
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=cjas20

Journal of Applied Statistics

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/cjas20

Testing exchangeability of multivariate
distributions

Jan Kalina & Patrik Janáček

To cite this article: Jan Kalina & Patrik Janáček (2023) Testing exchangeability of
multivariate distributions, Journal of Applied Statistics, 50:15, 3142-3156, DOI:
10.1080/02664763.2022.2102158

To link to this article:  https://doi.org/10.1080/02664763.2022.2102158

© 2022 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

Published online: 26 Jul 2022.

Submit your article to this journal 

Article views: 1116

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=cjas20
https://www.tandfonline.com/journals/cjas20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/02664763.2022.2102158
https://doi.org/10.1080/02664763.2022.2102158
https://www.tandfonline.com/action/authorSubmission?journalCode=cjas20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=cjas20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/02664763.2022.2102158?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/02664763.2022.2102158?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/02664763.2022.2102158&domain=pdf&date_stamp=26 Jul 2022
http://crossmark.crossref.org/dialog/?doi=10.1080/02664763.2022.2102158&domain=pdf&date_stamp=26 Jul 2022


JOURNAL OF APPLIED STATISTICS
2023, VOL. 50, NO. 15, 3142–3156
https://doi.org/10.1080/02664763.2022.2102158

Testing exchangeability of multivariate distributions

Jan Kalina a,b and Patrik Janáčekb

aInstitute of Information Theory and Automation, The Czech Academy of Sciences, Prague, Czech Republic;
bInstitute of Computer Science, The Czech Academy of Sciences, Prague, Czech Republic

ABSTRACT
Although there have been a number of available tests of bivariate
exchangeability, i.e. bivariate symmetry for bivariate distributions,
the literature is void of tests whether a multivariate distribution with
more than two dimensions is exchangeable or not. In this paper,
multivariate permutation tests of exchangeability ofmultivariate dis-
tributions are proposed, which are based on the non-parametric
combinationmethodology, i.e. on combining non-parametric bivari-
ate exchangeability tests. Numerical experiments on real as well
as simulated multivariate data with more than two dimensions are
presented here. The multivariate permutation test turns out to be
typically more powerful than a bivariate exchangeability test per-
formed only over a single pair of variables, and also more suitable
compared to tests exploiting the approaches of Benjamini–Yekutieli
or Bonferroni.
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1. Introduction

Let us consider a random vector X ∈ Rp. Let X1, . . . ,Xn with a fixed n represent p-
dimensional random vectors following the probability distributionL(X). The distribution
L(X) is called exchangeable (interchangeable, permutable) if it holds

L(PX) = L(X) (1)

for all permutation matrices P, i.e. for all square matrices P of size p × p with values 0 or 1
such that each row and each column contains the value 1 exactly once. In other words, (1)
means that indexing of variables of L(X) is irrelevant and L(X) is permutation invariant.
This work is interested in testing exchangeability of L(X) based on given data, i.e. testing
the null hypothesis H0 that (1) holds against the general alternative hypothesis H1 stating
that H0 does not hold.

Attention has been paid to exchangeable distributions mainly for the bivariate case
(p = 2). For a bivariate random vector (X1,X2)

T, exchangeability (1) is equivalent to

L(X1,X2) = L(X2,X1). (2)

Bivariate exchangeability often denoted as bivariate symmetry can be interpreted as sym-
metry with respect to permutation of axes or symmetry along the axis of the first quadrant
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(i.e. line x1 = x2). We note that (2) in the bivariate case naturally implies

L(X1) = L(X2). (3)

Already the first bivariate symmetry tests in the 1970s [18,45] weremotivated by a practical
question of whether a medical treatment has an effect or not. There have been a num-
ber of available bivariate symmetry tests, which are suitable for paired data allowing for a
(possibly high) correlation of the two variables within pairs. Still, we are not aware of any
test for distributions with more than two dimensions, although these could represent very
natural extensions of tests for the bivariate case. Only in the context of copulas, a test of
exchangeability of copulas based on empirical processes was proposed in [14] for an arbi-
trary dimension. To give a motivation example for distributions with p ≥ 3, the income of
five nutrients (calcium, iron, protein, vitamin A, vitamin D) on a sample of women was
investigated in [11], where a test of exchangeability of the multivariate distribution of the
5 variables would be useful. Another example may be a study of the effect of a treatment
(e.g. of the COVID-19 vaccine) applied in three sequential doses.

Testing exchangeability of multivariate distributions may also be motivated within
a broader context of tests of various forms of symmetry of multivariate continuous dis-
tributions. It was recently suggested to replace testing the exchangeability of a distribution
by testing axial symmetry, e.g. using the test based on (multivariate) directional quantiles
of [19]; it namely holds that if a multivariate distribution is exchangeable after a shift, then
it is symmetric around the axis of the first orthant. Another connection mentioned in [20]
is related to p independent univariate distributions, which are assumed to be the same
up to their location; their joint distribution (after a shift) has to be exchangeable. Thus,
the test whether their distributions are the same (up to a shift) may be performed as a
test of exchangeability of the joint distribution (again up to a shift). Other useful relation-
ships between exchangeability of a distribution and some symmetry concepts (defined in
[33,39]) were also described in [19,20].

It is important to stress that this paper is interested in permuting the variables of a mul-
tivariate distribution but not in permuting observations. The latter is connected to the
concept of an exchangeable sequence of random variables (or arrays; see Section 7 of [25]),
which is defined as a sequence invariant to permuting the observations, in other words,
as a sequence with an exchangeable distribution [7]. Exchangeability of a sequence repre-
sents a weaker property compared to independence of the coordinates and the theory of
finite exchangeable random vectors stems from de Finetti’s theorem as overviewed in [21].
Exchangeability of a sequence of random variables have found applications within confor-
mal inference, which can be characterized as a method for constructing valid prediction
errors for new sequentially added observations; conformal inference has become popular
for neural networks or random forests [26].

Section 2 recalls available tests of bivariate symmetry. In the methodological Section 3,
multivariate permutation tests of exchangeability of distributions with more than two
dimensions are proposed. The performance of the tests is investigated on real data in
Section 4 andon simulated data in Section 5.Multivariate permutation tests turn out to out-
perform tests constructed frommultiple comparison procedures of Benjamini–Yekutieli or
Bonferroni. Section 6 brings conclusions.
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2. Available bivariate symmetry tests

We now consider i.i.d. bivariate random vectors (X11,X21)
T, . . . , (X1n,X2n)

T. Particular
available tests of the null hypothesis of bivariate symmetry are overviewed in this section.
Testing the exchangeability of distribution is desirable, especially if it can be performed
in a non-parametric, distribution-free, coordinate-free way by means of simple and pow-
erful tests not relying on strong assumptions. Bivariate symmetry tests can typically be
performed as exact (permutation) tests; advantages of permutation tests in the context of
bivariate symmetry were recalled in [3] or [10] and for the context of various other sym-
metry hypotheses in [35]. We stress that all tests mentioned in this paper are performed
on raw data without any normalization.

• Bell and Haller [3] overviewed several equivalent formulations of bivariate symmetry.
They derived the likelihood ratio test for normal data in the form

LR = 1 − r2(S,D)
1 + |D̄|/σD

with D̄ =
n∑

i=1
Di/n and σ 2

D =
n∑
i=1
(Di − D̄)2/n, (4)

where r(S,D) denotes the Pearson correlation coefficient between (S1, . . . , Sn)T and
(D1, . . . ,Dn)

T with Di = X2i − X1i and Si = X1i + X2i for i = 1, . . . , n. Moreover, all
distribution-free tests of bivariate symmetry were proven to be based on permutations
in [3], where theWilcoxon signed-rank test was disqualified from being used for testing
bivariate symmetry, as its power was shown to equal only to the specified level α.

• The test of Hollander [18] is based on empirical distribution functions F̂n(x1, x2) and
F̂n(x2, x1). The exact size and power of theHollander test, which represents a rank-based
analogue of a Cramér-von Mises type test [11], may be computed for small samples by
the algorithm of Hilton and Gee [17], which is implemented in the R package NSM3.
Quessy [35] considered a related statistic based on the characteristic function (instead
of the empirical distribution function) and used the theory of V-statistics to derive their
null asymptotic distribution.

• Yanagimito and Sibuya [45] proposed and investigated rank tests of bivari-
ate symmetry based on the maximal invariant statistic. Let us now use the
notation (U1,V1)

T, . . . , (Un,Vn)
T for the permutation of the random sample

(X11,X21)
T, . . . , (X1n,X2n)

T for that it holds Ui ≤ Ui+1 and Vi ≤ Vi+1 if Ui =
Ui+1. Further, let Z1, . . . ,Zn be the corresponding permutation of sgn(X1 −
Y1), . . . , sgn(Xn − Yn). Let Ri be the rank ofUi in the pooled sample {X11,X21, . . . ,X1n,
X2n} and let Si be the rank ofVi in the pooled sample. The maximal invariant statistic is
the vector of triplets (R1, S1,Z1)T, . . . , (Rn, Sn,Zn)T and the paper considered the linear
(bivariate) rank test statistic in the form

T =
n∑

i=1
Zi(ϕ(Ri)− ϕ(Si)) (5)

with a given score function ϕ and investigated its unbiasedness.
• Snijders [41] also considered rank tests (5) and derived locally most powerful (LMP)

rank tests and their asymptotic normality using a Hájek-type theorem (as in Section 6.1
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of [13]). Particularly, he proved (5) with Wilcoxon scores, i.e. the test statistic

W =
n∑

i=1
Zi(Ri − Si), (6)

to be the LMP rank test assuming X1 and X2 to come from logistic distributions.
• Ernst and Schucany [10] focused on testing the null hypothesis formulated as (3). They

proposed a bivariate test statistic so that one component compares the means between
X1 and X2 and the other compares their variances. The test is based on theMahalanobis
distance of the test statistic from the origin.

• Modarres [32] proposed five tests of bivariate symmetry. The first three are obtained
as two-sample tests of equality of distribution functions based on Euclidean interpoint
distances; they compare the distribution of the raw data with that of the data reflected
along the line x1 = x2:

◦ Runs test (based on evaluating a minimum spanning tree).
◦ Nearest neighbor test (application of the test of Henze [15] to bivariate symmetry).
◦ Rank test of equality of multivariate distribution functions (application of the test

of Maa et al. [28] to bivariate symmetry).
◦ Sign test (based on diving the observations to 6 regions, performed as a standard

test about the probability of a binomial distribution).
◦ Bootstrap test based on max{F̂n(x1i, x2i)− F̂n(x2i, x1i)}, where Fn denotes the

empirical distribution function; the test requires bootstrap estimation of the null
distribution of the test statistic.

Concerning the rank test, Modarres [32] described it to reject bivariate symmetry
for large values of the test statisticM; however, we can immediately think of a simplis-
tic example, in which the test statistic decreases as we deviate from H0. Therefore, we
recommend to perform the rank test as a two-sided test, rejecting H0 for very large or
very small test statistics. To justify this, violating bivariate symmetry implies that the test
statistic is very small or very large. The null distribution ofM is the same as that of the
Wilcoxon rank-sum statistic for two samples, where each contains n observations. In
analogy, the Wilcoxon rank-sum test (Wilcoxon two-sample test) based on interpoint
distances, which was theoretically investigated in [22], is also rejected for very large or
very small values of the test statistic.

• Rao and Raghunath [37] developed a non-parametric test for a more general situation
of symmetry about a line (possibly different from the line x1 = x2). The test performs
a tedious partition of the sample space to subjectively chosen sets (clusters) and the test
statistic is obtained as a deviance measure comparing true and expected counts in the
clusters.

• A bivariate symmetry test for competing risks in survival analysis was proposed in [9]
and its saddle point approximation was derived in [1].

3. Tests of exchangeability of multivariate distributions

Because there seems to be no direct way for obtaining exchangeability tests for distributions
with more than two dimensions, we propose to construct such tests by combining (depen-
dent) permutation tests of bivariate symmetry applied to individual pairs of variables. The
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proposed non-parametric combinationmethodology is presented in Section 3.1. For com-
parison, tests constructed from multiple comparisons procedures of Benjamini–Yekutieli
or Bonferroni are also considered; these are described in Section 3.2. This paper concen-
trated on data coming from continuous distributions. For categorical data, which can be
represented in square contingency tables, exchangeability of the distribution is known as
complete symmetry and we refer to Section 10.7 of [2] for its treatment.

Using the notation of Section 1, H0 (1) is replaced by a different null hypothesis

H∗
0 : L(Xj,Xk) = L(Xk,Xj) for all j = 1, . . . , p − 1, k = j + 1, . . . , p, (7)

formulated for the total numberD = p(p − 1)/2 of all pairs of variables. We thus consider
testing the composite null hypothesis H∗

0 , which may be expressed as

H∗
0 :

D−1⋂
j=1

D⋂
k=j+1

H0jk, where H0jk : L(Xj,Xk) = L(Xk,Xj), (8)

against

H∗
1 :

D−1⋃
j=1

D⋃
k=j+1

H1jk, where H1jk : H0jk does not hold. (9)

However, because testing (7) is not equivalent to testing the null hypothesis (1), it may
happen that exchangeability (1) fails to be true while pairwise exchangeability is fulfilled
for each individual pair.

3.1. Multivariate permutation test

As bivariate symmetry tests are often performed as permutation tests [35], it is the most
natural approach to exploit the non-parametric combinationmethodology using one of the
approaches due to Fisher, Lipták or Tippett. In such approach, the dependence of the tests
is implicitly taken into account by means of the permutation strategy (Section 1.2 of [6]),
irrespective of the dependence relations. The approach, which is free of assumptions about
the distribution of the data, yields a global (combined) p-value and may be interpreted as
a multivariate permutation test.

The implementation of the non-parametric combination methodology is straightfor-
ward following Algorithm 1 formulated for a general p, based on combining the total
number of D = p(p − 1)/2 tests of bivariate symmetry for all pairs of variables. In (11),
Q̂d(z) is used instead of

1
B

B∑
b=1

1[|T∗(b)
d | ≥ z], z > 0, d = 1, . . . ,D, (10)

where 1 denotes indicator function; the reason is a better ability of Q̂d(z) to keep the
probability of type I error in numerical experiments [6].

In the experiments with multivariate data, we use tests obtained by combining these
bivariate symmetry tests:
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(1) The test of Hollander [18].
(2) The likelihood ratio (LR) test of Bell and Haller [3]; this is the only test which is

rejected for a small value of the test statistic.
(3) The rank test of Snijders [41] with Wilcoxon scores.
(4) The sign test of Modarres [32].
(5) The nearest neighbor (NN) test of Modarres [32] based on interpoint distances.
(6) The rank test of Modarres [32] based on interpoint distances (say ID-rank test) with

Wilcoxon scores; as explained in Section 2, we (unlike the original test) reject for very
large or for very small values of the test statistic.

Algorithm 1 can be described as an adaptation of the general algorithm of [6], using one
of these combination functions as a special case:

Algorithm 1Multivariate permutation test of exchangeability of a distribution with p ≥ 3.
Input: Data X = (X•1, . . . ,X•p)T ∈ Rn×p, selected combination function ψ , constant

B ∈ N (e.g. B = 1000)
Input: Selected test of bivariate symmetry based on test statistic (say) T
Output: The combined p-value (say) p∗
1: Compute the test statistics T1, . . . ,TD for D = p(p − 1)/2, where each Td is obtained

as T(X•k,X•l) (i.e. across k = 1, . . . , p − 1 and l = k + 1, . . . , p )
2: for b = 1 to B do
3: Generate (independent) random permutations (π(i, 1), . . . ,π(i, p))T of values of

(1, . . . , p)T for i = 1, . . . , n
4: Consider the permuted data (say) X∗(b) = (X∗(b)

•1 , . . . ,X∗(b)
•p )T with elements

X∗(b)
ij = Xi,π(i,j) ∈ R for each i = 1, . . . , n and j = 1, . . . , p

5: Compute the test statistics T∗(b)
1 , . . . ,T∗(b)

D , where each T∗(b)
d is obtained as

T(X∗(b)
•k ,X∗(b)

•l ) (i.e. across k = 1, . . . , p − 1 and l = k + 1, . . . , p )
6: end for
7:

Q̂d(z) := 1
B + 1

(
1
2

+
B∑

b=1

1[|T∗(b)
d | ≥ z]

)
, z > 0, d = 1, . . .,D (11)

8: qd := Q̂d(Td) for each d = 1, . . . ,D
9: q∗(b)

d := Q̂d(T
∗(b)
d ) for each d = 1, . . . ,D and b = 1, . . . ,B

10:

p∗ := 1
B

B∑
b=1

1[|ψ(q∗(b)
1 , . . . , q∗(b)

D )| ≥ |ψ(q1, . . . , qD)|] (12)

• Fisher (omnibus) ψ(q1, . . . , qD) = −2
∑

d log(qd);
• Lipták ψ(q1, . . . , qD) = ∑

d�
−1(1 − qd);

• Tippett ψ(q1, . . . , qD) = maxd{1 − qd}.
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As discussed in Section 4.2.4 of [34], Tippett’s combination is recommendable if only
one or a few (but not all) sub-alternatives are true, and that of Lipták [27] performs well
when all sub-alternatives are jointly true. Fisher’s combination is themost popular in prac-
tice [12]; it is considered intermediate between the two others and thus suitable when
no prior expectation is available. Finding the optimal combining function for given data
appears, however, impossible (Section 4.2.2 of [34]).

Properties of the multivariate permutation tests of this section follow from the non-
parametric combination methodology. Particularly, the constructed tests hold the proba-
bility of type I error and the distribution of the test statistics underH∗

0 does not depend on
the underlying distribution of the data. This is true in spite of the individual p-values being
dependent and the three choices of ψ used here to fulfil the assumptions of Section 1.2 of
[6]. If the individual (pairwise) tests are consistent, themultivariate permutation test is con-
sistent. If the individual tests are unbiased, the multivariate permutation test is unbiased
(Section 4.3 of [8,34]).

3.2. Testing exchangeability of a distribution based onmultiple comparisons

For the sake of comparisons, we also consider exchangeability tests for distributions
with dimensionality p ≥ 3 based on multiple comparisons. Although the methods of this
section are not primarily designed for the task and are intended for post hoc comparisons
(after a global test of a composite null hypothesis), we use them here for constructing a
global test ofH∗

0 based on (corrected) p-values of pairwise tests of bivariate symmetry. We
use here the notation p1, . . . , pD for p-values of the pairwise tests, which will be arranged
in ascending order as

p(1) ≤ p(2) ≤ · · · ≤ p(D). (13)

Benjamini–Yekutieli. Themost popular multiple testing procedure keeping the false dis-
covery rate (FDR), defined as the percentage of false positive tests (incorrectly rejecting
the null hypothesis) among all significant tests, below the chosen level α is the approach of
Benjamini and Hochberg (B-H) [4] for independent tests. An extension of Benjamini and
Yekutieli (B-Y) [5] is suitable for (potentially) dependent statistics even if the structure of
the dependence is not known. It is convenient to express the (global) test based on the B-Y
procedure by means of the scheme

H∗
0 is rejected ⇐⇒

D∏
d=1

1

⎡
⎣p(d) > d

D

( D∑
h=1

1
h

)−1

α

⎤
⎦ = 0. (14)

Some other procedures for testing high-dimensional data controling for FDR were pre-
sented in the overview [23].

The Bonferronimethod represents the simplest approach to multiple tests ensuring to
keep the family-wise error rate (FWER), defined as the probability of at least one incorrect
rejecting the null hypothesis (i.e. making at least one type I error) among all tests, under the
specified level α. We now use it to construct the (very conservative) global test according
to the scheme

H∗
0 is rejected ⇐⇒ p(1) ≤ α/D. (15)
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Table 1. P-values of tests for the gene expressions (GE) dataset of Section 4 with p = 3 and n = 24.

LR Rank test Sign test NN ID-rank test
Index Hollander Bell and Haller Snijders Modarres Modarres Modarres

Bivariate permutation tests
1-2 0.768 0.078 0.160 0.779 0.112 0.143
1-3 0.287 0.051 0.286 0.835 0.109 0.116
2-3 0.083 0.001 0.024 0.131 0.060 0.024

Multivariate permutation tests
Fisher 0.039 0.001 0.008 0.341 0.010 0.128
Lipták 0.293 0.000 0.008 0.561 0.014 0.591
Tippett 0.022 0.001 0.003 0.054 0.115 0.075

Bivariate permutation tests using Bonferroni correction
· � · · · ·

Bivariate permutation tests using the approach of Benjamini–Yekutieli
· � · · · ·

Notes: Bivariate permutation tests andmultivariate permutation tests using the approaches of Fisher (F), Lipták (L), or Tippett
(T) are presented here. Significance of tests based on Bonferroni correction and B-Y procedure is denoted by star.

4. Analysis of real datasets

We consider two real datasets to illustrate the performance of the tests of exchangeability
of distributions with p = 3. All computations of this paper were performed in R software
[36] exploiting additional packages (NSM3, spdep, purrr, FNN, and BioConductor).

The first dataset contains gene expression (GE) measurements acquired in the study
described in [31]. Gene expressions for p = 38 950 gene transcripts were measured on
24 individuals having a cerebrovascular stroke and 24 control persons. First, the Limma
methodology (Linear Models for Microarray Data of [40]) was applied to find the most
differentially expressed genes. The data are used here only for the n = 24 patients and
with p = 3 most important genes that contribute the most to the separation between the
two groups of individuals.

We are interested in testing whether the joint distribution of the three considered genes
is exchangeable. The results of permutation tests of bivariate symmetry applied to individ-
ual pairs of variables (1-2, 1-3, and 2-3, i.e. with D = 3 in the notation of Algorithm 1)
for the GE dataset are presented in Table 1. The multivariate permutation tests based on
test statistics of bivariate symmetry tests are presented there as well. Tests of bivariate sym-
metry for the second and third gene have smaller p-values compared to tests evaluated for
other pairs of genes. For all the tests, the multivariate permutation tests yield the smallest
p-values, if a suitable combinationmethod is chosen; however, the best of the three combi-
nationmethods in terms of power turns out to be different for different bivariate symmetry
tests. Most commonly (although not always), the approach of Tippett yields the best results
here.

The second dataset is a subset of the Australian athletes (AA) dataset with p = 3. This
dataset available, e.g. in the R software package DAAG [29] with the red blood cell count
(X1), white blood cell count (X2), and hemoglobin concentration (X3) was analyzed, e.g. in
[16] or [24]. Graphical visualizations reveal the variables to be very far from being per-
mutable; thus, we further consider 1000 random subsamples from the dataset, where each
contains only n = 20measurements. If we consider all tests presented in Table 1 for the GE
dataset, the average p-values across the 1000 subsamples of the AA dataset are all highly
significant and below 0.001. This also makes the global tests using Bonferroni correction
and the B-Y procedure significant in all situations under consideration.
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Table 2. Simulation A: Empirical rejection frequencies (in %).

LR Rank test Sign test NN ID-rank test
Hollander Bell and Haller Snijders Modarres Modarres Modarres

Contamination proportion 0 (i.e. H∗
0 holds)

Permutation tests of bivariate symmetry (for individual pairs of variables)
1-2 0.055 0.052 0.046 0.042 0.059 0.054
1-3 0.047 0.055 0.044 0.048 0.055 0.050
2-3 0.053 0.051 0.051 0.049 0.063 0.058

Multivariate procedures
Fisher 0.052 0.052 0.051 0.046 0.055 0.052
Lipták 0.048 0.050 0.052 0.049 0.054 0.061
Tippett 0.061 0.053 0.044 0.044 0.055 0.054
B-Y 0.011 0.014 0.010 0.004 0.009 0.012
Bonferroni 0.019 0.016 0.014 0.017 0.020 0.015

Contamination proportion 0.1
Permutation tests of bivariate symmetry (for individual pairs of variables)

1-2 0.336 0.392 0.367 0.331 0.352 0.413
1-3 0.286 0.335 0.350 0.277 0.318 0.344
2-3 0.081 0.110 0.085 0.074 0.073 0.119

Multivariate procedures
Fisher 0.412 0.463 0.428 0.403 0.407 0.446
Lipták 0.388 0.439 0.406 0.369 0.394 0.425
Tippet 0.449 0.501 0.460 0.427 0.445 0.508
B-Y 0.024 0.027 0.021 0.016 0.021 0.026
Bonferroni 0.031 0.029 0.023 0.026 0.031 0.028

Contamination proportion 0.2
Permutation tests of bivariate symmetry (for individual pairs of variables)

1-2 0.774 0.830 0.742 0.728 0.695 0.846
1-3 0.729 0.806 0.714 0.711 0.647 0.813
2-3 0.122 0.163 0.113 0.091 0.100 0.169

Multivariate procedures
Fisher 0.894 0.955 0.911 0.874 0.905 0.938
Lipták 0.825 0.921 0.863 0.856 0.857 0.912
Tippett 0.933 0.992 0.947 0.923 0.949 0.990
B-Y 0.998 0.999 0.934 0.432 0.897 0.776
Bonferroni 1.000 1.000 0.985 0.721 0.991 0.952

5. Simulations

The aim of the simulations is to compare the performance of the tests of exchangeability
of a distribution proposed in Section 3 for testing the null hypothesis H∗

0 against H∗
1 . The

performance of permutation tests of bivariate symmetry applied to pairs of variables is
investigated as well. The simulations are performed for data generated from four different
models. In simulations A, B, C, and E, we randomly generate κ = 1000 samples and for
each of them, the permutation tests (bivariate or multivariate) are always performed with
1000 permutations.

Simulation A. Using n = 20, we independently generate 3-dimensional data from nor-
mal distribution N3(0,I3), where I3 denotes the unit matrix of size 3 × 3. A selected
percentage (ranging from 0 to 20%) of the observations is replaced by values, which are
independently generated from N3(μ,I3/10), where μ = (7,−1, 1)T. The results in the
form of empirical rejection frequencies (rates) are presented in Table 2.1

Simulation B. Using n = 30, we independently generate 3-dimensional data from mul-
tivariate t1 distribution with scale matrix I3. A selected percentage (ranging from 0 to
20%) of the observations is replaced by values, which are independently generated from
non-central multivariate t1 distribution with scale matrix I3/10 and with non-centrality
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Table 3. Simulation B: Empirical rejection frequencies (in %).

LR Rank test Sign test NN ID-rank test
Hollander Bell and Haller Snijders Modarres Modarres Modarres

Contamination proportion 0 (i.e. H∗
0 holds)

Permutation tests of bivariate symmetry (for individual pairs of variables)
1-2 0.053 0.055 0.046 0.057 0.054 0.058
1-3 0.046 0.052 0.051 0.049 0.049 0.050
2-3 0.055 0.044 0.053 0.053 0.052 0.051

Multivariate procedures
Fisher 0.060 0.052 0.051 0.053 0.050 0.057
Lipták 0.053 0.055 0.054 0.060 0.044 0.052
Tippett 0.051 0.048 0.053 0.052 0.052 0.052
B-Y 0.010 0.011 0.008 0.007 0.010 0.011
Bonferroni 0.015 0.019 0.013 0.014 0.016 0.020

Contamination proportion 0.1
Permutation tests of bivariate symmetry (for individual pairs of variables)

1-2 0.270 0.312 0.229 0.226 0.263 0.303
1-3 0.319 0.361 0.268 0.262 0.315 0.364
2-3 0.195 0.234 0.150 0.137 0.169 0.223

Multivariate procedures
Fisher 0.366 0.431 0.365 0.312 0.362 0.411
Lipták 0.327 0.359 0.313 0.290 0.314 0.376
Tippett 0.419 0.472 0.385 0.375 0.389 0.454
B-Y 0.049 0.051 0.046 0.033 0.047 0.052
Bonferroni 0.044 0.046 0.041 0.038 0.045 0.049

Contamination proportion 0.2
Permutation tests of bivariate symmetry (for individual pairs of variables)

1-2 0.708 0.765 0.692 0.678 0.723 0.797
1-3 0.771 0.815 0.734 0.730 0.779 0.832
2-3 0.270 0.310 0.245 0.263 0.276 0.332

Multivariate procedures
Fisher 0.764 0.818 0.713 0.712 0.769 0.826
Lipták 0.713 0.770 0.697 0.671 0.743 0.769
Tippett 0.814 0.855 0.756 0.730 0.813 0.867
B-Y 0.946 0.972 0.928 0.796 0.904 0.897
Bonferroni 0.962 0.980 0.941 0.848 0.925 0.941

parameter (i.e. mode) equal to μ = (12, 5, 0)T. The results in the form of empirical
rejection frequencies are presented in Table 3.

Simulation C. Using n = 30, we independently generate 4-dimensional data from the
multivariate logistic distribution [30] with the vector of location parameters (1, 1, 1, 1)T
and the vector of scale parameters (1, 1, 1, 1)T. A selected percentage (ranging from 0 to
25%) of the observations is replaced by values, which are independently generated from
multivariate logistic distributionwith the vector of location parameters (6, 6,−1,−1)T and
the vector of scale parameters (0.3, 0.3, 0.3, 0.3)T. The results in the formof averaged empir-
ical rejection frequencies are visualized in Figure 1, where the horizontal lines correspond
to 5%. The average rejection rates of bivariate symmetry tests applied to variables 1 and 3
are shown in Figure 1(left); testing for the pairs of variables 1-4, 2-3, and 2-4 yields anal-
ogous results due to the structure of the data. Average rejection rates of the multivariate
permutation test using Tippett’s method is shown in Figure 1(middle) and using Lipták’s
method in Figure 1(right).

Simulation D. Simulation D is aimed at comparing the methods for larger values of p.
Using n = 20, we independently generate p-dimensional data from multivariate normal
distributionNp(μ,Ip), whereμi = 1[i ≤ m] is considered for i = 1, . . . , pwith a givenm.
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Figure 1. Simulation C: empirical rejection rates for the permutation test of bivariate symmetry for vari-
ables 1 and 3 (left), and for the multivariate permutation test using the approach of Fisher (middle) and
Tippett (right). The curves correspond to (1) Hollander (stars), (2) LR (circles), (3) rank test of Snijders
(squares), (4) sign test (triangles), (5) NN test (diamonds), and (6) ID-rank test (plus signs).

We use always 1000 permutations; κ = 1000 is used for p = 10, but only κ = 100 is used
for p = 100. The results are presented in Table 4.

To discuss the results of all the simulations, the multivariate permutation tests hold the
probability of type I error at the 5% level. The power of all the tests increases together with
increasing contamination of the datasets, i.e. increases as the data become more distant
fromH0. To compare individual tests, the largest powers are obtained with Hollander’s test
and the ID-rank test (i.e. in the novel version as a two-sided ID-rank test as justified here in
Section 2). It seems as the most interesting result that the computations confirm the pow-
ers of the multivariate permutation tests to outperform those of bivariate symmetry tests
applied to an individual pair of variables. Concerning the non-parametric combination
methodology, Tippett’s approach yields the largest power and Fisher’s is slightly weaker,
leaving Lipták’s approach behind.

The Benjamini–Yekutieli or Bonferroni approaches, which are primarily designed for
post hoc comparisons, without any surprise reduce the type I errors and also attain lower
powers. For p = 3, the global test based on the B-Y procedure compares p(1) with 0.009,
p(2) with 0.018, and p(3) with 0.027, and the test based on the Bonferroni procedure has
its probability of type I error equal to precisely 0.017. For a small deviation from H∗

0 with
p = 3, the powers of the B-Y or Bonferroni global tests turn out to be extremely low (much
below those of the multivariate permutation tests), and rapidly increase with an increasing
deviation from H∗

0 . For a larger p, the probability of type I error of B-Y and Bonferroni
drops evenmore, which is very apparent here for p = 100 with a correspondingD = 4950
pairs to be compared. Tippett’s approach outperforms the B-Y or Bonferroni approaches
in all considered situations under H∗

1 for p = 10 as well as for p = 100.
Simulation E. In order to remind that the test procedures of Section 3.1 were formulated

after replacingH0 byH∗
0 , we present onemore simulation for data that violateH0 and retain

close to H∗
0 as much as possible. To approximate such situation, we start with the non-

contaminated data from Simulation A. These are modified to decrease the density around
points (−m,−m,−m)T, (m,m,−m)T, (−m,m,m)T, and (m,−m,m)T with m = 1.5 by
finding always 3 closest observations to these points in terms of the Euclidean distance.
These are replaced by data around points (m,−m,−m)T, (−m,m,−m)T, (−m,−m,m)T,
and (m,m,m), which are generated as normally distributed with expectation given to these
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Table 4. Simulation D: Empirical rejection frequencies (in %).

LR Rank test Sign test NN ID-rank test
Method Hollander Bell and Haller Snijders Modarres Modarres Modarres

p = 10,m = 0 (i.e. H∗
0 holds)

Fisher 0.03 0.05 0.05 0.03 0.05 0.05
Lipták 0.05 0.04 0.06 0.04 0.05 0.05
Tippett 0.04 0.05 0.05 0.05 0.07 0.06
B-Y 0.00 0.00 0.00 0.00 0.00 0.00
Bonferroni 0.01 0.01 0.00 0.00 0.00 0.01

p = 10,m = 0.1n
Fisher 0.62 0.64 0.59 0.56 0.60 0.62
Lipták 0.58 0.60 0.55 0.53 0.59 0.61
Tippett 0.70 0.67 0.63 0.58 0.66 0.68
B-Y 0.58 0.61 0.53 0.53 0.59 0.61
Bonferroni 0.53 0.55 0.52 0.50 0.54 0.56

p = 10,m = 0.2n
Fisher 0.94 0.95 0.91 0.86 0.92 0.93
Lipták 0.91 0.91 0.87 0.83 0.89 0.91
Tippett 0.96 0.98 0.94 0.88 0.94 0.97
B-Y 0.90 0.91 0.86 0.81 0.86 0.89
Bonferroni 0.87 0.88 0.82 0.77 0.86 0.88

p = 100,m = 0 (i.e. H∗
0 holds)

Fisher 0.04 0.04 0.06 0.04 0.05 0.06
Lipták 0.04 0.03 0.06 0.05 0.04 0.05
Tippett 0.05 0.05 0.08 0.05 0.06 0.07
B-Y 0.00 0.00 0.00 0.00 0.00 0.00
Bonferroni 0.00 0.00 0.00 0.00 0.00 0.00

p = 100,m = 0.1n
Fisher 0.65 0.69 0.59 0.59 0.61 0.64
Lipták 0.61 0.64 0.58 0.55 0.61 0.60
Tippett 0.72 0.67 0.62 0.62 0.68 0.69
B-Y 0.62 0.64 0.56 0.52 0.59 0.65
Bonferroni 0.57 0.60 0.59 0.53 0.56 0.59

p = 100,m = 0.2n
Fisher 0.99 0.99 0.93 0.90 0.94 0.97
Lipták 0.95 0.96 0.91 0.87 0.91 0.93
Tippett 0.98 0.99 0.95 0.90 0.97 0.98
B-Y 0.93 0.92 0.89 0.84 0.90 0.93
Bonferroni 0.91 0.92 0.86 0.81 0.85 0.89

Table 5. Simulation E: Empirical rejection frequencies (in %).

LR Rank test Sign test NN ID-rank test
Hollander Bell and Haller Snijders Modarres Modarres Modarres

Permutation tests of bivariate symmetry (for a given pair of variables)
1-2 0.062 0.065 0.060 0.057 0.072 0.067
1-3 0.060 0.061 0.058 0.061 0.065 0.064
2-3 0.059 0.059 0.064 0.061 0.071 0.071

Multivariate procedures
Fisher 0.125 0.138 0.119 0.106 0.107 0.139
Lipták 0.119 0.132 0.123 0.105 0.102 0.140
Tippett 0.138 0.141 0.131 0.117 0.116 0.144
B-Y 0.023 0.026 0.020 0.009 0.015 0.019
Bonferroni 0.028 0.029 0.025 0.032 0.029 0.024

points and with covariance matrix I3/10. The results in Table 5 show the pairwise tests to
have their powers very slightly above 0.05 being outperformed bymultivariate permutation
tests. The results of the latter remain nevertheless quite low for such a strong violation of
H0, so this specific design reveals the limitation of replacing H0 by H∗

0 .
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6. Conclusions

While the literature seems void of exchangeability tests for distributions with p ≥ 3, this
paper investigates several possibilities for their construction based on combining bivariate
symmetry tests performed over individual pairs of variables. We recommend to perform
the multivariate tests as multivariate permutation tests obtained by the non-parametric
combination methodology. The computations over the presented real as well as simu-
lated multivariate data reveal the multiple testing procedures to be more powerful than
a bivariate exchangeability test performed only over a single pair of variables.

Numerous available studies comparing the Bonferroni correction with B-H and/or B-Y
approaches [44] havemost often not considered the non-parametric combinationmethod-
ology. This is because the non-parametric combinationmethodology is a specific approach
tailor-made for combining permutation tests. Multivariate permutations tests keep the
probability of type I error under the specified level. This does not, however, hold for tests
based on the approaches of B-H, B-Y or Bonferroni, which are all primarily designed for
post hoc comparisons; these approaches turn out in the simulations of Section 5 to be
unsuitable for testing a composite (global) null hypothesis. All the multivariate tests pre-
sented in this paper are computationally demanding for larger values of p, which is a natural
property of all tests based on permutations. Let S denote the complexity of computing
an individual test statistic and B the number of permutations (as in Algorithm 1). The
computational complexity of the multivariate permutation test, which can be expressed as
(D + 1)BS, is fully comparable to that of the approaches of B-Y or Bonferroni, which both
have the complexity of DBS.

Finally, we can say that the multivariate tests of this paper consider p-values as signifi-
cance probabilities, as it is typical in statistical practice, not reflecting that they are actually
random variables. A perspective approach based on expected p-values (EPV) developed
in [38] and extended in [42,43] for the context of multiple testing seems, however, not to
have been extended to the context of permutation tests (as EPV-based testing needs a spec-
ified null distribution of the test statistic and its known or estimated distribution under the
alternative) and to the context with a composite alternative hypothesis.

Note

1. A confidence interval for a rejection frequencyπ based on its estimate π̂ obtained in simulations
may be computed using the standard error SE(π̂) = 1.96 ·

√
π̂(1 − π̂)/κ , if the lower bound is

non-negative. When simulating κ = 1000 random samples, it approximately holds here that
SE(π̂)

.= 0.03 for π̂ ∈ (0.2, 0.8) and SE(π̂)
.= 0.02 for π̂ ∈ (0.05, 0.2] or for π̂ ∈ [0.8, 0.95).
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