 𝑃 ∈M1 and all 𝑗 ∈ {2, 3, 4}. Next we discuss some related “linearity”.

Proposition 10. UCM method 2 has the following property

𝐻<2>
(𝑥,𝑐) (𝛼𝑃1 + (1 − 𝛼)𝑃2) = 𝛼𝐻<2>

(𝑥,𝑐) (𝑃1) + (1 − 𝛼)𝐻<2>
(𝑥,𝑐) (𝑃2)

for any 𝛼 ∈ [0, 1].

Proof.

𝐻<2>
(𝑥,𝑐) (𝛼𝑃1 + (1 − 𝛼)𝑃2) = 𝑐𝛿𝑥 + (1 − 𝑐)(𝛼𝑃1 + (1 − 𝛼)𝑃2) = 𝛼

(
𝑐𝛿𝑥 + (1 − 𝑐)𝑃1

)
+ (1 − 𝛼)

(
𝑐𝛿𝑥 + (1 − 𝑐)𝑃2

)
= 𝛼𝐻<2>

(𝑥,𝑐) (𝑃1) + (1 − 𝛼)𝐻<2>
(𝑥,𝑐) (𝑃2).

The UCM method 3 and UCM method 4 do not have the “linearity” property. For example, consider 𝑃1 =𝑈[0,0.5], 𝑃2 = 𝛿0.5, 𝛼 = 0.5
and (𝑥, 𝑐) = (1, 0.5); then 𝐻<3>

(𝑥,𝑐) (𝛼𝑃1 + (1 − 𝛼)𝑃2) =𝐻<4>
(𝑥,𝑐) (𝛼𝑃1 + (1 − 𝛼)𝑃2) = 𝛿0.5 but

𝛼𝐻<3>
(𝑥,𝑐) (𝑃1) + (1 − 𝛼)𝐻<3>

(𝑥,𝑐) (𝑃2) = 𝛼𝐻<4>
(𝑥,𝑐) (𝑃1) + (1 − 𝛼)𝐻<4>

(𝑥,𝑐) (𝑃2) = 0.5𝑈[0.5,1] + 0.5𝛿0.5.

The linearity of UCM method 2 can sometimes be effectively demonstrated and applied in decision-making processes. For instance, 
if a probability distribution 𝑃1 is obtained early on from historical statistics, we can merge it with another probability distribu-
tion 𝐻<2>

(𝑥,𝑐) (𝑃1) to calculate an expected value 𝐸1 = ∫ 𝑋𝑖𝑑𝑑𝐻
<2>
(𝑥,𝑐) (𝑃1). Subsequently, if a new probability distribution 𝑃2 is obtained 

later using updated statistics, we can create an updated merged probability distribution 𝐻<2>
(𝑥,𝑐) (𝑃2) with a new expected value 𝐸2 =

∫ 𝑋𝑖𝑑𝑑𝐻
<2>
(𝑥,𝑐) (𝑃2). By assigning equal weights to the initial and updated distributions and deriving an updated probability distribution 

𝑃 = 0.5𝑃1+0.5𝑃2, we obtain the corresponding updated expected value 𝐸 = ∫ 𝑋𝑖𝑑𝑑𝐻
<2>
(𝑥,𝑐) (0.5𝑃1+0.5𝑃2). In fact, if linearity holds true 

in this context, then we only need to calculate 𝐻<2>
(𝑥,𝑐) (𝑃2) to obtain 𝐸 = 0.5 ∫ 𝑋𝑖𝑑𝑑𝐻

<2>
(𝑥,𝑐) (𝑃1) + 0.5 ∫ 𝑋𝑖𝑑𝑑𝐻

<2>
(𝑥,𝑐) (𝑃2) = 0.5𝐸1 + 0.5𝐸2

instead of recalculating everything from scratch. This showcases evaluation consistency that may be sought by rigorous evaluators; 
however, it does not imply that linearity is universally required across all evaluators or decision-making scenarios.

The following property we discuss appears to be purely theoretical at present and may have limited relevance to practical decision-
making problems.

For 𝑗=2, 3, 4, the map 
(
𝐻

<𝑗>

(𝑥,𝑐)

)(𝑛)
∶ M1 →M1 (𝑛 ∈ℕ) is conventionally defined such that 

(
𝐻

<𝑗>

(𝑥,𝑐)

)(𝑛+1)
(𝑃 )=𝐻<𝑗>

(𝑥,𝑐)

((
𝐻

<𝑗>

(𝑥,𝑐)

)(𝑛)
(𝑃 )

)

with 
(
𝐻

<𝑗>

(𝑥,𝑐)

)(1)
=𝐻

<𝑗>

(𝑥,𝑐).

Proposition 11.

(i) For any fixed 𝑥 ∈ [0, 1], 𝑐 ∈ (0, 1] and 𝑃 ∈M1, 𝑤 − lim
𝑛→∞

(
𝐻<2>

(𝑥,𝑐)

)(𝑛)
(𝑃 ) = 𝛿𝑥; 

(
𝐻<2>

(𝑥,0)

)(𝑛)
(𝑃 ) = 𝑃 for all 𝑛 ∈ℕ.

(ii) For any fixed 𝑥 ∈ [0, 1], 𝑐 ∈ [0, 1] and 𝑃 ∈ M1, 
(
𝐻<3>

(𝑥,𝑐)

)(𝑛)
(𝑃 ) = 𝐻<3>

(𝑥,𝑐) (𝑃 ) for all 𝑛 ∈ ℕ. (That is, if 𝑃 (𝐼𝑥,1−𝑐) > 0 then (
𝐻<3>

(𝑥,𝑐)

)(𝑛)
(𝑃 ) = 𝑃 (⋅|𝐼𝑥,1−𝑐 ) for all 𝑛 ∈ ℕ, and if 𝑃 (𝐼𝑥,1−𝑐) = 0 then 

(
𝐻<3>

(𝑥,𝑐)

)(𝑛)
(𝑃 ) =𝑈𝐼𝑥,1−𝑐

for all 𝑛 ∈ ℕ.)

(iii) For any fixed 𝑥 ∈ [0, 1], 𝑐 ∈ [0, 1] and 𝑃 ∈M1, 
(
𝐻<4>

(𝑥,𝑐)

)(𝑛)
(𝑃 ) =𝐻<4>

(𝑥,𝑐) (𝑃 ) for all 𝑛 ∈ ℕ.

Proof. (i) We firstly show that 
(
𝐻<2>

(𝑥,𝑐)

)(𝑛)
(𝑃 ) = (1 − (1 − 𝑐)𝑛)𝛿𝑥 + (1 − 𝑐)𝑛𝑃 for all 𝑛 ∈ ℕ. Using induction, on the one hand, suppose ( )(𝑛)
13

𝐻<2>
(𝑥,𝑐) (𝑃 ) = (1 − (1 − 𝑐)𝑛) 𝛿𝑥 + (1 − 𝑐)𝑛𝑃 , then
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𝐻<2>

(𝑥,𝑐)

)(𝑛+1)
(𝑃 ) =𝐻<2>

(𝑥,𝑐)

((
𝐻<2>

(𝑥,𝑐)

)(𝑛)
(𝑃 )

)
= 𝑐𝛿𝑥 + (1 − 𝑐)

(
(1 − (1 − 𝑐)𝑛)𝛿𝑥 + (1 − 𝑐)𝑛𝑃

)
= 𝑐𝛿𝑥 + (1 − 𝑐)𝛿𝑥 − (1 − 𝑐)𝑛+1𝛿𝑥 + (1 − 𝑐)𝑛+1𝑃 =

(
1 − (1 − 𝑐)𝑛+1

)
𝛿𝑥 + (1 − 𝑐)𝑛+1𝑃 .

On the other hand, 
(
𝐻<2>

(𝑥,𝑐)

)(1)
(𝑃 ) =𝐻<2>

(𝑥,𝑐) (𝑃 ) = 𝑐𝛿𝑥 + (1 − 𝑐)𝑃 =
(
1 − (1 − 𝑐)1

)
𝛿𝑥 + (1 − 𝑐)1𝑃 holds true for 𝑛 = 1.

Therefore, if 𝑐 ∈ (0, 1], then 𝑤 − lim
𝑛→∞

(
𝐻<2>

(𝑥,𝑐)

)(𝑛)
(𝑃 ) =𝑤 − lim

𝑛→∞

(
(1 − (1 − 𝑐)𝑛) 𝛿𝑥 + (1 − 𝑐)𝑛𝑃

)
= 𝛿𝑥. (Indeed, it is easy to observe (

𝐻<2>
(𝑥,1)

)(𝑛)
(𝑃 ) = 𝛿𝑥 for all 𝑛 ∈ ℕ.) It is also easy to observe 

(
𝐻<2>

(𝑥,0)

)(𝑛)
(𝑃 ) = 𝑃 for all 𝑛 ∈ ℕ.

(ii) If 𝑃 (𝐼𝑥,1−𝑐) > 0, then 𝐻<3>
(𝑥,𝑐) (𝑃 ) = 𝑃 (⋅|𝐼𝑥,1−𝑐); using induction, 

(
𝐻<3>

(𝑥,𝑐)

)(𝑛)
(𝑃 ) = 𝑃 (⋅|𝐼𝑥,1−𝑐) implies 

(
𝐻<3>

(𝑥,𝑐)

)(𝑛+1)
(𝑃 ) =

𝐻<3>
(𝑥,𝑐)

((
𝐻<3>

(𝑥,𝑐)

)(𝑛)
(𝑃 )

)
=𝐻<3>

(𝑥,𝑐)
(
𝑃 (⋅|𝐼𝑥,1−𝑐 )) = (

𝑃 (⋅|𝐼𝑥,1−𝑐)) (⋅|𝐼𝑥,1−𝑐) = 𝑃 (⋅|𝐼𝑥,1−𝑐). If 𝑃 (𝐼𝑥,1−𝑐 ) = 0, then 𝐻<3>
(𝑥,𝑐) (𝑃 ) = 𝑈𝐼𝑥,1−𝑐

; using 

induction, 
(
𝐻<3>

(𝑥,𝑐)

)(𝑛)
(𝑃 ) =𝑈𝐼𝑥,1−𝑐

implies 
(
𝐻<3>

(𝑥,𝑐)

)(𝑛+1)
(𝑃 ) =𝐻<3>

(𝑥,𝑐)

((
𝐻<3>

(𝑥,𝑐)

)(𝑛)
(𝑃 )

)
=𝐻<3>

(𝑥,𝑐)

(
𝑈𝐼𝑥,1−𝑐

)
=𝑈𝐼𝑥,1−𝑐

(⋅|𝐼𝑥,1−𝑐) =𝑈𝐼𝑥,1−𝑐
. 

Hence, 
(
𝐻<3>

(𝑥,𝑐)

)(𝑛)
(𝑃 ) =𝐻<3>

(𝑥,𝑐) (𝑃 ) for all 𝑛 ∈ ℕ.

(iii) If 𝑃 (𝐼𝑥,1−𝑐 ) ≥ 𝜆(𝐼𝑥,1−𝑐) > 0, then 𝐻<4>
(𝑥,𝑐) (𝑃 ) = 𝑃 (⋅|𝐼𝑥,1−𝑐 ); applying the similar induction in (ii), we have 

(
𝐻<4>

(𝑥,𝑐)

)(𝑛)
(𝑃 ) =

𝐻<4>
(𝑥,𝑐) (𝑃 ) = 𝑃 (⋅|𝐼𝑥,1−𝑐). If 𝜆(𝐼𝑥,1−𝑐) > 𝑃 (𝐼𝑥,1−𝑐) > 0, then 𝐻<4>

(𝑥,𝑐) (𝑃 ) =
𝑃 (𝐼𝑥,1−𝑐 )
𝜆(𝐼𝑥,1−𝑐 )

𝑃 (⋅|𝐼𝑥,1−𝑐) + 𝜆(𝐼𝑥,1−𝑐 )−𝑃 (𝐼𝑥,1−𝑐 )
𝜆(𝐼𝑥,1−𝑐 )

𝑈𝐼𝑥,1−𝑐
(note that it 

is concentrated on 𝐼𝑥,1−𝑐 and with 
(
𝐻<4>

(𝑥,𝑐) (𝑃 )
)
(𝐼𝑥,1−𝑐) ≥ 𝜆(𝐼𝑥,1−𝑐) > 0); using induction, 

(
𝐻<4>

(𝑥,𝑐)

)(𝑛)
(𝑃 ) = 𝑃 (𝐼𝑥,1−𝑐 )

𝜆(𝐼𝑥,1−𝑐 )
𝑃 (⋅|𝐼𝑥,1−𝑐 ) +

𝜆(𝐼𝑥,1−𝑐 )−𝑃 (𝐼𝑥,1−𝑐 )
𝜆(𝐼𝑥,1−𝑐 )

𝑈𝐼𝑥,1−𝑐
implies 

(
𝐻<4>

(𝑥,𝑐)

)(𝑛+1)
(𝑃 ) =𝐻<4>

(𝑥,𝑐)

((
𝐻<4>

(𝑥,𝑐)

)(𝑛)
(𝑃 )

)
=𝐻<4>

(𝑥,𝑐)

(
𝐻<4>

(𝑥,𝑐) (𝑃 )
)
=
(
𝐻<4>

(𝑥,𝑐) (𝑃 )
)
(⋅|𝐼𝑥,1−𝑐) =𝐻<4>

(𝑥,𝑐) (𝑃 ). 

If 𝑃 (𝐼𝑥,1−𝑐) = 0 and 𝜆(𝐼𝑥,1−𝑐) > 0, applying the similar induction in (ii), we have 
(
𝐻<4>

(𝑥,𝑐)

)(𝑛)
(𝑃 ) =𝐻<4>

(𝑥,𝑐) (𝑃 ) =𝑈𝐼𝑥,1−𝑐
. If 𝜆(𝐼𝑥,1−𝑐) = 0

and 𝑃 (𝐼𝑥,1−𝑐) ≥ 0, then 𝐻<4>
(𝑥,𝑐) (𝑃 ) = 𝛿𝑥; using induction, 

(
𝐻<4>

(𝑥,𝑐)

)(𝑛)
(𝑃 ) = 𝛿𝑥 implies 

(
𝐻<4>

(𝑥,𝑐)

)(𝑛+1)
(𝑃 ) = 𝐻<4>

(𝑥,𝑐)

((
𝐻<4>

(𝑥,𝑐)

)(𝑛)
(𝑃 )

)
=

𝐻<4>
(𝑥,𝑐)

(
𝛿𝑥
)
= 𝛿𝑥 =𝐻<4>

(𝑥,𝑐) (𝑃 ). Hence, 
(
𝐻<4>

(𝑥,𝑐)

)(𝑛)
(𝑃 ) =𝐻<4>

(𝑥,𝑐) (𝑃 ) for all 𝑛 ∈ ℕ.

8. Conclusions

We proposed, analyzed, and compared four UCM methods for merging BUI granules with probability measures. UCM method 1 is 
purely interval-based and defined simply by combining intervals. The other three UCM methods operate within probability environ-
ments. UCM method 2 transforms a BUI granule into Dirac measure and generates a new probability measure using a combination 
form that has good continuity properties but lacks distinguishability of probability measures. Although lacking in continuity proper-
ties, UCM method 3 offers better distinguishability than the previous method. Finally, substitution UCM method (UCM method 4) is 
mainly defined based on well-defined combinations of conditional probabilities and uniform distributions; it exhibits better continuity 
properties than UCM method 3. We demonstrate that all three UCM methods result in Dirac measure when there is no uncertainty 
involved in the given BUI granules.

The expectation values associated with the four UCM methods are as follows: UCM 1 merely yields its representative value 
𝑐𝑥 +0.5(1 − 𝑐), while all the expectation values (of identity random variable) for the other three UCM methods, ∫ 𝑋𝑖𝑑𝑑𝑚, degenerate 
into 𝑐𝑥 +0.5(1 − 𝑐) when the given probability measure is uniform distribution. Furthermore, all four UCM methods exhibit desirable 
monotonicities.

We present practical applications in business decision-making and provide several numerical examples to demonstrate their utility 
and potential. Furthermore, we conduct further discussions to highlight the distinctive characteristics of the three UCM methods (in 
a probabilistic environment), which may be considerations for decision-making.

Although we employ conditional probability and conditional distribution, our methodology diverges from Bayesian analysis. For 
instance, in UCM method 4, if 𝜆(𝐼𝑥,1−𝑐 ) > 𝑃 (𝐼𝑥,1−𝑐), the fused probability takes into account both 𝑃 (⋅|𝐼𝑥,1−𝑐 ) and 𝑈𝐼𝑥,1−𝑐

simultane-
ously based on a specific ratio. Our approach also exhibits connections with Dempster-Shafer theory [37,38]. For example, while 
determining the ultimate fused probability distribution, we explore various techniques for allocating mass with a quantity of 1 − 𝑐. 
In future research endeavors, we will delve deeper into more suitable UCM methods and further investigate their associations with 
Bayesian analysis, Dempster-Shafer theory, and mass allocation [37–40].

CRediT authorship contribution statement

LeSheng Jin: Writing – review & editing, Writing – original draft, Formal analysis, Conceptualization. Yi Yang: Writing – review 
& editing, Methodology. Zhen-Song Chen: Writing – review & editing, Project administration, Funding acquisition. Muhammet 
14

Deveci: Writing – review & editing. Radko Mesiar: Writing – review & editing.



Fuzzy Sets and Systems 498 (2025) 109153L. Jin, Y. Yang, Z.-S. Chen et al.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Acknowledgements

This work is partly supported by the National Natural Science Foundation of China (nos. 72171182, 72201097), the Science and 
Technology Innovation Program of Hunan Province, China (no. 2023RC3182) and the grant VEGA 1/0036/23.

Data availability

No data was used for the research described in the article.

References

[1] R.T. Clemen, Combining forecasts: a review and annotated bibliography, Int. J. Forecast. 5 (1989) 559–583.
[2] J.S. Armstrong, Combining Forecasts, Springer, 2001.
[3] O. Kim, S.C. Lim, K.W. Shaw, The inefficiency of the mean analyst forecast as a summary forecast of earnings, J. Account. Res. 39 (2001) 329–335.
[4] Y. Xu, L. Wu, X. Wu, Z. Xu, Belief fusion of predictions of industries in China’s stock market, in: Belief Functions: Theory and Applications: Third International 

Conference, BELIEF 2014, Proceedings 3, Oxford, UK, September 26–28, 2014, Springer, 2014, pp. 348–355.
[5] A. Bronevich, A. Lepskiy, H. Penikas, The application of conflict measure to estimating incoherence of analyst’s forecasts about the cost of shares of Russian 

companies, Proc. Comput. Sci. 55 (2015) 1113–1122.
[6] P.H. Franses, Averaging model forecasts and expert forecasts: why does it work?, Interfaces 41 (2011) 177–181.
[7] L. Jin, R. Mesiar, S. Borkotokey, M. Kalina, Certainty aggregation and the certainty fuzzy measures, Int. J. Intell. Syst. 33 (2018) 759–770.
[8] R. Mesiar, S. Borkotokey, L. Jin, M. Kalina, Aggregation under uncertainty, IEEE Trans. Fuzzy Syst. 26 (2017) 2475–2478.
[9] L.-S. Jin, Y.-Q. Xu, Z.-S. Chen, R. Mesiar, R.R. Yager, Relative basic uncertain information in preference and uncertain involved information fusion, Int. J. Comput. 

Intell. Syst. 15 (2022) 12.
[10] L.S. Jin, Z.-S. Chen, R.R. Yager, R. Langari, Interval type interval and cognitive uncertain information in information fusion and decision making, Int. J. Comput. 

Intell. Syst. 16 (2023) 60.
[11] Z. Tao, Z. Shao, J. Liu, L. Zhou, H. Chen, Basic uncertain information soft set and its application to multi-criteria group decision making, Eng. Appl. Artif. Intell. 

95 (2020) 103871.
[12] Y. Yang, Z.-S. Chen, W. Pedrycz, M. Gómez, H. Bustince, Using i-subgroup-based weighted generalized interval t-norms for aggregating basic uncertain informa-

tion, Fuzzy Sets Syst. 476 (2024) 108771.
[13] L. Jin, Uncertain probability, regular probability interval and relative proximity, Fuzzy Sets Syst. 467 (2023) 108579.
[14] Q. Yang, Z.-S. Chen, J.-H. Zhu, L. Martínez, W. Pedrycz, M.J. Skibniewski, Concept design evaluation of sustainable product–service systems: a QFD–TOPSIS 

integrated framework with basic uncertain linguistic information, Group Decis. Negot. (2024) 1–43.
[15] Y. Yang, D.-X. Xia, W. Pedrycz, M. Deveci, Z.-S. Chen, Cross-platform distributed product online ratings aggregation approach for decision making with basic 

uncertain linguistic information, Int. J. Fuzzy Syst. (2024) 1–22.
[16] J.-P. Chang, Z.-S. Chen, Z.-J. Wang, L. Jin, W. Pedrycz, L. Martínez, M.J. Skibniewski, Assessing spatial synergy between integrated urban rail transit system and 

urban form: a BULI-based MCLSGA model with the wisdom of crowds, IEEE Trans. Fuzzy Syst. 31 (2022) 434–448.
[17] Y. Yang, M.-Q. Jie, Z.-S. Chen, Dynamic three-way multi-criteria decision making with basic uncertain linguistic information: a case study in product ranking, 

Appl. Soft Comput. 152 (2024) 111228.
[18] Z.-S. Chen, J.-Y. Lu, X.-J. Wang, W. Pedrycz, Identifying digital transformation barriers in small and medium-sized construction enterprises: a multi-criteria 

perspective, J. Knowl. Econ. (2024) 1–37.
[19] Z.-S. Chen, Z.-R. Wang, X.-J. Wang, M.J. Skibniewski, B.B. Gupta, M. Deveci, Leveraging probabilistic optimization for digital transformation maturity evaluation 

of construction enterprises, IEEE Trans. Eng. Manag. 71 (2024) 8717–8746.
[20] H. Xiao, P. Yang, X. Gao, M. Wei, Basic uncertainty information hesitant fuzzy multi-attribute decision-making method based with credibility, J. Intell. Fuzzy 

Syst. 45 (2023) 8429–8440.
[21] X. Chen, X. Liu, Z. Tao, J. Zhang, H. Luo, Similarity and dissimilarity measures of basic uncertain information and their applications in group decision-making, 

Comput. Appl. Math. 41 (2022) 275.
[22] Z. Tao, X. Wang, B. Zhu, P. Wu, Location of medical warehouse applying BBTOPSIS based multi-criteria decision making with basic uncertain information, J. 

Intell. Fuzzy Syst. 44 (2023) 8627–8636.
[23] L. Jin, R. Mesiar, R.R. Yager, M. Kalina, J. Špirková, S. Borkotokey, Deriving efficacy from basic uncertain information and uncertain Choquet integral, Int. J. 

Gen. Syst. 52 (2023) 72–85.
[24] L. Jin, Z.-S. Chen, R.R. Yager, T. Senapati, R. Mesiar, D.G. Zamora, B. Dutta, L. Martínez, Ordered weighted averaging operators for basic uncertain information 

granules, Inf. Sci. 645 (2023) 119357.
[25] L. Jin, Z.-S. Chen, W. Pedrycz, T. Senapati, B. Yatsalo, R. Mesiar, G. Beliakov, L. Martínez, Aggregation of basic uncertain information with two-step aggregation 

frame, in: IEEE Transactions on Emerging Topics in Computational Intelligence, 2023.
[26] L. Jin, R.R. Yager, R. Mesiar, Z.-S. Chen, Some general fusion and transformation frames for merging basic uncertain information, Int. J. Approx. Reason. 164 

(2024) 109082.
[27] H. Bustince, P. Burillo, Correlation of interval-valued intuitionistic fuzzy sets, Fuzzy Sets Syst. 74 (1995) 237–244.
[28] K.T. Atanassov, Operators over interval valued intuitionistic fuzzy sets, Fuzzy Sets Syst. 64 (1994) 159–174.
[29] L. Jin, R. Mesiar, R. Yager, On scatters of probability distributions and OWA weights collections, Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 27 (2019) 

773–788.
[30] C. Wallmann, G.D. Kleiter, Degradation in probability logic: when more information leads to less precise conclusions, Kybernetika 50 (2014) 268–283.
[31] R.R. Yager, Conditional approach to possibility-probability fusion, IEEE Trans. Fuzzy Syst. 20 (2011) 46–56.
[32] M. Boczek, L. Halčinová, O. Hutník, M. Kaluszka, Novel survival functions based on conditional aggregation operators, Inf. Sci. 580 (2021) 705–719.
[33] T. Calvo, G. Mayor, R. Mesiar, Aggregation Operators: New Trends and Applications, vol. 97, Springer Science & Business Media, 2002.
15

[34] M. Grabisch, J.-L. Marichal, R. Mesiar, E. Pap, Aggregation Functions, vol. 127, Cambridge University Press, 2009.

http://refhub.elsevier.com/S0165-0114(24)00299-9/bibA1C3B47E58F63351E2A85DC80511E8E7s1
http://refhub.elsevier.com/S0165-0114(24)00299-9/bib0DE400C3A098AE4E10D9CAE4CC8BCD53s1
http://refhub.elsevier.com/S0165-0114(24)00299-9/bib7D13133B3DF73B30BC9EAF26DCA4E767s1
http://refhub.elsevier.com/S0165-0114(24)00299-9/bibA43A8354D00C0F0F2C9B5FDCB5C2CDA5s1
http://refhub.elsevier.com/S0165-0114(24)00299-9/bibA43A8354D00C0F0F2C9B5FDCB5C2CDA5s1
http://refhub.elsevier.com/S0165-0114(24)00299-9/bib697DFEBE2689E5EBAFA8FBCD21136518s1
http://refhub.elsevier.com/S0165-0114(24)00299-9/bib697DFEBE2689E5EBAFA8FBCD21136518s1
http://refhub.elsevier.com/S0165-0114(24)00299-9/bibEE23B73F42D36AE1FB480E214D74B725s1
http://refhub.elsevier.com/S0165-0114(24)00299-9/bibEBA48E71AE7B9AC3E88B73882C4B53EBs1
http://refhub.elsevier.com/S0165-0114(24)00299-9/bib96C5FBFB21C3D6A2D98A80B92F0FD73Ds1
http://refhub.elsevier.com/S0165-0114(24)00299-9/bib44A6864675B8177BA4CE267C1BEC4276s1
http://refhub.elsevier.com/S0165-0114(24)00299-9/bib44A6864675B8177BA4CE267C1BEC4276s1
http://refhub.elsevier.com/S0165-0114(24)00299-9/bibFABB20AF6B756FB75AED60BABEB9606Ds1
http://refhub.elsevier.com/S0165-0114(24)00299-9/bibFABB20AF6B756FB75AED60BABEB9606Ds1
http://refhub.elsevier.com/S0165-0114(24)00299-9/bib80A4CC59AF2EC4F477DE4BB72EC2F9E7s1
http://refhub.elsevier.com/S0165-0114(24)00299-9/bib80A4CC59AF2EC4F477DE4BB72EC2F9E7s1
http://refhub.elsevier.com/S0165-0114(24)00299-9/bibF4D7DEC2F49D9CD38F13781FC8D8D1A3s1
http://refhub.elsevier.com/S0165-0114(24)00299-9/bibF4D7DEC2F49D9CD38F13781FC8D8D1A3s1
http://refhub.elsevier.com/S0165-0114(24)00299-9/bibB8F14579F03859B6E122482844F949D0s1
http://refhub.elsevier.com/S0165-0114(24)00299-9/bib83722555709127E374BBE72F2BC663A1s1
http://refhub.elsevier.com/S0165-0114(24)00299-9/bib83722555709127E374BBE72F2BC663A1s1
http://refhub.elsevier.com/S0165-0114(24)00299-9/bibDF5EE3644D8E014197AA533FD37A5B71s1
http://refhub.elsevier.com/S0165-0114(24)00299-9/bibDF5EE3644D8E014197AA533FD37A5B71s1
http://refhub.elsevier.com/S0165-0114(24)00299-9/bib6AF21639AC0D21A5E7EEDA3823D67304s1
http://refhub.elsevier.com/S0165-0114(24)00299-9/bib6AF21639AC0D21A5E7EEDA3823D67304s1
http://refhub.elsevier.com/S0165-0114(24)00299-9/bib583921C4D37F6EEC7B43DD8747AFAA39s1
http://refhub.elsevier.com/S0165-0114(24)00299-9/bib583921C4D37F6EEC7B43DD8747AFAA39s1
http://refhub.elsevier.com/S0165-0114(24)00299-9/bib7EDEEE54ACF3E4764983A13C5B00CF64s1
http://refhub.elsevier.com/S0165-0114(24)00299-9/bib7EDEEE54ACF3E4764983A13C5B00CF64s1
http://refhub.elsevier.com/S0165-0114(24)00299-9/bib2A299309E07F88B6501A21244AC8A629s1
http://refhub.elsevier.com/S0165-0114(24)00299-9/bib2A299309E07F88B6501A21244AC8A629s1
http://refhub.elsevier.com/S0165-0114(24)00299-9/bibB737F2472EC6FDA35F2CBE8ADE799F44s1
http://refhub.elsevier.com/S0165-0114(24)00299-9/bibB737F2472EC6FDA35F2CBE8ADE799F44s1
http://refhub.elsevier.com/S0165-0114(24)00299-9/bib94D7140DB73456484A3EA22087BD34E8s1
http://refhub.elsevier.com/S0165-0114(24)00299-9/bib94D7140DB73456484A3EA22087BD34E8s1
http://refhub.elsevier.com/S0165-0114(24)00299-9/bibE07B9986184784269D5C2BBCCF4B380Cs1
http://refhub.elsevier.com/S0165-0114(24)00299-9/bibE07B9986184784269D5C2BBCCF4B380Cs1
http://refhub.elsevier.com/S0165-0114(24)00299-9/bibC5E19712C9BAAF2C27CE8706D0AF285Es1
http://refhub.elsevier.com/S0165-0114(24)00299-9/bibC5E19712C9BAAF2C27CE8706D0AF285Es1
http://refhub.elsevier.com/S0165-0114(24)00299-9/bibACA29405B84F9DA43BDF422DD32A5410s1
http://refhub.elsevier.com/S0165-0114(24)00299-9/bibACA29405B84F9DA43BDF422DD32A5410s1
http://refhub.elsevier.com/S0165-0114(24)00299-9/bib07A9FF003E593800331F46A021F33686s1
http://refhub.elsevier.com/S0165-0114(24)00299-9/bib07A9FF003E593800331F46A021F33686s1
http://refhub.elsevier.com/S0165-0114(24)00299-9/bib54F4273D32E916F412D3DC5D6E82F0D7s1
http://refhub.elsevier.com/S0165-0114(24)00299-9/bib54F4273D32E916F412D3DC5D6E82F0D7s1
http://refhub.elsevier.com/S0165-0114(24)00299-9/bib507D0268905212ACE1400F336A7DDAFFs1
http://refhub.elsevier.com/S0165-0114(24)00299-9/bibF73AD01A7D0CCD92DCA9B760DF364A20s1
http://refhub.elsevier.com/S0165-0114(24)00299-9/bibEAD6AF1F610E5487036FD532C3661496s1
http://refhub.elsevier.com/S0165-0114(24)00299-9/bibEAD6AF1F610E5487036FD532C3661496s1
http://refhub.elsevier.com/S0165-0114(24)00299-9/bib7DF7B08766E337C7E1356D7C556544B3s1
http://refhub.elsevier.com/S0165-0114(24)00299-9/bib5B5C21C91379D6B9F3E0FAB3A34F63CCs1
http://refhub.elsevier.com/S0165-0114(24)00299-9/bibA317D94F3BAF4B4C9845C95AC189D83Ds1
http://refhub.elsevier.com/S0165-0114(24)00299-9/bibE034F19537B3E09DE716706EC690CE7Fs1
http://refhub.elsevier.com/S0165-0114(24)00299-9/bibF46D029730F320C032E42971A2B21D61s1


Fuzzy Sets and Systems 498 (2025) 109153L. Jin, Y. Yang, Z.-S. Chen et al.

[35] R.R. Yager, OWA aggregation with an uncertainty over the arguments, Inf. Fusion 52 (2019) 206–212.
[36] M. Boczek, L. Jin, M. Kaluszka, The interval-valued Choquet-Sugeno-like operator as a tool for aggregation of interval-valued functions, Fuzzy Sets Syst. 448 

(2022) 35–48.
[37] A.P. Dempster, Upper and lower probabilities induced by a multivalued mapping, in: Classic Works of the Dempster-Shafer Theory of Belief Functions, Springer, 

2008, pp. 57–72.
[38] G. Shafer, A Mathematical Theory of Evidence, vol. 42, Princeton University Press, 1976.
[39] A. Lepskiy, On optimal blurring of point expert estimates and their aggregation in the framework of evidence theory, Proc. Comput. Sci. 214 (2022) 573–580.
16

[40] I. Montes, E. Miranda, S. Destercke, Unifying neighbourhood and distortion models: part I–new results on old models, Int. J. Gen. Syst. 49 (2020) 602–635.

http://refhub.elsevier.com/S0165-0114(24)00299-9/bibBEC75C7F6E66A0CED68ADE53D4C99021s1
http://refhub.elsevier.com/S0165-0114(24)00299-9/bib3C956340AB7288B63B62E07AAEE338F7s1
http://refhub.elsevier.com/S0165-0114(24)00299-9/bib3C956340AB7288B63B62E07AAEE338F7s1
http://refhub.elsevier.com/S0165-0114(24)00299-9/bib156A674A8219E4B9E7C072585BEC4AA9s1
http://refhub.elsevier.com/S0165-0114(24)00299-9/bib156A674A8219E4B9E7C072585BEC4AA9s1
http://refhub.elsevier.com/S0165-0114(24)00299-9/bibF6DC6AD3C61E14D5BF714C681BF85FDCs1
http://refhub.elsevier.com/S0165-0114(24)00299-9/bib61D00F2597F67C2FE6B637D7371CA4E7s1
http://refhub.elsevier.com/S0165-0114(24)00299-9/bib66AB29A66A379D72BCB433392F8AF9AFs1

	Uncertainty merging with basic uncertain information in probability environment
	1 Introduction
	1.1 Two sources of evaluation information in uncertain decision making
	1.2 Using basic uncertain information with additional reference information

	2 Preparations
	3 Uncertainty cognition merging methods for BUI without considering probability environments
	4 Some UCM methods for BUI in probability environments
	4.1 Two UCM methods considering probability information
	4.2 Some properties and analyses for the two UCM methods

	5 The substitution UCM method
	6 UCM methods in uncertain and probabilistic decision environment
	7 Some discussion and comparison of the three UCM methods
	8 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Data availability
	References


