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ABSTRACT
The article discusses how various multivariate location and scatter
estimators capture the symmetry of the underlying distribution. Very
general sufficient conditions are formulated, which ensure various
symmetry properties of functionals corresponding to location or scat-
ter. Examples of robust multivariate estimators, which fulfill these
conditions, are discussed in detail. The obtained symmetry of the
estimators is applicable to hypothesis tests of symmetry of the
underlying distribution of the multivariate data. For this task, we pro-
pose to perform permutation tests exploiting the nonparametric
combination methodology. The performance of the newly proposed
tests is illustrated on simulated as well as real data. The tests are
suitable for small sample sizes and represent the first available sym-
metry tests suitable also for non-elliptical distributions and for more
than just two variables.
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1. Introduction

Let us consider a random vector X 2 Rp: Let X1; :::;Xn be p-dimensional i.i.d. random
vectors following the probability distribution LðXÞ: The aim is to estimate parameters l
2 Rp and ΔΔ 2 Rp�p; which are related to the location and scatter of X. Special cases of
ΔΔ include the covariance matrix ΣΣ or the shape matrix defined as ΣΣ=ðdetðΣΣÞÞ1=p; if
these matrices exist and where detðΣΣÞ denotes the determinant of ΣΣ:
While numerous estimators of l and ΔΔ based on the random sample X1; :::;Xn are

available, this paper investigates symmetry properties of their corresponding functionals
with an application to hypothesis testing about various forms of distributional sym-
metry. Several leading concepts of multivariate symmetry will be considered. Serfling
(2006) or Oja (2010) overviewed standard multivariate symmetry concepts in increasing
order of generality as spherical, elliptical, central, and angular symmetry. In addition,
marginal symmetry is defined as the symmetry of all the marginal distributions around
a point. Symmetry of functionals corresponding to multivariate estimators was thor-
oughly described by Tatsuoka and Tyler (2000). In addition, symmetry of the underly-
ing distribution is an important assumption for various robust multivariate estimators.
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Section 2 of this paper presents the main result devoted to functionals corresponding
to important robust multivariate estimators. Under suitable assumptions, the functionals
are shown to capture the symmetry of the underlying distribution. Based on this, we
propose to apply the nonparametric combination methodology to individual permuta-
tion tests of various forms of symmetry for multivariate data. Various robust multivari-
ate estimators are presented in Sec. 3, which fulfill the assumptions of our main result.
Numerical simulations are presented in Sec. 4, a real data example in Sec. 5, and con-
clusions in Sec. 6.

2. Symmetry of multivariate estimators

2.1. Notation

We introduce the notation PSDðpÞ and PDðpÞ for the set of all positive semidefinite sym-
metric and positive definite symmetric matrices of size p� p, respectively, and consider
two sets

H ¼ m;Að Þ; m 2 Rp; A 2 PSD pð Þ
� �

and W ¼ m;Að Þ; m 2 Rp; A 2 PD pð Þ
� �

:

Let us consider a general optimization problem well-defining an estimator mðXÞ of l
and AðXÞ related to ΔΔ in the form

min
m;Að Þ2H

E f0 X;m;Að Þ (2.1)

subject to

E fu X;m;Að Þ � 0; u ¼ 1; :::;U;
E hv X;m;Að Þ ¼ 0; v ¼ 1; :::;V;

where given functions f0; f1; :::; fU and h1; :::; hV are considered on the domain

\U
u¼0

dom fu

 !
\ \V

v¼1
dom hv

 !
: (2.2)

Prominent examples of f0ðX;m;AÞ include functions of ðX�mÞTA�1ðX�mÞ or func-
tions of detðAÞ:

2.2. Main result

Population counterparts of mðXÞ and AðXÞ obtained as functional solutions of (2.1) will
be denoted as m0ðXÞ and A0ðXÞ: The following set of assumptions will be considered.

Assumptions A.
1. m0ðXÞ is shift equivariant and rotation invariant;
2. A0ðXÞ is shift invariant and rotation equivariant;
3.

fuðOðX�cÞ;Oðm�cÞ;OTAOÞ ¼ fuðX�c;m�c;AÞ; u ¼ 0; :::;U;

hv O X�cð Þ;O m�cð Þ;OTAO
� �

¼ hv X�c;m�c;Að Þ; v ¼ 1; :::;V;

for all orthonormal matrices O and all vectors c admissible with respect to (2.2);

2 J. KALINA



4. The functionals m0 and A0 are uniquely defined (for the population case);
5. LðX�cÞ ¼ LðOðX�cÞÞ for each shift vector c and orthonormal matrix O:

The following theorem ensures symmetry properties for functionals satisfying
Assumptions A, particularly their ability to capture the symmetry of the underlying
distribution.

Theorem 1. We consider the estimators mðXÞ and AðXÞ defined by (2.1). If Assumptions
A are fulfilled, then necessarily

O m�cð Þ ¼ m�c and OTA0O ¼ A0

for each shift vector c and orthonormal matrix O. Let us further denote m0 ¼
ðm1; :::;mpÞT and A0 ¼ ðaijÞpi;j¼1. Let us assume LðXÞ ¼ LðKXÞ for a sign-change matrix
K ¼ KT ¼ K�1 ¼ diagðk1; :::; kpÞ with diagonal elements ±1. If ki ¼ �1 for any i ¼
1; :::; p; then necessarily mi ¼ 0 for such i. If additionally kikj ¼ �1 for any pair i; j ¼
1; :::; p; then aij ¼ 0 for such i and j. Consequently,

(I) if LðXÞ is centrally or marginally symmetric, then m0 coincides with the center
of symmetry;

(II) if LðXÞ is symmetric around an affine subspace (i.e. axis or hyperplane), then
m0 lies on that affine subspace;

(III) if LðXÞ is symmetric around the first coordinate axis, then a1j ¼ 0 for
all j ¼ 2; :::; p;

(IV) if LðXÞ is symmetric around linear subspace consisting of all the points with the
first k coordinates zero, then aij ¼ 0 for any i 2 1; :::; k and j ¼ kþ 1; :::; p:

The proof is straightforward. It is worth noting that no restrictive assumptions are
assumed, i.e. the result does not require continuity, differentiability, convexity, mono-
tonicity, boundedness etc. The properties of the estimators may be preserved if they are
computed recursively, i.e., the solution of one such optimization problem is used as an
input to another problem of an analogous form.

2.3. Hypothesis testing

The statement of Theorem 1 allows to construct hypothesis tests of various forms of
symmetry of LðXÞ: A literature research shows that available symmetry tests are mainly
devoted to bivariate symmetry (i.e. bivariate exchangeability); see Rao and Raghunath
(2012) or Quessy (2016). Numerous tests are available for spherical symmetry
(Baringhaus 1991). There are also depth-based symmetry tests, e.g. of central symmetry
by Paindaveine and Van Bever (2013), of angular symmetry about a specified center by
Rousseeuw and Struyf (2002), or the test about an unspecified center by Dutta, Ghosh,
and Chaudhuri (2011). A test of rotation symmetry on a hypersphere was proposed by
Garc�ıa-Portugu�es, Paindaveine, and Verdebout (2018). Nevertheless, there have been no
tests of axial symmetry proposed for p � 2 so far.
We focus on permutation tests and their nonparametric combination without any

assumptions on the probabilistic distribution of the data. Permutation tests are very
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general, simple and powerful. We will also present examples of tests exploiting particu-
lar estimators of the covariance matrix of multivariate data.
As an example, let us consider a test of H0 that A is a diagonal matrix against H1 that

H0 is not true. We propose to use permutation tests for each individual aij for i< j and to
combine the individual tests by means of one of nonparametric approaches due to Fisher,
Liptak or Tippett, which are standard tools of nonparametric combination methodology
(see p. 147 of Pesarin and Salmaso (2010) or p. 4 of Bonnini et al. (2014)).

3. Examples: robust multivariate estimators

This section presents such important (robust) multivariate estimators of location and
scatter, for which the corresponding functionals have the form (2.1). Thus, we recall the
definitions of various functionals, explain that they represent special cases of (2.1), and
overview possible available results on uniqueness or symmetry. We present also avail-
able results on the ability of the functionals to capture the symmetry of the underlying
distribution. If not stated otherwise, we were not able to find any such result. To the
best of our knowledge, there are no available corresponding results for tests
of symmetry.
In this paper, functionals corresponding to various estimators will be considered.

Functionals are defined for a distribution F in Rp; while the empirical distribution is
denoted as Fn. The functional is a population counterpart of the corresponding estimate
and replacing F by Fn in the definitions of functionals yields estimates which can be
computed from data X1; :::;Xn:

The class of multivariate M-estimators with auxiliary scale (not be confused with
other multivariate M-estimators) was proposed by Tatsuoka and Tyler (2000) together
with the corresponding functionals. Let us now assume that a scale functional rðFÞ>0
is given. For the multivariate location and scatter, the functionals are defined as the
pairs ðmMðFÞ;ΣΣMðFÞÞ solving

min
m;Gð Þ2H

Eq
X�mð ÞTG�1 X�mð Þ

r2 Fð Þ

 !
s:t: det Gð Þ ¼ 1;

where q is a given function. Tatsuoka and Tayler (2000) assessed the uniqueness of M-
functionals with auxiliary scale under some assumptions. They also claimed the func-
tionals to be centrally symmetric, but under assumptions which are stronger compared
to those of our Theorem 1.
S-estimators of multivariate location and scatter were defined by Lopuha€a (1989) and

the corresponding S-functionals were formulated by Tatsuoka and Tyler (2000). A given
function q is assumed, which is defined for s � 0; is nondecreasing, continuous
from above at zero, and fulfills 0 ¼ qð0Þ<qð1Þ<1: S-functionals are defined as the
pairs ðlSðFÞ; ΓΓSðFÞÞ solving

min
m;Sð Þ2W

det Sð Þ s:t: Eq
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X�mð ÞTS�1 X�mð Þ

q� �
¼ b0

for a positive b0. S-estimators are special cases of M-estimators with auxiliary scale as
shown in Theorem 2.1 of Tatsuoka and Tyler (2000). Multivariate S-functionals are
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uniquely defined only at unimodal elliptically symmetric distributions. This uniqueness
was established by Lopuha€a (1989) and also by Davies (1987), where the latter used a
slightly different version of S-functionals. Later, uniqueness of S-functionals was derived
under broader (non-elliptical) classes of symmetric distributions by Tatsuoka and Tyler
(2000). Other work was devoted to finding rules for choosing proper parameters of
multivariate S-estimators (Rocke 1996). It was however shown by Lopuha€a (1989) that
S-estimators cannot achieve small asymptotic variance and 50 % breakdown point
simultaneously.
The minimum volume ellipsoid (MVE) estimator was proposed by Rousseeuw (1984)

and corresponds to a multivariate S-estimator with a zero-one step function q. The
MVE functional is a special case of multivariate S-functionals, as shown by Tatsuoka
and Tyler (2000). The uniqueness of the MVE functional is obvious for unimodal ellip-
tic distribution as claimed by He and Wang (1996). More general results on the unique-
ness of multivariate S-functionals by Lopuha€a (1989) and later by Tatsuoka and Tyler
(2000) are valid also for the MVE functional.
Constrained M-estimators (CM-estimators) were proposed by Kent and Tyler (1996).

CM-functionals for l and ΣΣ are defined as pairs ðlCMðFÞ;ΣΣCMðFÞÞ solving

min
m;Sð Þ2H

E q X�mð ÞTS�1 X �mð Þ
	 
h i

þ 1
2
log det Sð Þ

s:t: E q X�mð ÞTS�1 X �mð Þ
	 
h i

� eq 1ð Þ;
where qðsÞ is a bounded nondecreasing function for s � 0 and e is a fixed value
between 0 and 1. CM-estimators are special cases of M-estimators with auxiliary scale
as shown in Theorem 2.1 of Tatsuoka and Tyler (2000). Uniqueness of CM-functionals
was derived by Kent and Tyler (2001) under some assumptions. Their uniqueness under
non-elliptical distributions was investigated by Tatsuoka and Tyler (2000). Kent and
Tyler (1996) presented the following symmetry property as a by-product. If the distribu-
tion LðXÞ is centrally symmetric, then the CM-functional coincides with the center
of symmetry.
Multivariate MM-estimators were proposed by Tatsuoka and Tyler (2000). Salibi�an-

Barrera, Van Aelst, and Willems (2006) proposed multivariate MM-functionals using rS
ðFÞ as scale of an S-functional with some function q0 and using a function q1 fulfilling
their assumptions (R1) and (R2); the MM-functionals of location and shape ðlMMðFÞ;
ΓΓMMðFÞÞ are then defined as argument of

min
m;Gð Þ2H

Eq1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X�mð ÞTG�1 X�mð Þ

q
rS Fð Þ

0
@

1
A

s:t: det Gð Þ ¼ 1

and the MM-functional for the covariance matrix as ΣΣMMðFÞ ¼ r2SðFÞΓΓMMðFÞ: Lopuha€a
(1992) proposed an alternative version of MM-functionals only for l; while the covari-
ance matrix must be estimated beforehand. Because MM-estimators lie within the class
of M-estimators with auxiliary scale, the results on uniqueness of Tatsuoka and Tyler
(2000) are valid also for them. Lopuha€a (1992) claimed that if the distribution LðXÞ is
elliptically contoured, the MM-functional for location coincides with the center
of symmetry.
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The minimum weighted covariance determinant (MWCD) estimator was proposed by
Roelant, Van Aelst, and Willems (2009). The MWCD-functionals of location and shape
are defined as any pair ðlMWCDðFÞ; ΓΓMWCDðFÞÞ which gives the argument of

min
m;G2Hð Þ

E hþ G d2x m;Gð Þ� �� �
d2x m;Gð Þ� �

s:t: det Gð Þ ¼ 1;

where GðtÞ ¼ Pðd2xðm;GÞ<tÞ; d2xðm;GÞ ¼ ðx�mÞTG�1ðx�mÞ; and hþ : ð0; 1Þ ! ½0;1Þ
is a weight function which fulfills supfu; hþðuÞ>0g ¼ 1�a with 0 � a � 1=2 and hþðuÞ
>0 for u 2 ð0; 1�a�: The MWCD functional for d is obtained subsequently as
ΣΣMWCDðFÞ ¼

¼ chþ

Ð
hþ G d2x lMWCD Fð Þ;GMWCD Fð Þ� �� �� �

x � lMWCD Fð Þ� �
x�lMWCD Fð Þ� �Th i

dF xð ÞÐ
hþ G d2x lMWCD Fð Þ;GMWCD Fð Þ� �� �� �

dF xð Þ
and MWCD functionals are uniquely defined under elliptically symmetric unimodal dis-
tributions, which follows from their Fisher consistency at such distributions as proven
by Roelant, Van Aelst, and Willems (2009).
The minimum covariance determinant (MCD) estimator, proposed by Rousseeuw

and van Driessen (1999), can be described as a special case of the MWCD with the
weight function

hþ uð Þ ¼ 1 u>k½ � for some
n
s
� k � n;

where 1 is an indicator function. The corresponding MCD-functional was investigated
by Cator and Lopuha€a (2012).
The MCD estimator fulfills (2.1), which follows from its being a special case of the

MWCD estimator as explained by Agull�o, Croux, and Van Aelst (2008) or Roelant, Van
Aelst, and Willems (2009). Properties of the MCD estimator were overviewed by
Hubert and Debruyne (2010) and uniqueness of the MCD functional was proven by
Butler, Davies, and Jhun (1993) for distributions that have a unimodal elliptically con-
toured density.
The class of multivariate s-estimators, which are able to combine a high robustness

(breakdown point and bounded influence) with good asymptotic efficiency, and their
corresponding s-functionals was proposed by Lopuha€a (1991). s-functionals of location
and shape are defined as the pairs ðlsðFÞ; ΓΓsðFÞÞ solving

min
m;Gð Þ2H

det Gð Þ � Eq2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X�mð ÞTG�1 X�mð Þ

q� � �p

s:t: Eq1 X�mð ÞTG�1 X �mð Þ
	 


¼ b1

for given nonnegative functions q1 and q2 and a positive b1. Subsequently, the s-func-
tional for the covariance matrix is defined as

ΣΣs Fð Þ ¼ 1
b2

ΓΓs Fð ÞEq2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X�ls Fð Þ� �T

ΓΓ�1
s Fð Þ X�ls Fð Þ� �q� �

;

where b2>0 is a given constant. s-functionals are uniquely defined for elliptical distribu-
tions if using a suitable value of b1, as shown by Lopuha€a (1991).
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An L1-type estimator of multivariate location and shape was proposed by Roelant
and van Aelst (2007). Location and shape are defined simultaneously and the corre-
sponding functionals are defined as the pair ðl1ðFÞ; ΓΓ1ðFÞÞ which solves

min
m;Gð Þ2H

E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X�mð ÞTG�1 X�mð Þ

q
s:t: det Gð Þ ¼ 1:

The estimator extends the concept of the univariate median and belongs to the class
of multivariate M-estimators. The uniqueness of the functional for location and shape is
ensured. Roelant and van Aelst (2007) also formulated the covariance matrix functional
based on ðl1ðFÞ; ΓΓ1ðFÞÞ; which however does not seem to fulfill (2.1).
Elliptical quantiles for multivariate data proposed by Hlubinka and �Siman (2013) also

preserve the centers and axes of symmetry, just like the nonlinear versions of the quan-
tiles by Hlubinka and �Siman (2015).
Let us consider also the standard estimates in the form of the mean and empirical

covariance matrix, if estimated simultaneously. The corresponding functionals, i.e.
the expectation and population covariance matrix, fulfill (2.1), because the pair is a
special case of some of the functionals described above. They are a unique
solution of the corresponding optimization task (2.1) and Theorem 1 holds trivially
for them.
In addition, other interesting multivariate estimation approaches include the symme-

trized M-estimators of multivariate scatter of Sirki€a, Taskinen, and Oja (2007), which
are (as functionals) diagonal if the components of the random vector are independent,
or the multivariate Forward Search (exploiting weighted versions of standard estima-
tors), whose strong consistency at multivariate normal models and high breakdown
point was derived by Cerioli, Farcomeni, and Riani (2014).

4. Simulations

The aim of the simulations is to investigate the performance of the newly proposed tests
under different conditions and to compare them for different estimators. The null
hypothesis of interest is symmetry of the underlying distribution around all three coord-
inate axes. For various situations with p¼ 3, we compute various estimators of multi-
variate parameters described in this paper and consider tests of the null hypothesis that
ΣΣ (which exists in all examples) is diagonal against a general alternative hypothesis that
H0 does not hold.
We compare the performance of tests based on various estimators Δ̂Δ of ΔΔ: Denoting

elements of Δ̂Δ by D̂ij; nonparametric combination of three tests based on D̂12; D̂13 and
D̂23 jointly are exploited. The test is described in Algorithm 1, inspired by the general
algorithm of Bonnini et al. (2014), using one of these combination functions as a special
case:

� Fisher wðk1; k2; k3Þ ¼ �2
P

k log ðkkÞ;
� Liptak wðk1; k2; k3Þ ¼

P
k U

�1ð1�kkÞ;
� Tippett wðk1; k2; k3Þ ¼ maxkf1�kkg:
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All computations were performed in R software (R Core Team 2018), exploiting the
rrcov package of Todorov and Filzmoser (2009) for robust estimators. Besides from the
classical estimators (i.e. the mean and empirical covariance matrix), we consider the
MCD and MVE (both taking the optimization criterion over bn=2c observations), S-esti-
mators with breakdown point 0.5, and MM-estimators with breakdown point 0.5 and
efficiency 0.95.
Simulations were performed for data generated from five following models with

n¼ 80, where the data allow to reveal the effect of moving away from H0. In each case,
we repeat Algorithm 1 for 10 000 randomly generated datasets with the choice
B¼ 1000.

Algorithm 1. Test of Section 4 based on the nonparametric combination methodology

Input: Data X 2 Rn�p with p¼ 3, selected combination function w, constant B> 0
Input: Multivariate estimator fulfilling Theorem 1, whose elements of D obtained

from X are denoted as D̂ijðXÞ; where i; j ¼ 1; 2; 3
Output: The combined p-value k0

1: Compute the test statistic denoted as T ¼ ðT1;T2;T3ÞT :¼ ðD̂12ðXÞ; D̂13ðXÞ;
D̂23ðXÞÞT

2: for b¼ 1 to B do
3: Generate independent random variables G11; :::;Gnp 2 Rn�p; where PðGkl ¼

1Þ ¼ 1=2 and PðGkl ¼ �1Þ ¼ 1=2 for each k ¼ 1; :::; n and l ¼ 1; :::; p
4: Consider the data (say) X	

ðbÞ with elements X	
klðbÞ ¼ XklGkl for each k ¼ 1; :::; n

and l ¼ 1; :::; p
5: Compute the corresponding test statistic

T	
bð Þ ¼ T	

1 bð Þ;T
	
2 bð Þ;T

	
3 bð Þ

� �T :¼ D̂12 X	
bð Þ

� �
; D̂13 X	

bð Þ
� �

; D̂23 X	
bð Þ

� �	 
T
6: end for
7: Denote L̂sðzÞ ¼ f1=2þPB

b¼1 1½T	
sðbÞ � z�g=ðBþ 1Þ for s¼ 1, 2, 3

8: Compute k	sðbÞ ¼ L̂sðT	
sðbÞÞ and ks ¼ L̂sðTsÞ for each b ¼ 1; :::;B and s¼ 1, 2, 3

9: Compute T0 ¼ wðk	1; k	2; k	3Þ and T0
ðbÞ ¼ wðk	1ðbÞ; k	2ðbÞ; k	3ðbÞÞ for each b

10: Compute k0 ¼Pb 1½T0
ðbÞ � T0�=B

A. 3-dimensional normal distribution N3ð0;ΔΔ0Þ with ΔΔ0 ¼ ð1�dÞI þ deeT ; where I
is a unit matrix of size 3� 3 and e ¼ ð1; 1; 1ÞT :

B. Data are created as in study A and contaminated by 5 gross outliers; there are 5
randomly selected values, which are replaced by randomly generated values from
N3ð0; 5D0Þ: Again, values of d ranging from 0 to 0.9 are used. Because of the sym-
metric contamination, d¼ 0 corresponds to H0.

C. 3-dimensional vector ðX1;X2;X3ÞT with independent components, where X1 is
generated from Nð0; 0:36Þ; X2 from uniform on ½�2; 2�; and X3 from Laplace dis-
tribution with EX3 ¼ 0 and var X3 ¼ 2: Then, the data are rotated about the
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third axis by an angle h ranging from 0 to 0.5 (in radians), where h¼ 0 corre-
sponds to H0.

D. 3-dimensional vector ðX1;X2;X3ÞT with independent components, where X1, X2

and X3 are generated from t2 distribution, but X3 is replaced by X3=5: Then, the
data are rotated about the third axis by an angle h ranging from to 0.5 (in radi-
ans), where h¼ 0 corresponds to H0.

E. Data are created as in study D and contaminated by 4 gross outliers; these are 4
randomly selected values, which are replaced by values ð10þ Z1; 5þ Z2; 0ÞT ;
where Z1
Nð0; 0:25Þ and Z2
Nð0; 0:25Þ are independent random variables.

The results are presented as power curves in Figures 1 (studies A and B), 2 (study
C), and 3 (studies D and E). For studies A to D, the tests hold the probability of type I
error at the 5 % level, due to their construction (property of nonparametric combin-
ation methodology), so the horizontal line corresponding to 0.05 is shown in the fig-
ures. The power of the tests increases as the data become more distant from H0. In

Figure 2. Results of simulation study C. Tests based on classical estimates (stars), MVE (dark circles),
MCD (light squares), S-estimator (light triangles), and MM-estimator (dark diamonds).

Figure 1. Results of simulation study A (left) and B (right). Tests based on classical estimates (stars),
MVE (dark circles), MCD (light squares), S-estimator (light triangles), and MM-estimator
(dark diamonds).
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study E, no choice of h corresponds to H0 due to the asymmetric contamination; how-
ever, if the outliers were ignored, h¼ 0 would correspond to H0.
Comparing the individual estimates, tests based on the classical ones yield the largest

power in study A and partially in study D (only for small deviations from H0). Tests
based on MM-estimation yield the largest power in the remaining studies. Study E
advocates using the tests based on robust estimates, which have the level close to 0.05,
while the test based on classical estimates has the level equal to 0.19. Tippett’s method
outperforms the other nonparametric combination approaches in studies A and B, and
Fisher’s does the same in studies C, D and E. We do not present results for a rotation
by larger angles in the studies C, D and E, as the data turn back to H0 and the powers
decrease there. Additional results (not presented here) obtained with tests based on
MM-estimators with a lower efficiency (below 0.95) yield weaker results compared to
those of MM-estimators presented here.

5. A real data example

We illustrate the performance of the proposed approach on the Australian athletes data-
set, which is a real dataset publicly available e.g. in the R software package DAAG
(Maindonald and Braun 2015). We consider three variables, particularly the red blood
cell count (denoted here as X1), white blood cell count (X2), and hemoglobin concentra-
tion (X3). The dataset with n¼ 202 measurements on (both male and female) athletes
was previously investigated by Henze, Hl�avka, and Meintanis (2014), who tested spher-
ical symmetry (and clearly rejected it).
We are interested in testing the symmetry of the data around all three coordinates

axes (after centering the data). As the correlation coefficient between X1 and X3 is large
(r¼ 0.889), the overall null hypothesis of this symmetry seems very unlikely; the other
correlations equal to rðX1; X2Þ ¼ 0:147 and rðX2; X3Þ ¼ 0:135: Algorithm 1 is used for
the testing again with B¼ 1000. Table 1 gives p-values of individual (i.e. permutation)
tests for individual symmetries around an axis, and the p-value of the overall test based
on the nonparametric combination. Every test rejects H0, while tests based on the MCD

Figure 3. Results of simulation study D (left) and E (right). Tests based on classical estimates (stars),
MVE (dark circles), MCD (light squares), S-estimator (light triangles), and MM-estimator
(dark diamonds).
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seem to be the most powerful. In addition, we consider 1000 random subsamples
selected from the dataset with n¼ 50 measurements. The averaged powers of the tests
shown in right part of Table 1 are reduced compared to those over the whole dataset.
Still, we may conclude also for the subsamples that the symmetry around all three axes
is clearly rejected.

6. Conclusions

This paper investigates symmetry aspects of functionals corresponding to various multi-
variate location and scatter estimators, particularly their ability to capture the symmetry
of the underlying distribution. Various forms of symmetry considered in the paper
include central symmetry, marginal symmetry, symmetry around an affine subspace,
and symmetry around a coordinate axis. Such various forms of symmetry are useful e.g.
as assumptions of various economic models.
The contribution of the paper is a formulation of very general sufficient conditions,

which ensure various symmetry properties. Examples of robust multivariate estimators,
which fulfill these conditions, are discussed in detail in Sec. 3. The symmetry results are
also valid for popular classes of multivariate estimators, including S-estimators, the
MCD or MVE, MM-estimators or s-estimators. A similar seems implicit in the work of
D€umbgen, Pauly, and Schweizer (2015) for M-functionals of multivariate scatter.
To the best of our knowledge, the new tests are the first general symmetry tests for

dimension p> 2, which are at the same time valid also for non-elliptical distributions.
Simulations were performed to investigate the performance of the newly proposed tests.
The tests of Sec. 2.3 based on Theorem 1 are expressed for the matrix A and are valid
also for the covariance matrix ΣΣ; we also consider estimators of ΣΣ in the numerical
studies of Sec. 4, where the performance of the new tests is illustrated. Tests based on
the mean and empirical covariance matrix turn out to be the best choice for normally
distributed multivariate data, but they are not able to keep the level under asymmetric
contamination. Tests based on MM-estimators turn out to be the best solution for non-
normal and/or contaminated data.
As a future work, it would be straightforward to formulate Theorem 1 also for the

context of linear regression with a multivariate response. Then, analogous results are
valid e.g. for multivariate S-estimators of van Aelst and Willems (2005) or the estimator
of Ben, Mart�ınez, and Yohai (2006).

Table 1. Results of permutation tests in the Australian athletes dataset for the whole dataset (left)
and averaged results for 1000 random subsamples with n¼ 50. The p-values for the three individual
tests are given together with the p-value obtained by the Fisher’s (F), Liptak’s (L) and Tippett’s (T)
combination method.

The whole dataset Random subsamples with n¼ 50

Individual tests Overall test Individual tests Overall test

Estimator 1–2 1–3 2–3 F L T 1–2 1–3 2–3 F L T

Clas. 0.03 0.00 0.07 0.00 0.00 0.00 0.68 0.01 0.36 0.01 0.04 0.01
MCD 0.02 0.00 0.02 0.00 0.00 0.00 0.58 0.01 0.34 0.04 0.09 0.07
MVE 0.38 0.21 0.18 0.35 0.24 0.29 0.83 0.35 0.38 0.67 0.26 0.39
S 0.03 0.00 0.05 0.00 0.00 0.00 0.69 0.01 0.32 0.01 0.05 0.01
MM 0.02 0.00 0.04 0.00 0.00 0.00 0.77 0.01 0.34 0.01 0.05 0.01
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