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Abstract
Measure-valued structured deformations are introduced to present a unified theory of
deformations of continua. The energy associated with a measure-valued structured
deformation is defined via relaxation departing either from energies associated with
classical deformations or from energies associated with structured deformations. A
concise integral representation of the energy functional is provided both in the uncon-
strained case and under Dirichlet conditions on a part of the boundary.
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1 Introduction

The primary objective of continuum mechanics in solids is to articulate how a solid
bodywill alter its shapewhen subjected to specified external forces or boundary condi-
tions.A crucial initial step toward achieving this objective involves selecting a category
of deformations for the continuum. In describing numerous continua, certain widely
accepted criteria for the chosen category of deformations have been established: these
deformations should be invertible, with differentiable mappings and inverses, and the
combination of two deformations within this category should result in another defor-
mation within the same category. However, classical deformations may not always
suffice for describing all continua, requiring alternative selections in many cases. One
approach involves introducing additional kinematic variables, such as the director
fields in a polar continuum. An alternative approach entails incorporating supplemen-
tary fields that, while connected to the deformation, function as internal variables. For
instance, in theories concerning plasticity, the plastic deformation tensor follows an
evolutionary law outlined in the constitutive equations of the continuum.

Del Piero and Owen (1993) proposed an alternative approach that identifies classes
of deformations called structured deformations, suited for continua featuring supple-
mentary kinematical variables, as well as for continua featuring internal variables
(we refer the reader to Matias et al. (2023) for a comprehensive survey on this
topic). In the theory of structured deformations, if � ⊂ R

N is the continuum body,
the role usually played by the deformation field u : � → R

d and by its gradient
∇u : � → R

d×N is now played by a triple (κ, g, G), where the piecewise differ-
entiable field g : � \ κ → R

d is the macroscopic deformation and the piecewise
continuous matrix-valued field G : � \ κ → R

d×N captures the contribution at the
macroscopic level of smooth submacroscopic changes. The (possibly empty) discon-
tinuity set κ ⊂ � of g and G can be regarded as the crack set of the material. The
main result obtained by Del Piero and Owen is the Approximation Theorem (Del
Piero and Owen 1993, Theorem 5.8) stating that any structured deformation (κ, g, G)

can be approximated (in the L∞ convergence) by a sequence of simple deformations
{(κn, un)}. Thematrix-valued field∇g−G captures the effects of submacroscopic dis-
arrangements, which are slips and separations that occur at the submacroscopic level.
The spirit with which structured deformations were introduced was that of enriching
the existing class of energies suitable for the variational treatment of physical phe-
nomena without having to commit at the outset to a specific mechanical theory such as
elasticity, plasticity, or fracture. Ideally, the regime of the deformation is energetically
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chosen by the body depending on the applied external loads: if these are small, then
the deformation will most likely be elastic, whereas if these are large, a plastic regime
or even fracture may occur.

The natural mathematical context to study problems similar to those mentioned
above is that of calculus of variations, inwhich equilibrium configurations of a deform-
ing body subject to external forces are obtained as minimizers of a suitable energy
functional. In the classical theories where the mechanics is described by the gradient
of the deformation field u, a typical expression of the energy is

E(κ, u;�) :=
∫

�

W (∇u) dx +
∫

�∩κ

ψ([u], νu) dHN−1, (1.1)

where W : Rd×N → [0,+∞) and ψ : Rd × S
N−1 → [0,+∞) are continuous func-

tions satisfying suitable structural assumptions and model the bulk and interfacial
energy densities, respectively. In the context of Del Piero and Owen, it is not clear
how to assign energy to a structured deformation (κ, g, G); the issue was solved by
Choksi and Fonseca who, providing a suitable version of the approximation theorem
(Choksi and Fonseca 1997, Theorem 2.12), use the technique of relaxation to assign
the energy I (g, G;�) as the minimal energy along sequences {un} ⊂ SBV (�;Rd)

converging to (g, G) ∈ SBV (�;Rd)× L1(�;Rd×N ) =: SD(�;Rd ×R
d×N ) in the

following sense:

un
∗
⇀ g in BV (�;Rd) and ∇un

∗
⇀ G inM(�;Rd×N ), (1.2)

where ∇un denotes the absolutely continuous part of the distributional gradient Du.
More precisely, the relaxation process reads

I (g, G;�) := inf{un}

{
lim inf
n→∞ E(Sun , un;�) : un → (g, G) according to(1.2)

}

(1.3)

and is accompanied by integral representation theorems in SD(�;Rd ×R
d×N ) for the

relaxed energy I (g, G;�) (see (Choksi and Fonseca 1997, Theorems 2.16 and 2.17)
and (Owen and Paroni 2015, Theorem 3)). The reader might have noticed that the
crack set κ has been identified with the jump set Sun of the field un ∈ SBV (�;Rd).
The variational setting introduced in Choksi and Fonseca (1997) gave rise to numerous
applications of structured deformations in various contexts, see Amar et al. (2022),
Barroso et al. (2017a), Barroso et al. (2022), Barroso et al. (2024), Carita et al. (2018),
Matias et al. (2021), and Matias et al. (2017), in which an explicit form of the energy
I (g, G;�) could be provided.

We stress that, although we look at targets (g, G) belonging to SBV (�;Rd) ×
L1(�;Rd×N ), in general, the convergence (1.2) might lead to limits that are in
BV (�;Rd) ×M(�;Rd×N ) and that, in assigning the energy (1.3), Choksi and Fon-
seca make the explicit choice to represent the relaxed energy only in SBV (�;Rd) ×
L1(�;Rd×N ). Moreover, from the mechanical point of view, one cannot, in principle,
exclude that {∇un} develop singularities in the limit, which would reflect on a weaker
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regularity of the field G, possibly not even of the same type as those of the singu-
lar part Ds g of the distributional derivative Dg, as is the case in Baía et al. (2012),
Barroso et al. (2017b), and Matias and Santos (2014). Both these mathematical and
mechanical reasons suggest that the definition of structured deformations should be
extended from SD(�;Rd × R

d×N ) to the larger set

mSD(�;Rd × R
d×N ) := BV (�;Rd) × M(�;Rd×N ), (1.4)

which we call measure-valued structured deformations, and which we abbreviate here
with mSD.

In this paper, we generalize the results of Choksi and Fonseca (1997) to mSD. In

particular, denoting with un
∗
⇀ (g, G) in mSD the convergence in (1.2), we prove

the Approximation Theorem 2.3: given any measure-valued structured deformation

(g, G) ∈ mSD, there exists a sequence {un} ⊂ SBV (�;Rd) such that un
∗
⇀ (g, G) in

mSD. This serves to define the energy I : mSD → [0,+∞) via the relaxation (1.3)
in the larger space mSD, see (2.2), for which we prove the integral representation
result, Theorem 2.4. This is one of the main results of the paper, in which we recover
the same structure of Choksi and Fonseca (1997, Theorems 2.16 and 2.17) and Owen
and Paroni (2015, Theorem 3), with the presence of an additional diffuse part. One of
the novelties of our setting is that we manage to obtain a concise form of the relaxed
energy functional involving only a bulk contribution H and its recession function at
infinity H∞

I (g, G;�) =
∫

�

H
(
∇g,

dG

dLN

)
dx +

∫
�

H∞( d(Ds g, Gs)

d|(Ds g, Gs)|
)
d|(Ds g, Gs)|(x),

where Ds g and Gs are the singular parts of the measures Dg and G, respectively,
see (2.13), in the typical form of Goffman and Serrin (1964) for functionals defined
on measures for a density, which is a particular case of those treated in Arroyo-
Rabasa et al. (2020). The relaxed bulk energy density H turns out to be quasiconvex-
convex; see Proposition 4.3. It is interesting to notice that not every quasiconvex-
convex function can be obtained as the bulk energy density associatedwith a structured
deformation: ours retains the memory of the specific relaxation process (2.2) (see also
the counterexample in Proposition 6.3). In Theorem 6.1 we prove that the energy
I (g, G;�) can be obtained by relaxing from SD(�;Rd × R

d×N ) to mSD(�;Rd ×
R

d×N ) the energy (1.1) with the addition of a term penalizing the structuredness
∇g − G

ÊR(g, G;�) := E(Sg, g;�) + R
∫

�

|∇g − G| dx,

see (6.1). Another relevant result is the possibility of performing the relaxation under
trace constraints, see Theorem 5.1, which has the far-reaching potential of studying
minimization problems in mSD(�;Rd ×R

d×N ) with the addition of boundary data.
From the point of view of continuum mechanics, measure-valued structured

deformations have the potential of extending the multiscale theory of structured defor-
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mations to include the contributions to macroscopic deformations of submacroscopic
deformations that concentrate on subsets of RN of dimension lower than N − 1. We
envisage that allowingG to be ameasure-valued fieldwould allow the theory to include
concentration of strain in the crease of a folded sheet of paper (where the resistance
to bending, for instance, is different in the flat part of the folded paper and in the
crease), as well as to include the presence of dislocation lines in three-dimensional
solids. Considering the deformations of a material domain in the shape of a three-
quarter cylinder would allow one to consider concentrations located at the axis of the
cylinder and possibly lead one to a description of disclinations (see, for reference,
Cesana et al. 2024; Olbermann 2018; Seung and Nelson 1988; Volterra 1907) in terms
of measure-valued structured deformations. Similarly, the inclusion of a third object
� ∈ M(�;Rd×N×N ) that plays the role of a second-order gradient, could lead to a
definition of measure-valued second-order structured deformations (g, G, �), in the
spirit of Owen and Paroni (2000) and Barroso et al. (2017b), and also in the spirit of
Fonseca et al. (2019) in case the structuredness is only at the level of the second-order
gradient. This investigation will be the object of future work.

2 Setting and the Definition of the Energy inmSD

We assume that the main results about functions of bounded variations are known,
otherwise we refer the reader to the monograph (Ambrosio et al. 2000) for a thorough
introduction; likewise, we refer the reader to Dal Maso (1993) for an introduction to
relaxation (see also Braides 2002).

We consider an initial energy as in (1.1), which, since we take κ = Su , now can be
written as E : SBV (�;Rd) → [0,+∞)

E(u;�) :=
∫

�

W (∇u) dx +
∫

�∩Su

ψ([u], νu) dHN−1(x), (2.1)

where W : Rd×N → [0,+∞) and ψ : Rd × S
N−1 → [0,+∞) are continuous

functions satisfying the following assumptions for A ∈ R
d×N , λ, λ1, λ2 ∈ R

d and
ν ∈ S

N−1:

cW |A| � W (A) � CW (1 + |A|); (W :1)

W is globally Lipschitz continuous; (W :2)

there exist c > 0 and 0 < α < 1 such that (W :3)∣∣∣∣W ∞(A) − W (t A)

t

∣∣∣∣ � c |A|1−α

tα
whenever t > 0 and t |A| � 1,

where W ∞(A) := lim sup
t→+∞

W (t A)

t
;

cψ |λ| � ψ(λ, ν) � Cψ |λ|; (ψ :1)
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ψ(tλ, ν) = tψ(λ, ν) andψ(−λ,−μ) = ψ(λ,μ); (ψ :2)

ψ(λ1 + λ2, ν) � ψ(λ1, ν) + ψ(λ2, ν). (ψ :3)

We considermeasure-valued structured deformations, that is, pairs (g, G) ∈ mSD,
see (1.4); we endow the space mSD with the norm

‖(g, G)‖mSD := ‖g‖BV (�;Rd ) + |G|(�),

the latter term denoting the total variation of the measure G. We are interested in
assigning an energy I : mSD → [0,+∞) by means of the relaxation

I (g, G;�) := inf
{
lim inf
n→∞ E(un;�) : {un} ∈ R(g, G;�)

}
, (2.2)

where, for every open set U ⊂ �,

R(g, G; U ) := {{un} ⊂ SBV (U ;Rd) : un
∗
⇀ (g|U , G|U ) as in (1.2)

}
(2.3)

is the set of admissible sequences. Our main result is a representation theorem for
this energy, namely that I = J with the explicit representation of the limit functional
given by

J (g, G; �) :=
∫
�

H(∇g, Ga) dx +
∫
�∩Sg

h j
(

[g], dG j
g

d(HN−1 Sg)
, νg

)
dHN−1(x)

+
∫
�

hc
(

dDcg

d|Dcg| ,
dGc

g

d|Dcg|
)
d|Dcg|(x) +

∫
�

hc
(
0,

dGs
g

d|Gs
g |

)
d|Gs

g |(x),

(2.4)

where H : Rd×N × R
d×N → [0,+∞), h j : Rd × R

d×N × S
N−1 → [0,+∞), and

hc : Rd×N × R
d×N → [0,+∞) are suitable bulk, surface, and Cantor-type relaxed

energy densities. In (2.4), we have the following objects: since g ∈ BV (�;Rd), we
know that, by De Giorgi’s structure theorem,

Dg = Dag + Ds g = Dag + D j g + Dcg = ∇gLN + [g] ⊗ νgHN−1 Sg + Dcg,

and we can decompose

G = Ga + Gs = Ga + G j
g + Gc

g + Gs
g,

where

Ga � LN , dG j
g = dG

d|D j g|d|D
j g|, dGc

g = dG

d|Dcg|d|D
cg|,
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Gs
g := G − Ga − G j

g − Gc
g.

Here, in case of Ga and other measures absolutely continuous with respect to the
Lebesgue measure, our notation does not distinguish between the measure and its
density with respect toLN . Also, notice that Gs

g is singular with respect toLN +|Dg|.
To carry out our program, we will use the following results.

Theorem 2.1 (Alberti 1991, Theorem 3; Choksi and Fonseca 1997, Theorem 2.8) Let
G ∈ L1(�;Rd×N ). Then there exist a function f ∈ SBV (�;Rd), a Borel function
β : � → R

d×N , and a constant CN > 0 depending only on N such that

D f = G LN + βHN−1 S f ,

∫
�∩S f

|β| dHN−1(x) � CN ‖G‖L1(�;Rd×N ).

(2.5)

Lemma 2.2 (Choksi and Fonseca 1997, Lemma 2.9) Let u ∈ BV (�;Rd). Then there
exist piecewise constant functions ūn ∈ SBV (�;Rd) such that ūn → u in L1(�;Rd)

and

|Du|(�) = lim
n→∞ |Dūn|(�) = lim

n→∞

∫
�∩Sūn

|[ūn]| dHN−1(x). (2.6)

The following approximation theorem generalizes the one obtained in Silhavý
(2015).

Theorem 2.3 (approximation theorem) Let � ⊂ R
N be a bounded, open set with Lips-

chitz boundary. For each (g, G) ∈ mSD there exists a sequence {un} ⊂ SBV (�;Rd)

such that un
∗
⇀ (g, G) in mSD according to (1.2). In addition, we have that

‖Dun‖M(�;Rd×N ) � C1 ‖(g, G)‖mSD , (2.7a)

and

‖un‖BV (�;Rd ) � C2(�) ‖(g, G)‖mSD , (2.7b)

for constants C1 = C1(N ) > 0 and C2(�) = C2(N ,�) > 0 independent of {un} and
(g, G).

Proof Let {Gk} ⊂ L1(�;Rd×N ) be a sequence of functions such that Gk ∗
⇀ G as

k → ∞ and supk∈N
∥∥Gk

∥∥
L1(�;Rd×N )

� |G| (�) (seeKrömer et al. 2023), and consider

the corresponding pairs (g, Gk) ∈ BV (�;Rd)× L1(�;Rd×N ). By Theorem 2.1, for
each k ∈ N, there exists f k ∈ SBV (�;Rd) such that ∇ f k = Gk and, by the estimate
in (2.5),

∣∣∣D f k
∣∣∣ (�) � CN

∥∥∥Gk
∥∥∥

L1(�;Rd×N )
� CN |G| (�). (2.8a)
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Since � is a Lipschitz set, we can use the Poincaré inequality and obtain that

sup
k∈N

∥∥∥ f k
∥∥∥

BV (�;Rd )
� CP (�)CN |G| (�). (2.8b)

By Lemma 2.2, for each k ∈ N there exists a sequence {v̄k
n} ⊂ SBV (�;Rd) of

piecewise constant functions such that v̄k
n → g − f k in L1(�;Rd) and, by (2.6),∣∣Dv̄k

n

∣∣ (�) → ∣∣D(g − f k)
∣∣ (�) as n → ∞. Now, the sequence of functions vk

n :=
v̄k

n + f k is such that vk
n → g in L1 and ∇vk

n = Gk , as n → ∞, for every k ∈ N. The
convergences in (2.7) and the estimates in (2.7) now follow from estimates (2.8) by a
diagonal argument, by defining un := v

k(n)
n , with k(n) → ∞ slowly enough. �

Before stating our integral representation result, we define the following classes
of competitors for the characterization of the relaxed energy densities below. We let
Q ⊂ R

N be the unit cube centered at the origin with faces perpendicular to the
coordinate axes, and for ν ∈ S

N−1, we let Qν ⊂ R
N be the rotated unit cube so that

two faces are perpendicular to ν. For A, B,� ∈ R
d×N and λ ∈ R

d , we define

Cbulk(A, B; Q) :=
{

u ∈ SBV (Q;Rd ) : u|∂ Q(x) = (Ax)|∂ Q ,

∫
Q

∇u dx = B

}
, (2.9a)

Csurface(λ,�; Qν) :=
{

u ∈ SBV (Qν;Rd ) : u|∂ Qν
(x) = sλ,ν |∂ Qν

(x),

∫
Qν

∇u dx = �

}
,

(2.9b)

where sλ,ν(x) := 1
2λ(sgn(x · ν) + 1). Moreover, for any open set U ⊂ R

N and
v ∈ SBV (U ;Rd), we let

E∞(v; U ) :=
∫

U
W ∞(∇v) dx +

∫
U∩Sv

ψ([v], νv) dHN−1(x). (2.10)

Theorem 2.4 (integral representation) Let � ⊂ R
N be a bounded Lipschitz domain,

and assume that (W :1)–(W :3) and (ψ :1)–(ψ :3) hold true. Then

I (g, G;�) = J (g, G;�) for all (g, G) ∈ mSD(�;Rd × R
d×N ),

where I and J are defined in (2.2) and (2.4), respectively, and the densities in J are
given by

H(A, B) := inf
{

E(u; Q) : u ∈ Cbulk(A, B; Q)
}; (2.11a)

h j (λ,�, ν) := inf
{

E∞(u; Qν) : u ∈ Csurface(λ,�; Qν)
}; (2.11b)

hc(A, B) := inf
{

E∞(u; Q) : u ∈ Cbulk(A, B; Q)
}
. (2.11c)

The proof is given in Sect. 4.1 (upper bound: I � J ) and Sect. 4.2 (lower bound:
I � J ).
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Remark 2.5 For the special case (g, G) ∈ SD(�;Rd ×R
d×N ), Theorem 2.4 reduces

to Choksi and Fonseca (1997, Theorem 2.16) (for the functional I1 in the notation
of Choksi and Fonseca (1997)). Unlike Choksi and Fonseca (1997), we assumed
coercivity of W in (W :1), but only to avoid additional technicalities.

Remark 2.6 As shown in Proposition 3.1 below, hc coincides with the recession func-
tion H∞ of H , and h j can be replaced by hc = H∞, more precisely,

h j (λ,�, ν) = hc(λ ⊗ ν,�). (2.12)

This allows for another, much more elegant representation of J :

J (g, G;�) =
∫

�

dH(Dg, G) =
∫

�

H
(
∇g,

dG

dLN

)
dx

+
∫

�

H∞( d(Ds g, Gs)

d|(Ds g, Gs)|
)
d|(Ds g, Gs)|(x), (2.13)

see Definition 3.3 and Proposition 4.1 below.

Remark 2.7 (i) As a consequence of (ψ :1) and (ψ :3), ψ is also globally Lipschitz
in λ:

|ψ(λ1, ν) − ψ(λ2, ν)| � Cψ |λ1 − λ2| . (2.14)

(ii) We will never use the symmetry condition in (ψ :2) directly, but it is necessary
to make E well-defined in SBV , as jump direction and jump normal are only
uniquely defined up to a simultaneous change of sign.

Remark 2.8 (Instability of the contribution of Gs
g in I = J ) As in the case of typical

integral functionals in BV with G = 0, the individual contributions in J handling
each of the four components of the measure decomposition

(Dg, G) = d(Dg, G)

dLN
LN + d(Dg, G)

d|Dag| |Dag| + d(Dg, G)

d|D j g| |D j g| + d(Dg, G)

d|Gs
g|

|Gs
g|

are not continuous with respect to strict or area-strict convergence; for instance,
Lebesgue-absolutely continuous contributions can generate Cantor or jump contri-
butions in the limit. The last contribution in J of the singular rest Gs

g is even worse
than the others, though, because it is not even continuous in the norm topology of
BV (�;Rd) × M(�;Rd×M ).

Take, for instance, N = 1,

� := (−1, 1), W := |·| , ψ(·, ν) := |·| , gk := 1

k
χ(0,1), G := δ0.

In particular, hc(0, B) = |B| for all B ∈ R. Then (gk, G) → (g, G) = (0, δ0)
strongly in BV × M, but Gs

gk
= 0 for all k while Gs

g = δ0 (since D j gk = 1
k δ0,
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the whole singular contribution of G with respect to LN + |Dgk | is captured by
dG

d|D j gk | |D j gk | = k 1
k δ0 = δ0, while g = 0 so that Gs

g = δ0 = G). As a consequence,

the contribution of Gs
gk

in J jumps in the limit as k → ∞:

lim
k→∞

∫
�

hc
(
0,

dGs
gk

d|Gs
gk

|
)
d|Gs

gk
|(x) = 0 �= 1=hc(0, 1)=

∫
�

hc
(
0,

dGs
g

d|Gs
g|

)
d|Gs

g|(x).

3 Auxiliary Results

In this section, we present some auxiliary results that are pivotal for the proof of
Theorem 2.4. In particular, we show that all three densities H , h j , and hc are linked
(Proposition 3.1) and we present a sequential characterization for them (Proposi-
tion 3.2). In Sect. 3.2, functionals depending on measures are introduced, as well as
the notion of area-strict convergence.

3.1 Equivalent Characterizations of the Relaxed Energy Densities

Proposition 3.1 Assume that (W :3) and (ψ :2) hold true and H, h j , and hc are defined
as in Theorem 2.4. Then the strong recession function of H,

H∞(A, B) := lim
t→+∞

H(t A, t B)

t
,

exists. Moreover, we have that

hc = H∞ (3.1)

and for all B ∈ R
d×N , λ ∈ R

d , and ν ∈ S
N−1,

hc(λ ⊗ ν, B) = hc
ν(λ ⊗ ν, B) = h j (λ, B, ν), (3.2)

where hc
ν is obtained from hc by replacing the standard unit cube Q by the unit cube

Qν oriented according to the normal ν, i.e.,

hc
ν(A, B) := inf

{
E∞(u; Qν) : u ∈ Cbulk(A, B; Qν)

}
. (3.3)

Proof We define H∞(A, B) := lim supt→∞ 1
t H(t A, t B). With this definition, we

obtain (3.1) as a consequence of (W :3) and (ψ :2). Moreover, this even holds if t
is replaced by an arbitrary subsequence. The lim sup above is thus independent of
subsequences and, therefore, a limit. It remains to show (3.2).

First equality in (3.2): We claim that hc(A, B) = hc
ν(A, B) for arbitrary A, B ∈

R
d×N .Wewill first show that hc

ν(A, B) � hc(A, B). Let ε > 0 and choose an ε-almost
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minimizer u ∈ SBV (Q;Rd) for the infimum in the definition of hc(A, B):

E(u; Q) � hc
ν(A, B) + ε, u = Ax on ∂ Q,

∫
Q

∇u dx = B. (3.4)

Up to a set of measure zero, Qν can be covered with countably many shifted and
rescaled, pairwise disjoint copies of Q:

⋃
i∈N

xi + δi Q ⊂ Qν ⊂
⋃
i∈N

(xi + δi Q), (3.5)

with suitable xi ∈ Q, 0 < δi � 1. Defining

ũ(x) :=
∑

i

χxi +δi Q(x)

(
Axi + δu

( x − xi

δ

))
, (3.6)

we obtain ũ ∈ SBV (Qν;Rd) with

|Dũ|(xi + δi∂ Q) = 0 for all i ∈ N (3.7)

and ũ = Ax on ∂ Qν (as well as on xi + δi∂ Q). Observe that by the definition of E∞
in (2.10), the positive one-homogeneity of W ∞ and ψ and a change of variables,

E∞(ũ; xi + δi Q) = δN
i E∞(u; xi + δi Q) � δN

i

(
hc

ν(A, B) + ε
)
, (3.8)

the latter due to (3.4). In addition, (3.5) gives that
∑

i∈N δN
i = ∑

i∈N LN (xi +δi Q) =
LN (Qν) = 1. Using the additivity of the integrals in E , (3.5) and (3.7), we can sum
(3.8) over i to conclude that

E∞(ũ; Qν) � hc
ν(A, B) + ε. (3.9)

Similarly, we can also check that
∫

Qν
∇ũ dx = B. Since ε > 0 was arbitrary and

ũ is admissible for the infimum in the definition of hc
ν , this implies that hc

ν(A, B) �
hc(A, B). The opposite inequality follows in exactly the same way, with exchanged
roles of Q and Qν .

Second equality in (3.2): We have to show that hc
ν(λ ⊗ ν, B) = h j (λ, B, ν). For

k ∈ N, define the laterally extended cuboid

Rν(k) :=
{

x ∈ R
N

∣∣∣ |x · ν| <
1

2
,

∣∣∣x · ν⊥
j

∣∣∣ <
2k + 1

2
for j = 1, . . . , N − 1

}
,

where ν⊥
j , j = 1, . . . , N − 1, are the pairwise orthogonal unit vectors perpendicular

to ν corresponding to the lateral faces of Qν . Notice that up to a set of measure zero
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formed by overlapping boundaries, Rν(k) can be written as a pairwise disjoint union
of (2k + 1)N−1 shifted copies of Qν :

Rν(k) =
⋃

ξ∈Z(k)

(ξ + Qν), Z(k) :=
{

ξ =
N−1∑
i=1

j(i)ν⊥
j(i)

∣∣∣∣∣ j(i) ∈ {−k, . . . , k}
}

.

Now let ε > 0 and choose an ε-almost minimizer u ∈ SBV (Qν;Rd) for the infimum
in the definition of hc

ν(λ ⊗ ν, B):

hc
ν(λ ⊗ ν, B) + ε � E∞(

u; Qν

)
, (3.10)

with E∞ defined in (2.10). Since ν⊥
j · ν = 0, the affine function x �→ (λ ⊗ ν)x

determining the boundary values of u is constant direction ν⊥
j for each j = 1, . . . , N −

1. We can therefore extend u periodically in the (N − 1) directions ν⊥
j to a function

uk ∈ SBV (Rν(k);Rd), without creating jumps at the interfaces between elementary
cells of periodicity: uk |Qν = u, uk(x + ν⊥

j ) = uk(x) whenever x, x + ν⊥
j ∈ Rν(k),

uk = (λ ⊗ ν)x on ξ + ∂ Qν for each ξ ∈ Z(k) (in the sense of traces), and |Duk |(ξ +
∂ Qν) = 0 for each ξ ∈ Z(k). As a consequence, (3.10) is equivalent to

hc
ν(λ ⊗ ν, B) + ε � 1

#Z(k)
E∞(

uk; Rν(k)
)

(3.11)

for all k ∈ N. Analogously, we can also extend the elementary jump function sλ,ν

used in the definition of h j periodically to sλ,ν,k ∈ SBV (Rν(k);Rd), again without
creating jumps at the interfaces since sλ,ν is constant in directions perpendicular to ν.

Now choose functions ϕk ∈ C∞
c (Rν(k); [0, 1]) such that

ϕk = 1 on Rν(k − 1) and |∇ϕk | � 2 on Rν(k) \ Rν(k − 1)

Defining

ũk := ϕkuk + (1 − ϕk)sλ,ν,k,

we obtain that ũk = sλ,ν,k on ∂ Rν(k), ũk = uk on Rν(k − 1) and

|Dũk |(Rν(k) \ Rν(k − 1))| � 2
∥∥uk − sλ,ν,k

∥∥
L1(Rν (k)\Rν (k−1);Rd )

+ |Dũk − Dsλ,ν,k |(Rν(k) \ Rν(k − 1))

� 2(N − 1)(2k + 1)N−2
∥∥u − sλ,ν

∥∥
BV (Qν ;Rd )

.

Since #Z(k) = (2k + 1)N−1, we conclude that 1
#Z(k)

|Dũk |(Rν(k)\Rν(k − 1))| =
O(1/k) → 0 as k → ∞. Using the Lipschitz properties of W (W :2) and ψ (2.14), we
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can thus replace uk with ũk in (3.11), with an error that converges to zero as k → ∞:

hc
ν(λ ⊗ ν, B) + ε + O(1/k) � 1

#Z(k)
E∞(

ũk; Rν(k)
)

(3.12)

Since ũk = sλ,ν on ∂ Rν(k), we can define

ûk(x̃) :=
{

ũk
(
(2k + 1)x̃

)
if x̃ ∈ 1

2k+1 Rν(k),

sλ,ν(x̃) if (2k + 1)x̃ ∈ Qν \ 1
2k+1 Rν(k),

without creating a jump at the interface between 1
2k+1 Rν(k) and the rest. As defined,

ûk is now admissible for the infimum defining h j , and by a change of variables on the
right-hand side of (3.12), we see that

hc
ν(λ ⊗ ν, B) + ε + O(1/k) � E∞(

ûk; 1

2k + 1
Rν(k)

)
= E∞(

ûk; Qν

)

� h j (λ, B, ν). (3.13)

As ε > 0 and k ∈ N were arbitrary, (3.13) implies that hc
ν(λ ⊗ ν, B) � h j (λ, B, ν).

The reverse inequality can be shown analogously. �
In the following proposition, we prove a sequential characterization of the relaxed

energy densities defined in (2.11). To do so, we define the classes of sequences of
competitors (see (2.9))

Cbulkseq (A, B; Q):={{un} ⊂ SBV (Q;Rd ) : un
∗
⇀ Ax in BV , ∇un

∗
⇀ BLN inM}

,

(3.14a)

Csurfaceseq (λ, �; Qν):={{un} ⊂ SBV (Qν;Rd ) : un
∗
⇀ sλ,ν in BV , ∇un

∗
⇀ �LN in M}

.

(3.14b)

Proposition 3.2 Suppose that (W :1)–(W :3) and (ψ :1)–(ψ :3) hold true. Then

H(A, B)=inf
{
lim inf
n→∞ E(un; Q) : {un} ∈ Cbulkseq (A, B; Q)

}
; (3.15a)

h j (λ,�, ν)=inf
{
lim inf
n→∞ E∞(un; Qν) : {un} ∈ Csurfaceseq (λ,�; Qν)

}; (3.15b)

hc(A, B)=inf
{
lim inf
n→∞ E∞(un; Q) : {un} ∈ Cbulkseq (A, B; Q)

}
. (3.15c)

Proof The formulae (3.15a) and (3.15c) are obtained in the same way as in Choksi and
Fonseca (1997, Proposition 3.1) (for the latter, notice that W = W ∞ is an admissible
choice in (3.15a)); formula (3.15b) is obtained in the same way as in Choksi and
Fonseca (1997, Proposition 4.1), i.e., by applying the technique of Choksi and Fonseca
(1997, Proposition 3.1) in a vanishing strip around the jumps of sλ,ν .. �
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3.2 Nonlinear Transformation of Measures and Area-Strict Convergence

The following shorthand notation will prove useful below.

Definition 3.3 (nonlinear transformation of measures) For any Borel set U ⊂ R
N ,

any Borel function h : Rm → R with strong recession function h∞ and any Radon
measure μ ∈ M(U ;Rm), we define

∫
U
dh(μ) :=

∫
U

h
( dμ

dLN

)
d|μ| +

∫
U

h∞( dμs

d|μs |
)
d|μs |,

where μs denotes the singular part of the Radon-Nikodym decomposition of μ with
respect to the Lebesgue measure LN : μ = dμ

dLN LN + μs .

Definition 3.4 (area-strict convergence, cf. Kristensen and Rindler 2010) For a Borel
setV , a sequence (Gk) ⊂ M(V ;Rd×N ) andG ∈ M(V ;Rd×N ), we say thatGk → G

area-strictly if Gk
∗
⇀ G inM and

∫
V
da(Gk) →

∫
V
da(G), where a(ξ) :=

√
1 + |ξ |2, ξ ∈ R

d×N .

Analogously, if V is open, for a sequence (gk) ⊂ BV (V ;Rd) and g ∈ BV (V ;Rd),

we say that gk → g area-strictly if gk
∗
⇀ g in BV and

∫
V da(Dgk) → ∫

V da(Dg).

The following lemma is a generalized Reshetnyak continuity theorem; see Kris-
tensen and Rindler (2010, Theorem 4) or Rindler (2018, Theorem 10.3).

Lemma 3.5 If H : Rd×N × R
d×N → R is continuous and has a recession func-

tion in the strong uniform sense (see Proposition 4.2), then the functional defined on
M(�;Rd×N ) × M(�;Rd×N ) by

(F, G) �→
∫

�

dH(F, G)

is sequentially continuous with respect to the area-strict convergence of measures.

We also need the following well-known lemma combining area-strict approximations
in BV and M.

Lemma 3.6 Let (g, G) ∈ mSD. Then there exists a sequence {(gk, Gk)} ⊂
W 1,1(�;Rd) × L1(�;Rd×N ) such that gk → g area-strictly in BV and Gk → G
area-strictly in M.

Proof The sequences {gk} and {Gk} can be defined separately, essentially by mollifi-
cation. As to {gk}, see, for instance, Rindler (2018, Lemma 11.1), while the case of
{Gk} is simpler. �

123



Journal of Nonlinear Science           (2024) 34:100 Page 15 of 33   100 

4 Proof of Theorem 2.4

The proof of Theorem 2.4 is divided into two parts, each of which is carried out in the
following section.

4.1 Upper Bound

Proof We have to show that I (g, G;�) � J (g, G;�), which is equivalent to the
existence of a “recovery” sequence {un} admissible in the definition of I , i.e., such

that un
∗
⇀ (g, G) in mSD and E(un;�) → J (g, G;�). The proof here is presented

using a series of auxiliary results collected below.
First observe that based on Proposition 3.1, our candidate J for the limit functional,

introduced in (2.4) using H , h j , and hc, can be expressed as a standard integral
functional of the measure variable (Dg, G) using only H and its recession function
H∞ as integrands (Proposition 4.1). As H is continuous and its recession function
exists in a strong enough sense (cf. Proposition 4.2), J is sequentially continuous with
respect to the area-strict convergence of measures (Lemma 3.5). Since any (g, G) ∈
mSD can be approximated area-strictly by sequences in W 1,1 × L1 (Lemma 3.6), a
diagonalization argument allows us to reduce the construction of the recovery sequence
to the case (g, G) ∈ W 1,1 × L1 ⊂ SBV × L1. This special case was already obtained
in Choksi and Fonseca (1997), see Remark 2.5. �
Proposition 4.1 Suppose that (W :1)–(W :3) and (ψ :1)–(ψ :3) hold. Then with the nota-
tion of Definition 3.3,

J (g, G;�) =
∫

�

dH(Dg, G)

where J is defined in (2.4) and H is given by (2.11a).

Proof Clearly, H
(
d(Dg,G)

dLN

)
= H

(
∇g, dG

dLN

)
. In addition,

|(Dg, G)s | =
(
1 + dG

d|Ds g|
)
|Ds g| + θ

=
(
1 + dG

d|Dcg|
)
|Dcg| +

(
1 + dG

d|D j g|
)
|D j g| + |Gs

g|,

since |Gs
g| and |Dgs | + LN are mutually orthogonal by definition of Gs

g , and the
Cantor and jump parts of Dg are mutually orthogonal as well. Since H∞ is positively
1-homogeneous, the definition of J implies the asserted representation once we use
Proposition 3.1 to replace H∞ by h j and hc, respectively. �

We need the following regularity properties of H , in particular at infinity.

Proposition 4.2 Suppose that (W :1), (W :3) and (ψ :1)–(ψ :3) hold. Then H is globally
Lipschitz and the recession function H∞ exists in the strong uniform sense, i.e., the
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limit

lim
(A′,B′)→(A,B)

t→+∞

H(t A′, t B ′)
t

(4.1)

exists for all (A, B) ∈ R
d×N × R

d×N \{(0, 0)}.

Proof The Lipschitz property of H was proved in Barroso et al. (2022, Theorem 2.10)
(the case p = 1). Concerning (4.1), first observe that since H is Lipschitz with some
constant L > 0,

∣∣∣∣ H(t A′, t B′)
t

− H∞(A, B)

∣∣∣∣ � L
∣∣(A′, B′) − (A, B)

∣∣ +
∣∣∣∣ H(t A, t B)

t
− H∞(A, B)

∣∣∣∣
(4.2)

Here, H∞(A, B) = lim supt→∞ 1
t H(t A, t B) as before. It, therefore suffices to show

that

lim
t→+∞

H(t A, t B)

t
= H∞(A, B).

We claim that in fact, we even have that

∣∣∣∣ H(t A, t B)

t
− H∞(A, B)

∣∣∣∣ � C(A, B)
( 1

tα
+ 1

t

)
for all t > 0, A, B ∈ R

d×N ,

(4.3)

where C(A, B) > 0 is a constant independent of t and H∞(A, B) = lim supt→+∞ 1
t

H(t A, t B).
For a proof of 4.3, first fix ε > 0 and choose ε-almost optimal sequence {ut,n}n for

the sequential characterization of H(t A, t B) in Proposition 3.2, dependent on t > 0
(and A,B). This choice yields that

H(t A, t B) + ε �
∫

Q
W (∇ut,n) dx +

∫
Q∩Sut,n

ψ([ut,n], νut,n ) dHN−1(x). (4.4)

The sequence vt,n := t−1ut,n then is also in the class of admissible sequences for
the sequential characterization of hc(A, B) in Proposition 3.2, and since hc(A, B) =
H∞(A, B) by Proposition 3.1, this entails that

H∞(A, B) �
∫

Q
W ∞(∇vt,n) dx +

∫
Q∩Svt,n

1

t
ψ([vt,n], νvt,n ) dHN−1(x), (4.5)
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where we exploited that W ∞ and ψ(·, ν) are positively 1-homogeneous. Multiplying
(4.4) by t−1 and combining it with (4.5) yields

H∞(A, B) − 1

t
H(t A, t B) � 1

t
ε +

∫
Q

(
W ∞(∇vt,n) − 1

t
W (t∇vt,n))

)
dx . (4.6)

Analogously, we can also choose and ε-almost optimal sequence ṽh for the sequential
characterization of hc(A, B) = H∞(A, B), which makes ũt,h := t ṽh admissible for
the sequential characterization of H(t A, Bt). With this, get that

1

t
H(t A, t B) − H∞(A, B) � ε +

∫
Q

(
1

t
W (t∇ṽt,n)) − W ∞(∇ṽt,n)

)
dx . (4.7)

The right hands sides of (4.6) and (4.7) can now be estimated in the same fashion: by
(W :1) and the homogeneity of W ∞ we have that

∣∣∣∣W (t A)

t
− W ∞(A)

∣∣∣∣ �
∣∣∣∣W (t A)

t

∣∣∣∣ + ∣∣W ∞(A)
∣∣ � CW

(
|A| + 1

t

)
+ CW |A|

� 3CW
1

t
if t |A| < 1.

This is exactly the case excluded in (W :3), so that together with (W :3), we obtain that

∣∣∣∣W (t A)

t
− W ∞(A)

∣∣∣∣ � c |A|1−α

tα
+ 3CW

1

t

� c(1 + |A|)
tα

+ 3CW
1

t
for all t > 0 and A ∈ R

d×N ,

(4.8)

since 0 < α < 1. Moreover, (4.4) implies that
∥∥∇vt,n

∥∥
L1 = t−1

∥∥∇ut,n
∥∥

L1 is equi-
bounded for t � 1 since H is globally Lipschitz, ψ � 0 and W is coercive by (W :1).
Similarly,

∥∥∇ṽt,n
∥∥

L1 is equi-bounded. Thus,

M(A, B) := sup
t�1

sup
n∈N

( ∥∥∇vt,n
∥∥

L1 + ∥∥∇ṽt,n
∥∥

L1

)
< ∞, (4.9)

Now we can use (4.8) to obtain upper bounds for the right-hand sides of (4.6) and
(4.7) and combine them. By (4.9), this yields that

∣∣∣∣1t H(t A, t B) − H∞(A, B)

∣∣∣∣ � ε
(1

t
+ 1

)
+ c(1 + M(A, B))

tα
+ 3LN (�)CW

1

t
(4.10)

for all t � 1. Since ε > 0 was arbitrary, (4.10) implies (4.3). �
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4.2 Lower Bound

Our proof of the lower bound relies on the following lower semicontinuity property.

Proposition 4.3 Assume that (W :1)–(W :3) and (ψ :1)–(ψ :3) hold. Then the integrand
H defined in (2.11a) is quasiconvex-convex in the sense that for all A, B ∈ R

d×N ,

∫
Q

H(A + ∇v, B + w) dx � H(A, B)

for all (v,w) ∈ W ∞
0 (Q;Rd) × L∞(Q;Rd×N ) with

∫
Q

w dx = 0.

Moreover, the functional (g, G) �→ ∫
�
dH(Dg, G) is sequentially lower semi-

continuous with respect to the convergence in (1.2).

Proof We will first show that (g, G) �→ ∫
�

H(∇g, G) dx is sequentially lower
semi-continuous with respect to weak convergence in W 1,1 × L1. Take (g, G) ∈
W 1,1(�;Rd) × L1(�;Rd×N ) and {(gn, Gn)} ⊂ W 1,1(�;Rd) × L1(�;Rd×N ) with
(gn, Gn)⇀(g, G) weakly in W 1,1 × L1. By Choksi and Fonseca (1997, Theorem
2.16) (recovery sequence for the case of I1 therein), for each n there exists a sequence
{un,k}k ⊂ SBV (�;Rd) such that as k → ∞,

un,k → gn in L1(�;Rd) and ∇un,k
∗
⇀ Gn inM(�;Rd×N ),

and

E(un,k;�) →
∫

�

H(∇gn, Gn) dx .

In addition, we may assume that up to a (not relabeled) subsequence

lim inf
n→∞

∫
�

H(∇gn, Gn) dx = lim
n→∞

∫
�

H(∇gn, Gn) dx < +∞.

Since E is coercive as a consequence of (W :1) and (ψ :1), the latter implies that
{Dun,k} is equi-bounded in M(�;Rd×N ). We can therefore find a diagonal subse-
quence un,k(n) with k(n) → ∞ fast enough, such that

(un,k(n),∇un,k(n))
∗
⇀ (g, G) in mSD and lim

n→∞ E(un,k(n);�)

= lim
n→∞

∫
�

H(∇gn, Gn) dx .

Since the sequence {un,k(n)}n is admissible for the lower bound in Choksi and Fonseca
(1997, Theorem 2.16) (for the functional I1), we conclude that

lim
n→∞

∫
�

H(∇gn, Gn) dx = lim
n→∞ E(un,k(n);�) �

∫
�

H(∇g, G) dx,
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i.e., the functional with integrand H is weakly lower semi-continuous in W 1,1 × L1.
Since H also has at most linear growth by Proposition 4.2 and is non-negative as a
consequence of (W :1), Carita et al. (2010, Theorem 1.1) (see also Carita et al. 2011)
implies that H is quasiconvex-convex.

It remains to show that (g, G) �→ ∫
�
dH(Dg, G) is sequentially lower semi-

continuous with respect to the convergence (1.2). This follows from Arroyo-Rabasa
et al. (2020, Theorem 1.7). Here, notice that with A := diag(Curl, 0), i.e., with
A(∇g�, G)� := ((Curl∇g)�, 0)�, A(∇g�

k , Gk)
� = 0 in the sense of distributions,

and the A-quasiconvexity of H for this special case is equivalent to quasiconvexity-
convexity of H . The latter can equivalently be tested with periodic functions on the
simply connected U where all curl-free fields are gradients.

�
Proof of Theorem 2.4, lower bound Let H be the integrand in (2.11a). Moreover, let

(g, G) ∈ mSD and {vn} ⊂ SBV (�;Rd) be such that vn
∗
⇀ (g, G) in the sense of

(1.2). Observing that for each n, vn can be interpreted as a constant sequence con-
verging to itself in mSD, by Proposition 3.1 and Choksi and Fonseca (1997, Theorem
2.16) (its lower bound for the case of I1 therein), we have that

∫
�

dH(Dvn,∇vnLN ) �
∫

�

W (∇vn)dx +
∫

�∩Svn

ψ([vn], νvn )dHN−1(x).

(4.11)

In addition, (u, G) �→ ∫
�
dH(Du, G) is weak∗-sequentially lower semi-continuous

in mSD by Proposition 4.3. In particular,

∫
�

dH(Dg, G) � lim inf
n→∞

∫
�

dH(Dvn,∇vnLN ). (4.12)

Taking Proposition 4.1 into account, the lower bound inequality now follows from
(4.12) and (4.11):

J (g, G;�) =
∫

�

dH(Dg, G) � lim inf
n→∞

∫
�

dH(Dvn,∇vnLN )

� lim inf
n→∞

∫
�

W (∇vn)dx +
∫

�

ψ([vn], νvn )dHN−1(x) = lim inf
n→∞ E(vn).

�

5 Relaxation Under Trace Constraints

Let �′ be a bounded Lipschitz domain such that � ⊂ �′, and let

� := �′ ∩ ∂�.
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Let u0 ∈ W 1,1(�′;Rd) and let (g, G) ∈ mSD. The relaxed functional subject to the
Dirichlet condition u = u0 on � is defined as

I�(g, G;�) := inf

⎧⎪⎪⎨
⎪⎪⎩
lim inf
n→∞ E(un;�)

∣∣∣∣∣∣∣∣

un ∈ SBV (�;Rd), un = u0 on �,

un
∗
⇀ g in BV (�;Rd),

∇un
∗
⇀ G inM(� ∪ �;Rd×N )

⎫⎪⎪⎬
⎪⎪⎭

, (5.1)

where, for every open subset A of �′, E(·; A) is the functional given by (2.1), with
W and ψ satisfying (W :1)–(W :1) and (ψ :1)–(ψ :3),

We have the following integral representation for I� .

Theorem 5.1 Let � ⊂ R
N be a bounded Lipschitz domain and assume that (W :1)–

(W :1) and (ψ :1)–(ψ :3) hold. Moreover, let �′ ⊃ � be a bounded domain and u0 ∈
W 1,1(�′;Rd). In addition, for � := �′ ∩ ∂� assume that HN−1(� \ �) = 0. Then,

I�(g, G;�) = J�(g, G;�) for every (g, G) ∈ mSD,

where

J�(g, G;�) :=
∫

�

dH(g, G)

+
∫

�

H∞
(

d([g − u0] ⊗ ν� HN−1 �, G)

d|([g − u0] ⊗ ν� HN−1 �, G)|
)

d|([g − u0] ⊗ ν� HN−1 �, G)|,

and H is the function defined in (2.11a).

The proof will be given in two parts. We immediately start with the lower bound, and
the proof of the upper bound will follow after an auxiliary result needed there.

Proof of Theorem 5.1, the lower bound We have to show that I�(g, G;�) � J�(g, G;
�). For every k ∈ N, let �k := {x ∈ R

N : dist(x,�) � 1
k }, and consider

�′
k := �k ∩ �′.

Thus� = �′
k ∩∂�, for every k and�′

k shrinks to�∪� as k → ∞. As for I�(g, G;�),
define for every k ∈ N

Î�(g, G;�′
k) :=

∫
�′

k\�
W (∇u0) dx

+ inf
{
lim inf
n→∞ E(un;�) : un ∈ SBV (�′

k;Rd), un = u0 on ∂�,

un
∗
⇀ g in BV (�;Rd),∇un

∗
⇀

G inM(� ∪ �;Rd×N )
}
.
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Thus

I�(g, G;�) = Î�(g, G;�′
k) −

∫
�′

k\�
W (∇u0)dx . (5.2)

On the other hand,

Î�(g, G;�′
k) = inf

{
lim inf
n→∞ E(vn;�′

k) : vn ∈ SBV (�′
k;Rd), vn = u0 in �′

k \ �,

vn
∗
⇀ ĝ in BV (�′

k;Rd),∇vn
∗
⇀ Ĝ inM(�′

k;Rd×N )
}
,

where

ĝ :=
{

g in �,

u0 in �′
k \ �

and Ĝ :=
{

G in � ∪ �,

∇u0 in �′
k \ �.

In particular,

Dĝ��= [g − u0] ⊗ ν� HN−1 �.

Clearly, for every �′
k ,

Î�(g, G;�′
k)

� I (ĝ, Ĝ;�′
k) =

∫
�′

k

dH(ĝ, Ĝ)

�
∫

�

dH(g, G) +
∫

�

H∞
(

d([g − u0] ⊗ ν� HN−1 �, G)

d|([g − u0] ⊗ ν� HN−1 �, G)|
)

d|([g − u0] ⊗ ν� HN−1 �, G)|,

(5.3)

where I (ĝ, Ĝ;�′
k) is the functional introduced in (2.2), and in the equality we

have exploited Theorem 2.4 and Remark 2.6. The proof is concluded by letting
k → ∞, in the above inequality, taking into account (5.2) and the fact that
limk→∞

∫
�′

k\� W (∇u0) dx = 0. �
Below, we will reduce the construction of the recovery sequence needed for the

upper bound to that of Theorem 2.4. This relies on the following lemma.

Lemma 5.2 (domain shrinking (Krömer and Valdman 2023, Lemma 3.1)) Let � ⊂
R

N be a bounded Lipschitz domain. Then there exists an open neighborhood U ⊃ �

and a sequence of maps {� j } ⊂ C∞(U ;RN ) such that for every j ∈ N,

� j : U → � j (U ) is invertible and � j (�) ⊂⊂ �. (5.4)

In addition, � j → id in Cm(U ;RN ) as j → ∞, for all m ∈ N ∪ {0}.
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Proof This is the case � = ∅ in Krömer and Valdman (2023). The statement there has
� j only defined on �, but the proof also provides the extension to U (as long as U is
still fully covered by the union of � and the open cuboids covering ∂� in which ∂�

can be seen as a Lipschitz graph). �
Remark 5.3 If� is strictly star-shapedwith respect to some x0 ∈ �, Lemma 5.2 is easy
to show with � j (x) := x0 + j

j+1 (x − x0). The proof of Krömer and Valdman (2023,
Lemma 3.1) for the general case glues local constructions near the boundary using a
decomposition of unity, exploiting that everything happens uniformly C1-close to the
identity to preserve invertibility.

Proof of Theorem 5.1, the upper bound We have to show that I�(g, G;�) � J�(g, G;
�), for each (g, G) ∈ BV (�;Rd) × M(� ∪ �;Rd×N ). For this, it suffices to find
a recovery sequence, i.e., a sequence (un) admissible in the definition of I�(g, G;�)

such that E(un;�) → J�(g, G;�). In particular, we must have un = u0 on �

in the sense of traces in BV . The proof is divided into three steps. In the first two
steps, we define a suitable approximating sequence of limit states (ĝ j , Ĝ j ) such that

(ĝ j , Ĝ j )
∗
⇀ (g, G) in mSD, J�(ĝ j , Ĝ j ;�) → J�(g, G;�) and ĝ j = u0 on �. In

the final step, we will then use the upper bound in Theorem 2.4, which for each j
gives a “free” recovery sequence {u j,n}n ⊂ BV for I (ĝ j , Ĝ j ;�) that again can be
modified to match the trace of its weak∗ limit ĝ j on �. The assertion then follows by
a diagonal subsequence argument.

Step 1: Approximating limit states (g j , G j ) with values “close” to u0 near �.
Choose a bounded neighborhood U of � according to Lemma 5.2 and an extension

g̃ ∈ BV (U ;Rd) with g̃|� = g, |Dg̃|(∂�) = 0, g̃ ∈ W 1,1(U \ �;Rd).

With this, we define

BV (U ;Rd) � g0 :=χ�g + χU∩(�′\�)u0 + χU\�′ g̃,

M(U ;Rd×N ) � G0 :=χ�∪�G.

In particular, with the outer normal ν� to ∂� on �,

G0 (� ∪ �) = G, Dg0 (� ∪ �) = Dg � + (u0 − g) ⊗ ν� HN−1 �,

G0 (U\(� ∪ �)) = 0, g0|� = g, and g0 jumps at � from (the trace of) g to u0 and
at U ∩ (∂�′ \ �) from g̃ to u0.

With the maps � j from Lemma 5.2, we define

� j := �−1
j and (g j , G j ) := (

g0 ◦ � j , (G0 ◦ � j )∇� j
) ∈ BV (� j (U );Rd)

×M(� j (U );Rd×N ).

Here, in the definition of G j , G0 ◦ � j is the measure defined as (G0 ◦ � j )(A) :=
G0(� j (A)) for all Borel sets A ⊂ � j (U ), and ∇� j ∈ C0(U ;RN×N ) is interpreted
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as a continuous density function attached to it by matrix multiplication from the right.
Altogether, G j is the measure satisfying dG j (z) = d(G0 ◦ � j )(z)∇� j (z), similar
to Dg j which satisfies dDg j (z) = (Dg ◦ � j )(z)∇� j (z) by the chain rule. Also
notice that as a consequence of Lemma 5.2 (where we only need the case m = 1),
for all j big enough, ∇� j (x) is an invertible matrix for all x ∈ U , � ⊂ � j (U ) and
� j (∂�)∩� = ∅. Passing to a subsequence (not relabeled), we thus may assume that

� j : U → � j (U ) is a diffeomorphism, � ⊂ � j (U ) and � j (∂�) ∩ � = ∅
for all j ∈ N. (5.5)

We claim that the sequence {(g j , G j )} j has the following properties:

∥∥T�(g j − u0)
∥∥

L1(�;Rd )
−→
j→∞ 0, |G j |(�) = |G j |(∂�) = 0, (5.6)

where T� : BV (�;Rd) → L1(∂�;Rd) denotes the trace operator,

g j |� ∗
⇀ g in BV (�;Rd), (Dg j �, G j �)

∗
⇀ (Dg0 (� ∪ �), G0)

inM(�;Rd×N )2 (5.7)

and

∫
�

dH(Dg j , G j ) −→
j→∞

∫
�∪�

dH(Dg0 (� ∪ �), G). (5.8)

The second part of (5.6) follows from the definition of G j because � j (∂�) ⊂
U\� and |G0|(U\�) = 0. As to the first part of (5.6), first notice that since u0 ∈
W 1,1(U ;Rd), we do not have to distinguish between the inner and outer traces T�u0
and TU\�u0 of u0 on ∂�. Moreover,

g j − u0 = (
g0 ◦ � j − u0 ◦ � j

) + (
u0 ◦ � j − u0

)

and u0 ◦� j → u0 in W 1,1(�;Rd), so that the asserted convergence of traces follows
from the continuity of the trace operator in W 1,1 once we see that (g0 − u0) ◦ � j = 0
in some neighborhood of � (which may depend on j). The latter is trivial by definition
of g0 if

� j (�) ⊂ �′ \ � for all j ∈ N; (5.9)

here, we already have that� j (�)∩� = ∅. We can therefore assume (5.9) without loss
of generality: otherwise, if� j (�) �⊂ �′, we can define r( j) := 1

2 Dist(� j (�),�) > 0
and take

�̃′ := �′ ∪ {
x ∈ R

N | dist(x,� j (�)) < r( j) for a j ∈ N
}
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instead of �′. Here, recall that �′ is just an auxiliary object to define � (and g0 above,
outside of �), and by construction, �̃′ still has all the properties we required for �′:
�̃′ ⊃ � is a bounded domain and �̃′ ∩ ∂� = � = �′ ∩ ∂�.

For the proof of (5.7) and (5.8), fix ϕ ∈ C(�), continuously extended to ϕ ∈
C(RN ). By the definition of (g j , G j ) and the change of variables x = � j (z), we get
that for every Borel set V ⊂ U ,

∫
�

ϕ(z)dH(Dg j , G j )(z)

=
∫

�

ϕ(z)dH
(
(Dg0 ◦ � j )∇� j , (G0 ◦ � j )∇� j

)
(z)

=
∫

� j (�)

ϕ(� j (x))H
(
∇g0(∇� j )

−1,
dG0

dLN
(∇� j )

−1
)
det(∇� j (x)) dx

+
∫

� j (�)

ϕ(� j (x))dH∞(
Ds g0(∇� j )

−1, Gs
0(∇� j )

−1)(x)

=
( ∫

� j (�)∩V
(ϕ ◦ � j )H

(
∇g0(∇� j )

−1,
dG0

dLN
(∇� j )

−1
)
det(∇� j (x)) dx

+
∫

� j (�)∩V
(ϕ ◦ � j ) dH∞(

Ds g0(∇� j )
−1, Gs

0(∇� j )
−1)(x)

)

+
(∫

� j (�)\V
(ϕ ◦ � j )H

(
∇g0(∇� j )

−1,
dG0

dLN
(∇� j )

−1
)
det(∇� j (x)) dx

+
∫

� j (�)\V
(ϕ ◦ � j ) dH∞(

Ds g0(∇� j )
−1, Gs

0(∇� j )
−1)(x)

)

=: S j (ϕ; V ) + Tj (ϕ; V ) (5.10)

As to the second term Tj (ϕ; V ) (integrals on � j (�) \ V ), we exploit that (∇� j )
−1 is

uniformly bounded and H has at most linear growth. Hence, there is a constant C > 0
such that with Cϕ := C ‖ϕ‖L∞(U ),

lim sup
j→∞

∣∣Tj (ϕ; V )
∣∣ � Cϕ lim sup

j→∞
(LN + |Dg0| + |G0|)(� j (�) \ V )

� Cϕ(LN + |Dg0| + |G0|)(� \ V )

= Cϕ(LN + |Dg0| + |G0|)((� ∪ �) \ V ),

(5.11)

by dominated convergence and the fact that � j → id in C1. Here, we also used that

|Dg0|(∂� \ �) = 0 = |G0|(∂� \ �),

by definition of g0, G0 and our assumption that HN−1(� \ �) = 0.
For the term S j (ϕ; V ) (integrals on� j (�)∩V ) on the right-hand side of (5.10), we

again use that� j → id inC1; in particular, (∇� j )
−1 → I (identitymatrix) uniformly.
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In addition, H � 0 is Lipschitz and ϕ is uniformly continuous. Consequently, for all
ϕ � 0,

∫
�∩V

ϕ dH(Dg0, G0)(x) � lim inf
j→∞ S j (ϕ; V ) � lim sup

j→∞
S j (ϕ; V )

�
∫

�∩V
ϕ dH(Dg0, G0)(x).

(5.12)

Here, to handle the limit in the domain of integration � j (�)∩ V , for the lower bound
we used monotonicity and the fact that � ⊂ � j (�) for all j by (5.5), while for the
upper bound we used that � j (�) ↘ � and dominated convergence.

By splitting a general ϕ into positive and negative parts, (5.12) immediately implies
that

lim
j→∞ S j (ϕ; V ) =

∫
�∩V

ϕ dH(Dg0, G0)(x) =
∫

(�∪�)∩V
ϕ dH(Dg0, G)(x)(5.13)

for all ϕ ∈ C(U ). Combining (5.10), (5.11) and (5.13) for the case V = � ∪ �, we
infer that

∫
�

ϕ dH(Dg j , G j )(z) →
∫

�∪�

ϕ dH(Dg0, G)(x) as j → ∞. (5.14)

In particular, (5.14) yields (5.8) when we choose ϕ ≡ 1.
In addition,we can analogously obtain (5.14) for other functions instead H (globally

Lipschitz with a uniform strong recession function in the sense of (4.1); if needed, H
can be temporarily split into a positive and a negative part for the proof of (5.13), just
like ϕ). With the choices

H(A, B) := Ai j and H(A, B) := Bi j , where A = (Ai j ) and B = (Bi j ),

for i = 1, . . . , d and j = 1, . . . , N , (5.14) implies the secondpart of (5.7), in particular

that Dg j �
∗
⇀ Dg0 (� ∪ �) inM(�;Rd×N ).

Finally, it is not hard to see that g j → g in L1(�;Rd). We conclude that g j
∗
⇀ g

in BV (�;Rd), which completes the proof of (5.7).
Step 2: Approximating limit states (ĝ j , Ĝ j ) with ĝ j = u0 on �.
The functions g j defined in the previous step do not yet satisfy g j = u0 on �,

although their traces converge to u0 by (5.6). We can correct this using the trace
extension theorem: Choose {v j } ⊂ W 1,1(�;Rd) such that

T�v j |� = T�(g j − u0)|� and
∥∥v j

∥∥
W 1,1(�;Rd )

� C∂�

∥∥T�(g j − u0)
∥∥

L1(�;Rd )
.

(5.15)
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By (5.6), we infer that
∥∥v j

∥∥
W 1,1(�;Rd )

→ 0. Consequently, for

ĝ j := g j − v j and Ĝ j := G j ,

instead of (g j , G j ) we still have (5.6), (5.7) and (5.8), and in addition, ĝ j = u0on �.
Namely, defining

� := (T�g − u0) ⊗ ν�HN−1 �

so that Dg0 = Dg + � on � ∪ �, we have that

ĝ j = u0 on �, |Ĝ j |(�) = |Ĝ j |(∂�) = 0, (5.16)

ĝ j |� ∗
⇀ g in BV (�;Rd), (Dĝ j �, Ĝ j �)

∗
⇀ (Dg + �, G) inM(� ∪ �;Rd×N )2, (5.17)

and

lim
j→∞

∫
�

dH(Dĝ j , Ĝ j ) =
∫

�

dH(g, G) +
∫

�

dH∞(�, G). (5.18)

Step 3: Recovery by diagonalizing free recovery sequences for (ĝ j , Ĝ j )

We first observe that I in (2.2) admits the following equivalent representation

Ig(g, G; �) := inf
{
lim inf
n→∞ E(un; �) : {un} ⊂ SBV (�;Rd ), un

∗
⇀ (g, G), un ≡ g on ∂�

}
,

(5.19)

for every (g, G) ∈ mSD.
Clearly I (g, G;�) � Ig(g, G;�). The opposite one can be obtained following an

argument of Bouchitté et al. (2002). The details are provided below for the reader’s
convenience.

For any SBV (�;Rd) � un
∗
⇀ (g, G) in the sense of (2.7), almost optimal for

I (g, G;�), i.e., for every ε > 0,

lim inf
n→∞ E(un;�) � I (g, G;�) + ε.

Without loss of generality, assume that the above lower limit is indeed a limit and
consider the sequence of measures νn := LN + |Dun| + |Dg|, which converges
weakly* to some Radon measure ν.

Denoting, for every t > 0,�t := {x ∈ �| dist(x, ∂�) > t}, we fix some η > 0 and
for every 0 < δ < η we define the subsets Lδ := �η−2δ\�η+δ . Consider a smooth
cut-off function ϕδ ∈ C∞

0 (�η−δ; [0, 1]) such that ϕδ = 1 on �η. As the thickness of
the strip Lδ is of order δ, we have an upper bound of the form ‖∇ϕδ‖L∞(�η−δ) ≤ C/δ.
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Define

wδ
n := unϕδ + g(1 − ϕδ).

Clearly this sequence converges to g in L1(�;Rd) and satisfies T�wδ
n = T�g on ∂�.

Moreover

∇wδ
n

∗
⇀ G and Dwδ

n
∗
⇀ Dg inM(�;Rd×N )

as n → ∞ and then δ → 0. Indeed

∇wδ
n = ∇ϕδ ⊗ (un − g) + ϕδ(∇un − ∇g) + ∇g,

Dwδ
n = ∇ϕδ ⊗ (un − g) + ϕδ(Dun − Dg) + Dg.

Concerning the energies, we have

E(wδ
n;�) ≤ E(wδ

n;�η) + E(wδ
n;� \ �η−δ) + E(uδ

n;�η−2δ \ �η+δ)

≤ E(un;�η) + E(g;� \ �η−δ)

+ CW ,ψ

(
(LN + |Dun| + |Dg|)(Lδ) + 1

δ

∫
Lδ

|un − g| dx

)
,

where CW ,ψ is any bigger constant which bounds from above the constants appearing
in(W :1), (ψ :1) and in L∞ bound of ∇ψδ on Lδ . Taking the limit as n → ∞ we have

lim inf
n→∞ E(wδ

n;�) ≤ lim
n→∞ E(un;�) + CW ,ψν(� \ �η−δ) + CW ,ψν(Lδ)

≤ I (g, G;�) + ε + CW ,ψν(u;� \ �η−δ) + CW ,ψν(Lδ).

Letting δ → 0 we obtain

Ig(g, G;�) ≤ I (g, G;�) + ε + CW ,ψν(� \ �η) + CW ,ψν(∂�η).

Choose a subsequence {ηn} such that ηn → 0+ and ν(∂ Aηn ) = 0. By letting first
n → ∞ and then ε → 0+ we conclude that Ig(g, G;�) � I (g, G;�).

Then, for any (ĝ j , Ĝ j )
∗
⇀ (g, G) as in Step 2, satisfying (5.16), (5.17), and

(5.18), we can apply Theorem 2.4 and find a recovery sequence for Iĝ j (ĝ j , Ĝ j ;�) =
I (ĝ j , Ĝ j ;�) for each j , i.e., {u j

n}n ⊂ SBV (�;Rd) such that u j
n

∗
⇀ (ĝ j , Ĝ j ) in the

sense of (2.7), T�u j
n = T�ĝ j on ∂�, in particular T�u j

n = u0 on �, and

lim
n→∞ E(un;�) = J (g j , G j ;�) =

∫
�

dH(ĝ j , Ĝ j ).

Since |Ĝ j |(∂�) = 0, we also have that ∇u j
n

∗
⇀ Ĝ j inM(� ∪ �;Rd×N ).
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A standard diagonalization argument, exploiting the coercivity of E given by (W :1)
and (ψ :1) to obtain bounds uniform in n and j , now concludes the proof. �

6 Further Properties and Examples

As shown below, we also have an alternative way of interpreting I , as a more classic
relaxation problem of a functional on SBV × L1 in BV × M.

Theorem 6.1 Assume (W :1)–(W :3) and (ψ :1)–(ψ :3). For (g, G) ∈ SBV (�;Rd) ×
L1(�;Rd×N ) and R > 0, we define

ÊR(g, G;�) :=
∫

�

(W (∇g) + R|∇g − G|) dx +
∫

Sg∩�

ψ([g], νg) dHN−1(x)

(6.1)

and its relaxation

ÎR(g, G;�)

:= inf
{
lim inf
n→∞ ÊR(gn, Gn;�)

∣∣∣ SBV × L1 � (gn, Gn)
∗
⇀ (g, G) in BV × M

}

for (g, G) ∈ mSD. Then there exists R0 = R0(N , W , ψ) > 0 such that

ÎR(·, ·;�) = I (·, ·;�) for all R � R0,

where I (·, ·;�) is the relaxation of E(·;�) defined in (2.2).

Remark 6.2 Theorem 6.1 in principle opens another route to proving Theorem 2.4, our
representation theorem for I , via a relaxation theorem characterizing ÎR . However, the
closest available results in this direction seem to be Arroyo-Rabasa et al. (2020) and
Baía et al. (2013) (for the case A = diag(Curl, 0), cf. the proof of Proposition 4.3)
and Barroso et al. (1996). However, the former does not allow us to choose ψ freely,
and the latter does not allow us to include G.

Proof of Theorem 6.1 We first observe that, for every R > 0, ÊR(u,∇u,�) =
E(u;�) for every u ∈ SBV (�;Rd). Let (g, G) ∈ mSD and let SBV (�;Rd) �
gn

∗
⇀ (g, G) according to (1.2). Since {(gn,∇gn)} is an admissible sequence for

ÊR(g, G;�),

ÎR(g, G;�) � lim inf
n→∞ E(gn;�).

Hence, passing to the infimum over all the admissible sequences {gn}, we have

ÎR(g, G,�) � I (g, G,�).
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To prove the opposite inequality for R � R0 with a suitable R0 to be chosen later,

take {(gn, Gn)} admissible for ÎR(g, G;�), so that gn
∗
⇀ g in BV , Gn

∗
⇀ G in M.

We choose a sequence {vn} given by S̆ilhavý (2015, Theorem 1.1) such that

vn
∗
⇀ 0 in BV , ∇vn = −∇gn + Gn ,

and

|Dvn|(�) � C(N )

∫
�

|Gn − ∇gn| dx = C(N )

∫
�

|∇vn| dx . (6.2)

In particular, the sequence un := gn + vn is admissible for I (g, G;�).
Taking into account that

Sgn = (Sgn \ Sgn+vn ) ∪ (Sgn ∩ Sgn+vn ) and Sgn+vn = (Sgn ∩
Sgn+vn ) ∪ (Sgn+vn \ Sgn ),

also using (W :1), (ψ :1) and (2.14) we obtain that

ÊR(gn, Gn;�) − ÊR(gn + vn,∇(gn + vn);�)

=
∫

�

(
W (∇gn) − W (∇gn + ∇vn)

)
dx +

∫
�

R|∇gn − Gn| dx

+
∫

�∩Sgn

ψ([gn], νgn ) dHN−1(x) −
∫

�∩Sgn+vn

ψ([gn + vn], νgn+vn ) dHN−1(x)

� −
∫

�

L|∇vn| dx +
∫

�

R|∇vn|dx +
∫

�∩(Sgn \(Sgn+vn )

ψ([gn], νgn )dHN−1(x)

−
∫

�∩(Sgn ∩Sgn+vn )

Cψ |[vn]|dHN−1(x) −
∫

�∩(Sgn+vn \Sgn )

Cψ |[vn]|dHN−1(x)

�
∫

�

(R − L)|∇vn|dx −
∫

�∩Svn

Cψ |[vn]| dHN−1(x)

� (R − (L + CψC(N )))

∫
�

|∇vn| dx � 0,

as long as R � R0 := L + CψC(N ). Here, L , Cψ , and C(N ) denote the Lipschitz
constant of W , the Lipschitz and growth constant of ψ in (2.14) and (ψ :1), and the
constant appearing in (6.2), respectively. Passing to the limit as n → ∞, we conclude
that

lim inf
n→∞ ÊR(gn, Gn;�) � lim inf

n→∞ ÊR(gn + vn,∇(gn + vn);�)

= lim inf
n→∞ E(gn + vn;�) � I (g, G;�)

for all R � R0. As this holds for all sequences {(gn, Gn)} that are admissible for
ÎR(g, G;�), the thesis follows. �
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In view of Theorem 6.1, it is a natural question to what degree our relaxed func-
tional I is influenced by its origin from E , defined on structured deformations. The
following example shows that this special background is still present in the relaxed I at
least in the sense that not all quasiconvex-convex densities H (that could be obtained
by general relaxation in BV × M) can be obtained in I .

Proposition 6.3 For all W and ψ satisfying the assumptions of Theorem 2.4, there
exists B0 ∈ R

d×N and ξ ∈ R
d , ν ∈ R

N with |ξ | = |ν| = 1 so that for the function H
defined in (2.11a),

H(B0 + tξ ⊗ ν, B0) = W (B0) + ψ(tξ, ν) for all t > 0. (6.3)

In particular, for any possible choice of W and ψ ,

H �= H0 with H0(A, B) :=
√

|A|2 + 1 + |B|

because the function (0,+∞) � t �→ H0(B0 + tξ ⊗ ν, B0) is not affine.

Proof To see “�” in (6.3), it suffices to choose a suitable admissible sequence in

(3.15a), the sequential characterization of H : On Q, we have ∇un
∗
⇀ B0 in M and

un
∗
⇀ A0x for A0 := B0 + tξ ⊗ ν for

un(x) := B0x + tξ

n
[nx · ν],

where [s] := min{z ∈ Z : |z − s| = dist(s,Z)} denotes rounding of s to the
closest integer. An upper bound for H(A0, B0) is therefore given by limn E(un; Q) =
W (B0) + ψ(tξ, ν) (by 1-homogeneity of ψ), for any possible choice of B0, ξ and ν.

To obtain “�” in (6.3), we use a particular choice: Since both W and ψ are con-
tinuous and W is coercive, there always exists global minima B0 of W on R

d×N and
(ξ, ν) of ψ on the compact set Sd−1 × S

N−1 := {
(ξ, ν) ∈ R

d ×R
N | |ξ | = |ν| = 1

}
.

As a consequence,

W (B0) = W ∗∗(B0) and ψ(ξ, ν) � ψ(ξ̃ , ν̃) for all (ξ̃ , ν̃) ∈ S
d−1 × S

N−1. (6.4)

Here, W ∗∗ denotes the convex hull of W . For any u admissible in the definition (2.11a)
of H(A0, B0) with A0 := B0 + tξ ⊗ ν, we now have that

∫
Q

W (∇u) dx �
∫

Q
W ∗∗(∇u) dx � W ∗∗(B0) = W (B0) (6.5)

by Jensen’s inequality, since
∫

Q ∇u dx = B0 for all admissibleu in (2.11a).Moreover,
since u ∈ SBV and u = A0x on ∂ Q, we have that

∫
Su∩Q

[u] ⊗ νu dHN−1(x) =
∫

Q
dDu −

∫
Q

∇u dx = A0 − B0 = tξ ⊗ ν.
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Multiplied with the fixed unit vector ν from the right, this reduces to

∫
Su∩Q

[u](νu · ν) dHN−1(x) = tξ. (6.6)

By the positive 1-homogeneity of ψ , the minimality property of (ξ, ν) in (6.4) and
another application of Jensen’s inequality with (6.6) to the convex function | · |, we
infer that

∫
Su∩Q

ψ([u], νu) dHN−1(x) =
∫

Su∩Q
|[u]|ψ

( [u]
|[u]| , νu

)
dHN−1(x)

�
∫

Su∩Q
|[u](νu · ν)|ψ(ξ, ν) dHN−1(x)

� |tξ |ψ(ξ, ν) = ψ(tξ, ν)

(6.7)

for all t > 0. Combining (6.5) and (6.7), we conclude that E(u; Q) � W (B0) +
ψ(tξ, ν) for all u admissible in (2.11a) with (A, B) = (A0, B0). This implies the
asserted lower bound for H(A0, B0). �
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