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Abstract

The paper addresses the task of modeling and predicting count data, with the application to traffic counts at
selected urban roads in Prague. The methodology proposed in the paper presents the following key ideas: (i)
analysis of explanatory multiple counts and detection of their locations through recursive Bayesian estimation of
Poisson mixtures; (ii) estimation of the target count model via local Poisson regressions at recognized locations;
and (iii) prediction of target counts through real-time location detection. The algorithm’s properties are first
investigated using simulated data and then validated with real traffic counts. Experimental results demonstrate
that the proposed algorithm outperforms alternative methods in predicting traffic count data across various quality
metrics, even for weakly correlated data. The main contribution of the paper is the development of a novel
approach for online target count prediction, which simultaneously analyzes the spatial locations and temporal
evolution of multivariate explanatory count data.

Keywords: count data prediction, traffic counts, local Poisson regression, recursive Bayesian estimation of Poisson
mixtures

1 Introduction

This paper presents an advanced modeling and prediction approach for analysis of count data applied to traffic
counts at selected urban roads in Prague. Understanding traffic patterns is crucial for optimizing public transporta-
tion systems, controlling traffic flow, improving safety, urban planning, and assessing environmental impacts. Using
the definition of traffic count data as the number of vehicles passing through a selected road section per unit of time,
the framework built upon Poisson distribution models has been chosen to develop a progressive methodology, which
was then compared with the existing original models.

Due to the nature of count data, the Poisson distribution can fit the data well for analysis purposes. The assumption
of equidispersion limits the practical use of the Poisson distribution with empirical count data. When the assumption
is violated, the Negative Binomial (NB) distribution [1], Generalized Poisson models (GPM) [2, 3] or mixtures of
Poisson distributions [4] become key tools for describing univariate under/over-dispersed counts. Zero-inflated
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Sciences, Pod vodárenskou věží 4, 18208 Prague, Czech Republic. Tel: +420 266 052 358, email: uglickich@utia.cas.cz, ORCID:
https://orcid.org/0000-0003-1764-5924

1



Poisson (ZIP), zero-inflated NB (ZINB) and compound Poisson (CP) models are commonly employed to handle
the excess zeros often observed in count data. Zero-truncated Poisson (ZTP) and zero-truncated NB (ZTNB) models
are suitable for conducting a targeted analysis of non-zero observations within count data.

Predictive models aimed at understanding the relationship between multiple counts cannot use these Poisson-based
distributions because the Poisson distribution lacks a suitable general conditional form. Multivariate Poisson-based
distributions [5] for multidimensional count data are less developed for practical use due to the limitation of in-
dependence consumption. In this area, [6] provide an advanced review on multivariate distributions derived from
Poisson model dividing them among marginal Poisson distributions, Poisson mixtures and conditional Poisson-
based distributions. According to [6], studies focusing on conditional Poisson generalizations are based on the use
of Poisson graphical models or Markov random fields, specified by node-conditional distributions [7, 8]. Among
them, the approach that is relatively close to the one described in this paper is to model multivariate count data by
estimating local Poisson regressions conditioned by node-neighbors of the variables in the form of local Poisson
graphical models [9–11].

Poisson regression is an important approach in predictive modeling of count data [12–17]. To address chal-
lenges such as over- or underdispersion of count data, the underlying alternative is NB regression [18–20], which
introduces auxiliary dispersion parameters to be estimated. A valuable tool for predictive modeling of count
data, which allows avoiding Poisson model assumptions, are mixtures of regression models, such as mixtures
of Poisson and Poisson-based (ZIP/CP/Tweedie) regressions [21–28], NB/ZINB regressions [29–33] and Poisson-
Gamma/Poisson-Gaussian models [34–36].

1.1 Poisson-related models in transportation domain

According to the literature, the use of Poisson models in transportation domain has a long history [37–40]. Rela-
tively recent studies in the analysis of traffic counts have developed methods that use Poisson and NB models. In
the paper of [41], the authors proposed a spatial-temporal NB regression with the temporal correlation of traffic
volumes on multiple roads at previous time segments. [42] introduced a traffic flow prediction method for intercity
roads using convolved bilinear Poisson regression with the incorporated latent factor model. Adopting the stochastic
variational Bayes method, they continually updated model parameters online based on the most recent observations
instead of all past data, which allowed them to enhance robustness against sparse observations and provide accurate
predictions of intercity traffic flow with dynamically changing patterns. The authors of [43] explored a combination
of the cosinor regression with Poisson, GPM, ZIP, NB and ZINB models for a developed software tool in applica-
tion to traffic counts observed during the COVID-19 epidemic. In [44], the traffic flow state prediction model was
proposed based on the relationship between traffic flow states in different urban locations estimated via recursive
Bayesian Poisson mixture estimation using mixture pointers to identify clusters of actually measured traffic counts.

As far as can be seen from the literature, Poisson-related models are more popular in the analysis of count data
in other transportation applications, such as vehicle crash count data [45–49], bicycle counts [50], and pedestrian
traffic counts [51, 52].

1.2 Alternative traffic count data models

Numerous publications are based on different interpolation methods, such as e.g. spatial interpolation with Kriging-
based methods [53], a hybrid ANN-fuzzy approach [54], combined pattern-matching and Bayesian statistics [55],
etc. The extensive overview of traffic prediction methods can be found in [56], where existing algorithms are divided
among time series models (both parametric and non-parametric), optimization approaches and neural networks.
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Recent advances in traffic count data prediction have focused on improving model accuracy and accommodat-
ing complex patterns. [57] used fully-connected feedforward multi-layer ANN to address the problem of estimating
historical hourly traffic volumes that transportation agencies need for planning and statewide performance measure-
ment. In [58], a combination of bootstrap aggregation with parametric ARIMA models was explored to improve the
traffic flow prediction accuracy. Hybrid methods based on ARIMA models were considered by [59–62]. [63] pre-
sented a spatio-temporal interpolation method that detects similar trends in the behavior of traffic counts at different
locations. In the study [64], the authors considered traffic volume prediction based on vehicle detection and road
characteristics extraction from Google aerial images via region-based convolutional neural networks. [65] focused
on estimation of turning movement count data by means of a multi-output multilayer ANN with exogenous variables
from intersection infrastructure point-of-interest data. [66] evaluated the temporal variation of traffic flows during
the COVID-19 pandemic lockdown by means of comparison of the smartphone-based traffic count predictions with
traffic quantification methods.

1.3 Main features of the presented paper

The author of [46] noted that although Poisson and NB models have been used extensively for the analysis of count
data, the distributional assumptions make them more appropriate for cross-sectional count data rather than time
series count data, where these assumptions limit the consideration of serial correlation of observations, which can
be critical in the case of traffic counts. In this paper we present an approach to understanding the behavior of cross-
sectional multiple count data by analyzing their locations recognized in the data space and capturing the evolution
of the data over time with the main aim of predicting the target count variable. In the paper, these locations are
defined as clusters of data. In general, they can be identified within the framework of preliminary offline data
analysis, e.g., using clustering algorithms [67, 68], etc. However, the use of model-based location identification
provides the pre-estimated parameterized models which, in the case of their recursive estimation, can be used for
re-learning during the online prediction phase. The relationship between the count variable selected as the target
and the rest of multiple counts utilized as explanatory data is described by estimating local Poisson regressions in
the detected locations, which should be recognized online in order to use the pre-estimated (or re-learned) location
models for prediction. Thus, the main features of the presented paper are as follows:

• Analysis of explanatory multiple counts and detection of their locations with the help of recursive Bayesian
estimation of Poisson mixtures;

• Target count model estimation via local Poisson regressions at the locations;

• Target count prediction using online location detection;

• Application of the proposed approach to traffic counts at selected locations in Prague.

The proposed solution continues the line started in the paper by [69], who considered explanatory data of a mixed
nature, including count and categorical data measured in real time, i.e., locations were directly indicated by the
measurements. Here, this relatively trivial task is elaborated for recursive Poisson mixture estimation for unknown
locations with subsequent construction of Poisson regressions on them.

The remainder of this paper is organized as follows: Section 2 briefly recalls basic facts about the models and algo-
rithms used. In Section 3, the theoretical background of the proposed approach is presented, including the problem
specification and a detailed description of the general solution to the problem. The properties and advantages of the
proposed theoretical approach are then thoroughly investigated through experiments with simulations under various
conditions and comparisons with Poisson regression. Section 4 evaluates the empirical performance of the proposed
technique in application to traffic counts, comparing it with existing algorithms that also focus on addressing the
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prediction task, and discusses potential applications and practical limitations of the approach. Finally, Section 5
concludes the paper by summarizing the main contributions of the approach and providing directions for future
research.

2 Preliminaries

To facilitate the presentation of the main idea, basic facts about the Poisson model, Poisson regression, and recursive
Bayesian mixture estimation are recalled in this section, along with a discussion of their limitations in the context
under consideration.

2.1 Basis for Poisson model

The Poisson distribution describes the behavior of a discrete valued random variable xt measured at discrete time
instants t = 1, 2, . . ., whose realizations represent a number of random independent events per time unit, i.e., xt is
a count variable and its Poisson model is given by the probability distribution

f(xt|λ) = e−λλ
xt

xt!
, (1)

where the unknown non-negative parameter λ expresses both the expectation and the variance of xt. The point
estimate of the parameter λ is known to be obtained as the average of the count observations λ̂ = 1/T

∑T
t=1 xt.

The assumption regarding the parameter λ and the lack of the conditional form in (1) are known to be the main
limitations of this model in practice.

2.2 Basis for Poisson regression

The Poisson regression models the relationship between the target count Poisson-distributed variable yt and a vector
of independent explanatory variables1 xt = [x1;t, x2;t, . . . , xN ;t]

′ via the logarithm of its conditional expectation
ln(E[yt|xt]) equal to a linear combination of unknown regression coefficients θ = [θ0, θ1, . . . , θN ]′

ln(E[yt|xt]) = θ0 + θ1x1;t + θ2x2;t + . . .+ θNxN ;t, (2)

which can also be written inversely

λy ≡ E[yt|xt] = eθ0+θ1x1;t+θ2x2;t+...+θNxN ;t ≡ eθ
′xt , (3)

where λy stands for the expectation and the variance of yt and the vector xt is concatenated to 1. The well-known
maximum likelihood estimation of the Poisson regression parameters is obtained by maximizing the log-likelihood
function of θ with substituted training data

lnL(θ|yt, xt) = ln

T∏
t=1

1

yt!
e−eθ

′xt
eytθ

′xt , (4)

where T corresponds to the capacity of the training data set. Since the maximization of lnL(θ|yt, xt) has no
close-form solution, the point estimates of the regression coefficients θ are computed numerically as

θ̂ = argmax
θ

lnL(θ|yt, xt). (5)

Practical limitations of Poisson regression are related to the Poisson assumption of equidispersion of the target
variable and to offline parameter estimation.

1In general, independent variables in Poisson regression need not be count data, but here we assume that xt is a vector of count variables.

4



2.3 General scheme of recursive Bayesian mixture estimation

The general scheme of the recursive Bayesian mixture estimation theory [70–73] is used in this paper. According to
this theory, data behavior is described by a mixture of parameterized components in the general form fi(datat | Pc),
i = {1, 2, . . . , Nc}, representing specific either static or dynamic distributions with their parameters Pc. An essen-
tial part of the adopted methodology’s mixture model is a pointer [70], which is an unmeasurable discrete random
variable with realizations i ∈ {1, 2, . . . , Nc} indicating the component active at time t. Generally, the parame-
terized model of the pointer takes the form of a static/dynamic categorical distribution f(pointert | Pp) with the
parameters Pp representing probabilities of component activity. The primary objectives of the recursive Bayesian
mixture estimation are (i) component parameter estimation (clustering) and (ii) pointer estimation (classification),
both based on continuously measured data and performed online in real time.

By applying the Bayes and chain rules [74] to the joint probability density function (pdf) of all unknown parameters
and the pointer, the general scheme for deriving their posterior pdf [70, 71] is

f(Pc,Pp, pointert | all data) ∝ f(datat,Pc,Pp, pointert | past data)

= fi(datat | Pc) f(Pc | past data)︸ ︷︷ ︸
conjugate prior

×f(pointert | Pp) f(Pp | past data)︸ ︷︷ ︸
conjugate prior

, (6)

where appropriate conjugate prior pdfs are selected for the distributions of the components used ∀i ∈ {1, 2, . . . , Nc},
and the conjugate prior Dirichlet pdf is applied for estimating the parameters of the pointer model [71].

According to [70,71,73], the relation (6) is marginalized over the unknown parameters. In one-pass estimation, this
gives the proximities of the data value measured at time t to the components [44, 73, 75]. In the normalized form
(generally multiplied by the prior estimate of Pp), the proximities provide weights of the components. The weights
are incorporated into recursive updates of the statistics of the involved conjugate pdfs. The updated statistics are
then used to recompute the prior point estimates of Pc and Pp. This part of the scheme is utilized to update the
location of the components. The maximum weight provides the point estimate of the pointer at time t, which
classifies the actual data value into the active component. More details can be found in the mentioned sources.

Among the specific limitations of this methodology is the necessity to operate with distributions that have reproduc-
ing statistics to ensure closed-form computations. The methodology has been well-studied for mixtures of normal
and categorical components [70–72]. The general approach for different types of components with reproducing
statistics was presented by [73]. Subsequently, it has been applied to exponential [76, 77], uniform [78], bino-
mial [79], and Poisson [44] components. A recursive algorithm for a mixture of Poisson regressions using the
mentioned approach is not feasible due to the lack of a closed-form estimator. This motivated the development of a
technique presented in this paper, which describes the relationship between multiple counts in detected locations.

The general theory of the presented technique is presented in the section below.

3 Online Count Prediction with Local Poisson Regressions on Poisson-Mixture
Locations

3.1 General problem specification

The problem formulation is based on the need to predict the values of the target count variable yt under the condition
of continuously available multiple independent explanatory counts xt, i.e., the main aim is the online prediction of
yt. Let us consider the vector [yt, xt]′ = [yt, x1;t, x2;t, . . . , xN ;t]

′ with all realizations measured for time t ≤ T ,
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but only xt observed for time t > T . It implies that through analysis of the explanatory count vector xt measured
simultaneously with the target yt the behavior of yt has to be explained. To avoid the unfulfilled single-distribution
assumptions, an approach based on local models is appropriate, as it enables the capture of the data behavior under
different conditions. Consequently, the locations for constructing the local models need to be determined, which
means the data should be clustered. Moreover, in order to utilize the explanatory counts xt online for time t > T ,
the solution is expected to facilitate online identification of locations so that the data can be classified to them later
in the prediction phase. In the considered context, assuming the independence of individual explanatory counts
and recalling the general definition of locations as clusters, we propose achieving this by combining local Poisson
regressions on Poisson locations. The subgoals of the paper are specified as follows:

For t = 1, 2, . . . , T (offline analysis of training data)

1. ∀j ∈ {1, 2, . . . , N} and ∀i ∈ {1, 2, . . . , Nc}, identify the i-th location of the explanatory count xj;t as
the Poisson component (1) and recursively (pre-)estimate the component parameters via (6);

2. Estimate the Poisson mixture pointer in the joint explanatory data space;

3. ∀i ∈ {1, 2, . . . , Nc}, at the i-th location indicated by the pointer, estimate the parameters of the Poisson
regression (3) to explain the dependence between yt and all xj;t classified to this location;

For t = T + 1, T + 2, . . . (online prediction with testing data)

1. Estimate the Poisson mixture pointer and detect the active location of the count vector xt;

2. Optionally re-estimate the component parameters;

3. Predict the expectation of the target yt using the local pre-estimated Poisson regression (3) at the active
location by incorporating the actual measured explanatory counts xt.

3.2 General solution steps

3.2.1 Training data analysis

Mixture initialization Identifying the locations in the data space of the explanatory counts xt for t = 1, 2, . . . , T
via the general scheme (6) inspired by [70, 71] requires the initialization of the recursive mixture estimation al-
gorithm, namely, the number Nc of Poisson components (1) and their initial statistics should be set before the
algorithm start. In this paper, independent explanatory counts xj;t ∀j ∈ {1, 2, . . . , N} are modeled individually.
This essentially facilitates the mixture initialization procedure through heuristic techniques of prior count histogram
analysis, which involves guessing the number of single Poisson distributions along with prior point estimates of their
parameters (it will be demonstrated in Section 4). Denoting the prior point estimate of the i-th component parameter
of each count xj;t ∀j ∈ {1, 2, . . . , N} and ∀i ∈ {1, 2, . . . , Nc} by λ̂i;j;t, the initial statistics is straightforward

Si;j;t = λ̂i;j;tκi;j;t, for t = 0, (7)

where κi;j;t is the initial counter initialized to 1.
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Location search in explanatory data space The scheme (6) applied to the Poisson mixture with the gamma prior
conjugate pdf with the initialized statistics Si;j;t and κi;j;t (see derivations in [80]) suggests the recursive update of
the statistics in the form

Si;j;t = Si;j;t−1 + wi;txj;t, κi;j;t = κi;j;t−1 + wi;t, for t = 1, 2, . . . , T, (8)

where the weight wi;t expresses the probability of activity of the i-component at time t in the joint data space of
explanatory data counts. The weights are computed using the entry-wise product of the proximities Mi;j;t [73] of
the counts xj;t to the i-th components ∀i ∈ {1, 2, . . . , Nc}, which provides the joint proximity Mi;t (recalling the
explanatory count independence assumption) as follows:

Mi;t ∝
∫
λ∗
i;1

fi(x1;t | λi;1)︸ ︷︷ ︸
Component (1)

f(λi;1 | {x1;t}T−1
t=0 )︸ ︷︷ ︸

gamma conjugate prior

dλi;1

︸ ︷︷ ︸
Mi;1;t

⊙ . . .⊙
∫
λ∗
i;N

fi(xN ;t | λi;N )︸ ︷︷ ︸
Component (1)

f(λi;N | {xN ;t}T−1
t=0 )︸ ︷︷ ︸

gamma conjugate prior

dλi;N

︸ ︷︷ ︸
Mi;N ;t

,

(9)
where the prior point estimate of the pointer in (6) is assumed to be uniform and omitted for simplicity. The
results Mi;j;t of individual integrals in (9) are called the proximities and represent the computed values of the
Poisson probability functions (1) with the incorporated realizations of the count xj;t at time t and the prior point
estimates λ̂i;j;t−1 of the component parameters. The weights at time t are thus simply given by normalizing the
joint proximities

wi;t =
Mi;t∑Nc
i=1Mk;t

(10)

and utilized in (8). The updated statistics (8) naturally provide the re-computed point estimates of the Poisson
component parameters

λ̂i;j;t =
Si;j;t

κi;j;t
(11)

∀j ∈ {1, 2, . . . , N} and ∀i ∈ {1, 2, . . . , Nc} at time t, which are substituted into the relation (9) instead of λi;j

at the next time instant under the adopted recursive methodology. This part of the solution corresponds to step 1
in the time loop for t = 1, 2, . . . , T of analysis of training data in Section 3.1. Subsequently, the locations of the
explanatory independent counts are identified through their models in the form of Poisson components, which are
pre-estimated for later use in the prediction phase and can also be optionally re-estimated.

For step 2 of the above time loop, the pointer of the Poisson mixtures in the joint explanatory data space is estimated
as the argument of the maximum value of the whole weighting vector

argmaxwt ≡ argmax [w1;t, . . . , wNc;t]
′ (12)

at each time t. The obtained index i ∈ {1, 2, . . . , Nc} of the maximum weight denotes the component where the
value observed at time t should be classified.

In this way, steps 1 and 2 via (9), (10), (8), (11), and (12) are prepared to be used as long as new measurements of
the explanatory counts arrive.

Local Poisson regressions on Poisson-mixture locations As stated in step 3 of the time loop for t = 1, 2, . . . , T
of analysis of training data in Section 3.1, the pointer estimated in (12) is necessary to model the spatio-temporal
relationships of the explanatory counts xt and the target count yt measured simultaneously at the same locations
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indicated at time t. This is achieved by estimating the regression coefficients of Nc Poisson regressions (3) at the
Nc locations. This procedure is specified as the search for Nc sets of time indices τi such that

τi = {t| argmaxwt = i︸ ︷︷ ︸
via (12)

}, t = 1, 2, . . . , T, ∀i ∈ {1, 2, . . . , Nc}. (13)

Following this, the data set {yτi , x1;τi , x2;τi , . . . , xN ;τi} for each i includes the target and multiple explanatory
counts in the i-th Poisson-mixture location detected by the above algorithm. These sets are then incorporated into
the log-likelihood function (4) to compute the point estimates of the regression coefficients [θ̂0, θ̂1, . . . , θ̂N ]′i at each
i-th location numerically, as defined by (5). This part of the solution completes the analysis of the training data.

3.3 Online testing data prediction

Online location recognition At this stage of the solution for the time t = T + 1, T + 2, . . . (refer to steps 1
and 2 of online prediction with testing data in Section 3.1), the currently measured explanatory counts xj;t are used
for the online prediction of the target count yt. There are two options for using the pre-estimated Poisson models
obtained during the training data analysis:

1. Use of the final point estimates of the Poisson component parameters Here, the point estimates λ̂i;j;t=T are
continuously substituted into the relation (9) along with the values of of the explanatory counts xj;t observed
at the actual time instant t = T + 1, T + 2, . . ., each into their component (1). This computes the real-
time proximity Mi;t, which, via (10) and (12), provides the required point estimate of the real-time pointer,
allowing the detection of the active location.

2. Re-estimation of the Poisson component parameters In this case, the above option is enhanced by the recur-
sive update of statistics (8) to re-compute (11) and utilize the new point estimates λ̂i;j;t in (9) at each time t
or for occasional re-learning. This enables refining weights of the components during the online prediction.

At each time, both options provide the current value of the pointer (12), indicating the active location where the
current explanatory counts xj;t belong.

Target count prediction At the final step 3 of the time loop for the time t = T + 1, T + 2, . . ., the vector of the
currently measured explanatory counts xt, classified in the previous step, is utilized in the local Poisson regression
(3) for the online prediction of the target count yt. Embedding the current realizations into (3) allows computation
of the expectation of the target count

ŷt = exp{[θ̂0, θ̂1, . . . , θ̂N ]′i=argmaxwt
xt} (14)

with the point estimates of the regression coefficients [θ̂0, θ̂1, . . . , θ̂N ]′i=argmaxwt
corresponding to the location

i = argmaxwt indicated by the current pointer value (12) at time t.

3.4 Properties and limitations of the proposed approach

The properties and limitations of the proposed approach were first investigated through simulations using Scilab
(www.scilab.org), a free and open-source programming environment for engineering and scientific computations. In
the local-model-based approach, the relationship between the quality of the target count prediction and the accuracy
of classification of explanatory counts can have a significant impact. To investigate this relationship, we explored
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the dependence between the coefficient of determination R2 and the accuracy of classification Acc. Here, R2 is
defined as

R2 = 1−
∑K

t=T+1(yt − ŷt)
2∑K

t=T+1(yt − ȳ)2
(15)

where K − T represents the capacity of testing simulated data sets, and ŷt is the predicted value of the target count
from (14). Additionally, Acc is defined as the ratio of the number of correct pointer estimates (12) to the total
number of pointer estimates calculated during the prediction part of the algorithm.

For this part of the validation experiments, randomly generated parameters were used for the four Poisson com-
ponents of explanatory counts, and the mixture initialization, identical for all experiments, was set to exclude the
influence of experimental settings. Each simulated data set contained 1000 realizations of two explanatory counts
x1;t and x2;t as well as the target count yt.

To examine whether lower accuracy in classifying explanatory count data xt affects the prediction quality of the
target count variable yt, three types of experiments were conducted. They involved simulations from:

1. Distant Poisson components with highly different parameters for both x1;t and x2;t;

2. Close Poisson components with parameters close to each other for both x1;t and x2;t;

3. A mix of both, featuring distant Poisson components for x1;t and close components for x2;t.

The distance between the components was defined as the range of absolute differences between the component
parameters of each explanatory count

Rj = max(|λi;j − λk;j |)−min(|λi;j − λk;j |), ∀i, k ∈ {1, 2, . . . , Nc}, ∀j ∈ {1, 2, . . . , N}. (16)

Each type of the experiments was conducted 30 times with a different choice of standard deviations used for random
generation of the Poisson component parameters. Table 1 shows the average values of the ranges R1 and R2 of the
component parameters of the explanatory counts, as well as the average values of R2 and Acc in percent obtained
for each type of experiment, in comparison with the R2 of the classical Poisson regression denoted by R2

PR. The

Table 1: Explanatory data classification vs. target data prediction
Experiment type R1 R2 Acc R2 R2

PR

Distant components 15.318 17.917 95.854 93.798 86.258
Close components 5.209 5.721 61.924 49.047 39.358
Mixed components 39.712 4.850 98.093 92.334 89.364

table shows that Acc is naturally higher for distant components, which are generally more easily recognizable,
although classifying Poisson components with at least approximate equidispersion is not trivial, unlike Gaussian
components; see histograms of distant and mixed components in Figure 1 (left). The closer the components are, the
lower the accuracy Acc, especially for small values of the parameters and consequently with small variances. As
expected, the target prediction quality, determined through R2, is affected by the lower Acc and decreases as well
(note the y-axis values in the plots of Figure 1 (right)). However, for all types of experiments shown in Figure 1
(right) and in Table 1, it holds that R2 > R2

PR, meaning that the quality of prediction with the proposed method
is higher than with classical Poisson regression. This holds true even for the case of close components, where the
simulations have been prepared with higher standard deviations during generation, causing the data to almost lose
their multimodality. This facilitates the prediction for Poisson regression, and the difference between R2 and R2

PR
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Figure 1: Explanatory data classification accuracy impact on target data prediction

is small for some of the simulations in Figure 1 (right). The improvements in prediction resulting from the proposed
method are clearly evident.

Another important property of the proposed algorithm is that the target count variable yt does not need to have a
distinctly multimodal character to capture its relationship with the explanatory counts at their recognized locations.
This can be seen in Figure 2, where the histograms of the target count yt for each type of the above experiments lack
distinct peaks. This indicates that clustering of the count variable yt in the joint data space with explanatory variables
x1;t and x2;t will not provide new information. Even in the case of such clustering, the mixture initialization would
be a rather challenging task.

More experiments comparing the proposed approach with alternative existing algorithms applied to real traffic
counts will be presented later in Section 4. Here, the general properties of the approach have been investigated and
are summarized in Table 2.

Table 2: General properties of the approach compared to alternative methods
Alternative methods The proposed approach

Poisson/ZIP/ZTP regression No single-distribution assumptions
NB/ZINB/ZTNB regression, GPM Local models for their later recognition

in prediction
Mixture of Poisson/NB-related regressions,
CP, Poisson-Gamma/Gaussian models

One-pass recursive estimation for
online re-learning/prediction

Centroid-based clustering Parametrized cluster models for prediction

Investigating the properties of the proposed algorithm, its limitations were also outlined. Naturally, a significant
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Figure 2: Histograms of target counts for various distances between explanatory data components

correlation between the target and explanatory variables is expected, but this holds for all predictive models. Ex-
amples of Spearman’s test p-values are 2.58D-130 obtained for yt and x1;t, and 2.945D-78 for yt and x2;t, with
Spearman’s rank correlation coefficients 0.6073 and 0.4946, respectively. Additionally, the presence of at least
slight multimodality in the explanatory counts is required to facilitate mixture initialization and detect locations.

Application of the proposed approach to real count data is presented in the next section.

4 Application to traffic counts in selected areas in Prague

Here, the presented approach was implemented using the Python programming language (www.python.org).

4.1 Data description and preliminary correlation analysis

The data sets were provided by the mobile measuring laboratory MobiLab from the Czech Technical University in
Prague (https://mobilab.fd.cvut.cz) and can be downloaded from [81].

Traffic counts were measured every minute over a 24-hour period at the following four selected areas in Prague:
Stodůlky (September 2021), Barrandov (June 2022), Radlice (September 2022), and Velká Chuchle (October 2022),
resulting in four data sets. At each location, 3 to 6 points were chosen where traffic counts were collected in all
possible directions along the corresponding road section/intersection. The measuring points are denoted by red
circles in the map screenshots shown in Figure 3.

The four provided data sets were used for the experiments as follows: Within each data set from a specific area, 2
to 3 data samples were created, each utilizing one of the available traffic count variables as the target count variable
yt, indicating that the traffic counts in the chosen direction will be predicted, with the remaining traffic counts used
as the explanatory variables xt = [x1;t, x2;t, . . . , xN ;t]

′. Each resulting data sample has a different target count
variable. In total, ten data samples have been prepared as follows: two for Stodůlky, with the target count variables
at points S1 and S2 as shown in Figure 3; three for Barrandov (B1–B3), two for Radlice (RD1, RD2), and three for
Velká Chuchle (VC1–VC3).
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Figure 3: Map screenshots of four locations in Prague (www.mapy.cz ©Seznam.cz, a.s. 2024, ©AOPK ČR –
ochrana přírody a krajiny, ©Přispěvatelé OpenStreetMap, ©Natural Earth, Tom Patterson)

The correlation between the target and individual explanatory counts within each data sample was tested using the
Spearman’s rank correlation test in the SciPy library [82]. All obtained p-values were lower than the significance
level of 0.05, indicating a statistically significant dependence between the variables. The Spearman’s rank cor-
relation coefficients rs between the target and individual explanatory counts are provided in Table 3, which also
indicates that the number of explanatory counts N differed among the data samples chosen according to specific
road sections.

Table 3: Spearman’s rank correlation coefficients
Data sample rs(yt, x1;t) rs(yt, x2;t) rs(yt, x3;t) rs(yt, x4;t)

Stodůlky S1 0.856 0.949 – –
Stodůlky S2 0.846 0.861 – –

Barrandov B1 0.671 0.846 0.779 0.831
Barrandov B2 0.699 0.78 0.765 0.758
Barrandov B3 0.491 0.767 0.774 0.805
Radlice RD1 0.954 0.822 – –
Radlice RD2 0.83 0.977 – –

Velká Chuchle VC1 0.384 0.382 – –
Velká Chuchle VC2 0.381 0.377 – –
Velká Chuchle VC3 0.622 0.612 – –

4.2 Poisson mixture initialization for explanatory traffic counts

Each of the ten data samples was split into 75% training and 25% testing data. The histograms of the explanatory
training traffic counts were used to initialize the Poisson components of each mixture. To conserve space, Fig-
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ure 4 displays histograms of the traffic counts for one data sample from each of the Prague areas used (S1, B1,
RD1, and VC1). Lighter colors correspond to explanatory traffic counts, while brighter colors represent the target
counts. Notice that only explanatory counts are used for initialization, while the histograms of the target data do
not necessarily have to duplicate the form of the histograms of the explanatory counts. The number of Poisson

Figure 4: Histograms for one data sample from each of the Prague areas used for initialization

components Nc in the explanatory count mixtures was heuristically initialized based on the visually recognizable
number of peaks in the histograms of the explanatory counts, as illustrated in Figure 4. The prior point estimates of
the Poisson component parameters λ̂i;j;t for t = 0 for individual explanatory traffic counts within each data sample
were initialized based on the centers of the histogram peaks. For example, the data sample Stodůlky S1 includes
two explanatory traffic counts, x1;t and x2;t, each described by three components of the Poisson mixture. The initial
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point estimates of their component parameters are [3, 22, 50]′ for x1;t and [2, 25, 49]′ for x2;t, as indicated by the
red lines in Figure 4. Similarly, for the data sample Barrandov B1, there are four explanatory traffic counts, each
with two Poisson components. Their initialization values are [1, 12]′ for x1;t, [2, 50]′ for x2;t, [1, 20]′ for x3;t, and
[2, 17]′ for x4;t. The initial statistics of the components were then calculated according to (7).

4.3 Explanatory traffic count locations and local target Poisson regressions

Figure 5 illustrates detected locations in the training explanatory traffic counts for each sample plotted against the
values of the target traffic counts. In each plot, coefficients of local Poisson regression for recognized locations are
positioned near their centers where it was possible due to overlapping clusters. To enhance clarity, the color themes
of the plots align with those in Figure 4: blue denotes Stodůlky, green represents Barrandov, plum signifies Radlice,
and orange indicates Velká Chuchle. It can be seen that the data samples from the areas of Stodůlky (blue), Radlice
(plum), and Velká Chuchle (orange) each have three local Poisson regressions (3) with two explanatory counts,
resulting in three point estimates of the regression coefficients [θ̂0, θ̂1, θ̂2]′i in each plot for each location, i.e.,

E[yτi |xτi ] = eθ̂0;i+θ̂1;ix1;τi
+θ̂2;ix2;τi , i = {1, 2, Nc = 3}, (17)

where the indices τi of the traffic counts belonging to the locations are defined in (13). The data samples from
Barrandov (green B1 to B3) each have two local Poisson regressions with four explanatory counts, demonstrating
five coefficients in each plot for each location, i.e.,

E[yτi |xτi ] = eθ̂0;i+θ̂1;ix1;τi
+θ̂2;ix2;τi

+θ̂3;ix3;τi
+θ̂4;ix4;τi , i = {1, Nc = 2}. (18)

Notice that the data samples from the busier roads (blue S1, S2, and green B1 to B3) with a traffic count range of up
to 85 vehicles per minute have clearly recognizable locations in the plots, even when they overlap. The data samples
from Radlice (plum RD1 and RD2), with a traffic count range of up to 28, have significantly overlapping locations.
The data values from samples VC1 to VC3 (orange) should have been jiggled for plotting, as their ranges are up to
5 and the centers of the locations are close to each other. This indicates that searching for Poisson-based locations
in the explanatory data space with a low number of realizations is not a trivial task. As discussed in Section 3.4,
the clustering quality will impact the prediction error in the online target prediction phase of the algorithm, which
utilizes the point estimates obtained in individual locations. The results of the target traffic count prediction are
compared among all data samples and alternative well-known techniques in the next section.

4.4 Validation of target traffic count prediction

For the validation of the proposed algorithm (PA), each data sample was randomly shuffled during each execution
of the algorithm and used for comparison with the following methods: (i) Poisson (PR) and NB regressions from
statsmodels.api (www.statsmodels.org) [83]; (ii) decision tree classifier (DT) from sklearn.tree; (iii)
random forest classifier (RF) from sklearn.ensemble; and (iv) multi-layer perceptron (MLP) available from
sklearn.neural_network, all from www.scikit-learn.org [84].

The quality of the prediction of the traffic count variable yt within each shuffle of each data sample was evaluated
using root mean squared error (RMSE), mean absolute error (MAE), mean squared logarithmic error (MSLE)

MSLE =
1

K

K∑
t=T+1

(ln(1 + yt)− ln(1 + ŷt))
2, (19)
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Figure 5: Detected explanatory traffic count locations and local target Poisson regression estimates

the negative log-likelihood (NLL) capturing the discrepancy between the observed target traffic counts and the
predicted counts according to the Poisson distribution

NLL = −
K∑

t=T+1

ln

(
ŷytt e−ŷt

yt!

)
, (20)

and the coefficient of determination R2, all from sklearn.metrics (www.scikit-learn.org) [84]. For all metrics,
T = 1079 indicates the capacity of training traffic data, while K = 1440 denotes the total capacity of each data
sample, i.e., 360 data values were used for testing. Each data sample was shuffled 30 times. Tables 4–7 compare
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prediction error metrics of all data samples, where PA denotes the row with results of the proposed algorithm. For
each prediction metric, its average value obtained across 30 shuffles of the data sample, along with the standard
deviation, is shown. The color themes of the tables (blue, green, plum, and orange) align with those in Figures 4
and 5, corresponding to Prague areas.

4.5 Results in Prague areas with busier traffic flow

Analysis of the obtained results shows that in areas with busier traffic flow (Stodůlky, Barrandov and Radlice in
Tables 4 (blue), 5 (green), and 6 (plum)), where the target traffic ranges are between 25 and 80 vehicles per minute
(as shown on the y-axes of the blue, green, and plum plots in Figure 5), the R2 of the proposed algorithm reaches
values from 0.615 to 0.891. This signifies an accurate and reliable model, particularly when compared to alternative
methods.

Table 4: Target count prediction errors – Stodůlky S1 and S2
RMSE MAE MSLE NLL R2

PA 3.168±0.177 2.179 ±0.096 0.09±0.008 792.1± 15.92 0.891± 0.012
PR 5.762±0.943 4.006±0.248 0.508±0.046 1136.08±25.85 0.634±0.113
NB 6.669±1.356 4.165±0.334 0.473±0.043 1138.32±33.16 0.505±0.194
DT 4.098±0.234 2.782±0.165 0.129±0.009 978.77±55.33 0.818±0.016
RF 4.061±0.223 2.745±0.144 0.124±0.01 948.9±49.84 0.821±0.016

MLP 3.484±0.257 2.31±0.145 0.093±0.007 914.1±96 0.868±0.014
RMSE MAE MSLE NLL R2

PA 6.843±0.438 4.578±0.229 0.316±0.058 1151.75±38.29 0.771±0.03
PR 8.531±0.516 6.209±0.262 0.665±0.064 1484.97±41.66 0.643±0.046
NB 8.703±0.55 6.256±0.278 0.652±0.064 1483.46±42.93 0.629±0.051
DT 9.623±0.441 6.388±0.294 0.642±0.074 2020.09±151.86 0.547±0.047
RF 9.199±0.529 6.186±0.31 0.535±0.079 1861.59±147.96 0.586±0.049

MLP 7.553±0.554 4.987±0.311 0.386±0.076 1623.15±226.35 0.72±0.042

The comparison of the average prediction quality, as shown in Tables 4-6, indicates that the RMSE, MAE, MSLE,
and NLL of the proposed algorithm are the lowest among the compared methods, with a small standard deviation,
while R2 is the highest. This reflects that the predictions of target traffic counts obtained with the proposed algo-
rithm were the most precise. The prediction quality produced by the alternative methods for these data samples is
relatively high, except for NB, which exhibits higher deviations and even a negative R2 value in Table 6. Never-
theless, it remains lower than that achieved by the proposed algorithm. For the data sample B2 in Table 5, where
the R2 of the proposed algorithm is only 0.615, some of the other methods yield significantly worse results. For
example, DT and RF have average R2 values of 0.223 and 0.321, respectively.

In this part of the validation experiments, the overall success of the prediction methods is influenced by the higher
ranges of the traffic counts, where observations on busier roads resemble continuous data, and small deviations
between predictions and data are not as significant. The higher correlation shown in Table 3 also impacts the
predictions. For this reason, it is worth examining how the proposed algorithm performs with traffic counts charac-
terized by small ranges and lower correlation coefficients shown in Table 3. These results will be presented in the
next section.
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Table 5: Target count prediction errors – Barrandov B1, B2, and B3
RMSE MAE MSLE NLL R2

PA 8.676±0.345 6.515±0.289 0.134±0.021 1292.66±24.96 0.871±0.011
PR 12.282±0.549 9.444±0.356 0.312±0.037 1668.82±39.68 0.741±0.025
NB 12.416±0.578 9.488±0.37 0.306±0.036 1668.85±40.07 0.736±0.027
DT 11.089±0.332 8.323±0.273 0.214±0.025 1608.94±53.7 0.789±0.017
RF 10.385±0.354 7.791±0.259 0.195±0.021 1523.64±43.59 0.815±0.015

MLP 10.803±0.506 7.971±0.365 0.185±0.022 1531.66±64.14 0.8±0.021
RMSE MAE MSLE NLL R2

PA 4.965±0.195 3.64±0.14 0.248±0.016 1044.84±25.05 0.615±0.024
PR 5.399±0.218 4.008±0.151 0.358±0.02 1137.6±29.43 0.544±0.037
NB 5.465±0.221 4.034±0.152 0.35±0.019 1139±29.65 0.532±0.04
DT 7.042±0.368 5.038±0.277 0.455±0.037 1749.9±83.91 0.223±0.084
RF 6.585±0.269 4.702±0.208 0.403±0.028 1694.89±72.77 0.321±0.054

MLP 6.017±0.328 4.319±0.233 0.372±0.027 1813.67±111.72 0.433±0.059
RMSE MAE MSLE NLL R2

PA 4.247±0.133 3.154±0.112 0.207±0.017 964.89±18.89 0.735±0.016
PR 5.263±0.202 4.012±0.155 0.379±0.033 1128.09±25.46 0.592±0.037
NB 5.374±0.213 4.06±0.163 0.365±0.031 1129.51±26.59 0.575±0.04
DT 5.652±0.179 4.116±0.129 0.332±0.03 1499.34±71.68 0.53±0.035
RF 5.16±0.229 3.747±0.176 0.301±0.025 1427.98±75.72 0.608±0.039

MLP 4.998±0.245 3.591±0.173 0.293±0.033 1509.3±106.08 0.633±0.031

Table 6: Target count prediction errors – Radlice RD1 and RD2
RMSE MAE MSLE NLL R2

PA 2.903±0.154 1.4±0.103 0.123±0.025 406.22±26 0.74±0.022
PR 4.784±0.615 2.668±0.172 0.536±0.019 871.41±38.69 0.287±0.179
NB 6.08±1.163 2.85±0.27 0.48±0.02 867.42±45.19 -0.173±0.44
DT 4.088±0.232 1.91±0.141 0.277±0.046 668.45±60.1 0.485±0.05
RF 4.045±0.241 1.891±0.153 0.229±0.037 585.99±51.04 0.495±0.062

MLP 3.504±0.242 1.647±0.127 0.162±0.028 497.45±44.16 0.621±0.047
RMSE MAE MSLE NLL R2

PA 2.495±0.118 1.151±0.074 0.042±0.009 350.48±18.41 0.882±0.01
PR 5.598±0.981 2.86±0.21 0.382±0.007 791.61±29.35 0.39±0.222
NB 6.908±1.519 3.06±0.322 0.331±0.007 791.71±34.73 0.056±0.43
DT 3.453±0.298 1.575±0.153 0.089±0.023 471.36±47.97 0.774±0.033
RF 3.266±0.283 1.49±0.138 0.069±0.012 426.37±33.6 0.798±0.031

MLP 2.826±0.148 1.296±0.091 0.053±0.008 383.38±23.97 0.849±0.017

4.6 Results in Prague areas with less busy traffic flow

In the areas with less busy traffic flow (Velká Chuchle), the target traffic ranges are 7 and 8 vehicles per minute
for VC1 and VC2, respectively, and 18 for VC3. These ranges can be seen on the y-axes of the orange plots in
Figure 5. Results obtained in these areas, as shown in Table 7 (orange), are not as successful when compared across
all methods.
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Analysis of the R2 for data samples VC1 and VC2 shows that the proposed algorithm has the highest R2 among
the compared methods, although it also indicates a weak goodness of fit for the model, with average values of only
0.151 and 0.173. However, predictions from the remaining methods, except for PR, were poor, with negative R2

values. This can be explained by the low correlation in the data.

Upon examining the prediction errors for data samples VC1 and VC2, it becomes apparent that the RMSE and
MSLE of the proposed algorithm are the lowest, but its MAE is higher than those of DT, RF, and MLP. Attributed
to the narrow range of counts in these data samples, this is explained by the sensitivity of MAE to small changes in
data, highlighting its ability to detect even subtle variations in predictions. However, to assess the prediction quality
from various perspectives, the NLL of the proposed algorithm is significantly lower than that of the other methods,
indicating better predictive performance of the model.

When considering the results for the data sample VC3, which has a slightly wider target traffic count range of 18,
they differ from those for VC1 and VC2. All the metrics in Table 7 (orange) for VC3 show the better performance
of the proposed algorithm compared to other methods. There are no negative R2 values in the average results;
however, NB still exhibits very low R2 values close to zero, with high standard deviation. The proposed algorithm
achieves an R2 value of 0.472, with MLP being the only method close to it. This difference in prediction quality
for VC3 is also attributed to the higher correlation coefficients compared to VC1 and VC2 (refer to Table 3).

Table 7: Target count prediction errors – Velká Chuchle VC1, VC2, and VC3
RMSE MAE MSLE NLL R2

PA 1.166±0.063 0.83±0.032 0.268±0.015 445.29±22.58 0.151±0.032
PR 1.23±0.067 0.903±0.033 0.291±0.013 470.92±22.95 0.054±0.044
NB 1.326±0.091 0.93±0.042 0.3±0.019 476.94±25.06 -0.104±0.145
DT 1.413±0.088 0.794±0.059 0.409±0.035 2091.02±190.12 -0.246±0.055
RF 1.408±0.09 0.794±0.061 0.404±0.036 2030.3±173.75 -0.238±0.064

MLP 1.373±0.09 0.762±0.061 0.377±0.035 1913.24±187.54 -0.177±0.051
RMSE MAE MSLE NLL R2

PA 1.198±0.053 0.869±0.028 0.272±0.015 456.8±18.47 0.173±0.029
PR 1.268±0.06 0.937±0.027 0.296±0.011 479.51±15.16 0.073±0.059
NB 1.369±0.107 0.959±0.035 0.303±0.016 484.07±18.18 -0.087±0.163
DT 1.488±0.073 0.873±0.048 0.455±0.036 2452.05±184.01 -0.277±0.071
RF 1.47±0.069 0.861±0.045 0.441±0.035 2353.73±178.5 -0.246±0.075

MLP 1.48±0.072 0.856±0.049 0.445±0.038 2419.27±218.4 -0.264±0.084
RMSE MAE MSLE NLL R2

PA 2.468±0.111 1.798±0.065 0.399±0.028 752.64±22.24 0.472±0.036
PR 2.894±0.217 2.13±0.079 0.544±0.032 850.01±24.96 0.271±0.107
NB 3.342±0.427 2.199±0.109 0.522±0.029 855.17±28.31 0.016±0.257
DT 3.116±0.171 2.002±0.128 0.614±0.058 2076.31±166.15 0.16±0.066
RF 3.024±0.142 1.945±0.105 0.57±0.046 1985.84±147.84 0.207±0.08

MLP 2.773±0.162 1.809±0.116 0.521±0.048 1923.28±144.66 0.334 ±0.062

4.7 Discussion

In the experimental part of the work, differently-aimed metrics were specially chosen to evaluate the prediction
quality of the proposed algorithm from different perspectives. These include: (i) assessing differences between
predicted and actual values via RMSE, MAE, and MSLE; (ii) measuring the proportion of variance in the target
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variable explained by the explanatory variables, representing the overall goodness of fit of the model by R2; and (iii)
evaluating the model’s ability to predict probabilities that align with the actual data distribution, providing insight
into the model’s predictive performance through NLL. To summarize the results of the experiments, it can be
stated that traffic count data prediction with the proposed algorithm was more successful across all applied metrics
compared to alternative methods, even in the case of weakly correlated data, with the exception of insignificant
differences in MAE for two data samples used. The obtained results report that for traffic counts with higher
ranges, corresponding to busier urban roads, the proposed approach provided the most accurate model among the
methods used, yielding the lowest RMSE, MAE, MSLE, and NLL, as well as the highest R2.

Concerning traffic counts with lower ranges, which in the used data samples indicated less busy urban roads, it is
noted that despite the overall weak goodness of fit observed across all methods, the proposed algorithm performed
more accurately even in this scenario. However, the application of all compared methods under these conditions
may be limited, as low ranges of traffic data may also be caused by congestion. Additionally, it is important to
consider the impact of correlation within the data sample. This underscores that, in addition to the limitations
outlined in Section 3.4, low ranges of count data, particularly when accompanied by weak correlations, can further
constrain the algorithm’s performance.

Based on the above discussion, it can be concluded that the main aim of the paper, as stated in Section 1.3, to predict
the target count variable by analyzing cross-sectional count data in identified locations and capturing data evolution
over time, has been successfully achieved. The proposed approach contributes to understanding the spatio-temporal
relationships between traffic counts across different locations on urban roads. This is believed to pave the way
for its potential application in intelligent transportation systems, particularly in the areas of urban planning, traffic
management, and infrastructure development. Such application offers enhanced decision-making capabilities and
resource allocation strategies, ultimately aiming to optimize transportation efficiency.

5 Conclusion

This study aimed to address a task of modeling and prediction of count data with the application to traffic counts at
selected urban roads in Prague. The key ideas of the approach included (i) exploring multiple explanatory counts
and identifying their locations through recursive Bayesian estimation of Poisson mixtures; (ii) estimating the tar-
get count model using local Poisson regressions at specific locations; and (iii) predicting target counts through
real-time location detection. The findings from the conducted experiments are promising, indicating that the pro-
posed algorithm demonstrates improvements in prediction quality, outperforming the alternative methods used for
comparison.

The main contribution of the paper is the development of a novel approach for online target count prediction by
simultaneously analyzing the spatial locations and temporal evolution of multivariate explanatory count data. The
approach brings new benefits to the area of count data models through (i) the use of local models for later recog-
nition in prediction, (ii) one-pass recursive estimation for efficient online re-learning and prediction, and (iii) the
implementation of parametrized cluster models for enhanced predictive performance.

To address the remaining challenges in models for count data, the proposed methodology can be extended to use
dynamic local Poisson regressions at detected locations. This extension is expected to offer significant advantages,
such as efficiently updating models in real-time, capturing spatiotemporal interactions, managing computational
complexity, and ensuring robustness against noisy data. Addressing these issues is crucial for enhancing prediction
accuracy and scalability in real-world applications.

Applied to traffic count data, the promising performance demonstrated by the proposed algorithm offers a hopeful
vision for traffic prediction and urban planning, suggesting its potential as a valuable tool for enhancing transporta-
tion efficiency by optimizing the timing of city traffic lights to improve traffic flow.
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