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Abstract

We present and compare several approaches for transforming pseudo-belief func-
tions, constructed from Jeffreys confidence intervals on observational data, into
proper belief functions. Two main classes of methods are examined: one based on
polyhedral geometry using various optimization strategies, and the other employing
generalized belief discounting. Finally, the proposed methods are evaluated on real
cybersecurity data and compared with standard upper and lower approximations of
pseudo-belief.

1 Introduction

In a companion paper in these proceedings Daniel et al. (2025), belief functions were
estimated from data using lower bounds based on Jeffrey’s binomial confidence intervals.
These bounds may not directly correspond to any valid belief function, leading to the
notion of pseudo-belief functions — representations that preserve the intended epistemic
meaning but violate some mathematical constraints of belief calculus.

This paper presents two complementary groups of methods for correcting such pseudo-
belief functions and obtaining valid belief functions from them. Each method has its own
motivation and interpretation:

• The first approach is based on polyhedral geometry. It considers the lower bounds
(e.g., Jeffreys-type) as defining a polyhedron of admissible belief functions and se-
lects one or more representative elements from this set using geometric or optimization-
based criteria. This approach is constructive and data-driven.

104



• The second approach, introduced in this paper, generalizes the classical method
of belief discounting as defined by Shafer (1976). It assumes a partial reliability of
the original pseudo-belief function and proportionally reduces its support, originally
transferring the remainder to total ignorance. We utilize the remainder for negative
belief mass correction here. The result is a valid belief function that retains the
internal structure of the original function.

While these two approaches differ in spirit — geometric reconstruction versus numer-
ical correction — they share the same objective: to obtain valid belief functions that are
compatible with uncertain or incomplete evidence. Moreover, belief discounting is a linear
transformation and can be interpreted as a special case of movement within the credal
set (i.e., the set of all belief functions consistent with given information), hence admitting
a geometric interpretation.

By combining these perspectives, the paper contributes to the broader effort of belief
function learning: deriving reasonable epistemic representations from empirical data, even
in the presence of imprecision or ambiguity.

2 Preliminaries

This paper builds on a preceding contribution in these proceedings (Daniel et al., 2025),
where belief and pseudo-belief functions were introduced and motivated by data-driven
lower bounds such as Jeffreys intervals. These bounds may not always define a valid belief
function, leading to pseudo-belief structures that require correction.

We explore two complementary correction strategies, each developed in a separate
section. The first is based on polyhedral geometry and is presented next. The second
relies on belief discounting and follows afterward. Here we briefly recall the key concepts
common to both.

A belief function over a finite frame Ω is defined via a basic probability assignment
(BPA) m : 2Ω → [0, 1] satisfying m(∅) = 0,

∑
m(A) = 1. Belief and plausibility functions

are given by:
belm(A) =

∑
B⊆A

m(B), plm(A) =
∑

B∩A̸=∅

m(B). (1)

Pseudo-belief functions generalize this by allowing some negative masses while preserving
the belief–plausibility duality.

An important correction tool is discounting (Shafer, 1976), used when evidence is not
fully reliable. Given trust 1− δ, the discounted mass function is defined as:

mδ(A) = (1− δ)m(A) for A ̸= Ω, mδ(Ω) = (1− δ)m(Ω) + δ,

yielding a belief function belδ with belδ(A) = (1 − δ) bel(A) for A ̸= Ω, belδ(Ω) = 1.
Discounting increases uncertainty while preserving belief ratios.

Finally, when belief or plausibility bounds are defined by inequalities, they form a
polyhedron

P = {x ∈ Rn : Mx ≤ b},
which may or may not correspond to any belief function. We use geometric methods to
modify such sets into valid belief structures — a topic of the next section.
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3 Geometric Correction via Polyhedral Optimization

In the preceding chapters, we introduced pseudo-belief functions derived from empirical
data using Jeffreys confidence intervals, as motivated in Daniel et al. (2025). These define
lower and upper bounds for the belief and plausibility of each subset A ⊆ Ω, resulting in
a system of linear inequalities that constrains possible belief functions.

Let belJ ∈ R2n denote the vector of lower bounds (Jeffreys intervals) for each subset
A. The inequality

belJ(A) ≤
∑
B⊆A

m(B)

can be rewritten in matrix form as

Mm ≥ belJ ,

where m ∈ R2n is a vector of bpa values and M ∈ {0, 1}2n×2n is the inclusion matrix
with entries M[A,B] = 1 iff B ⊆ A.

If we add constraints for normalization and non-negativity,∑
A⊆Ω

m(A) = 1, m(A) ≥ 0,

we obtain a polytope P∗
J ⊂ R2n containing all belief functions consistent with the empirical

bounds. The polytope may have many vertices, corresponding to different consistent
BPAs.

Polyhedral geometry offers strong tools for selecting one specific point m ∈ P∗
J by

optimizing a suitable objective function. This approach draws on the convex geometry
of belief spaces as explored in Cuzzolin (2010, 2020) and relies on standard polyhedral
optimization methods (Ziegler, 1995; Bagnara et al., 2008).

We consider four optimization criteria:

Zero Objective (ZO). Selects any feasible point:

Minimize fZO(m) = 0.

Sparsity (SP). Minimizes the number of focal elements:

Minimize fSP(m) =
∑

A⊆Ω,A̸=∅

δ[m(A) > 0],

where δ[·] is the indicator function. This is approximated in LP by introducing binary
variables zA and constraints m(A) ≤ M · zA, for large M .

Cardinality-Weighted (CW). Penalizes small subsets:

Minimize fCW(m) =
∑

A⊆Ω,A ̸=∅

1

|A|
m(A).
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Dubois–Prade Entropy (HD). Maximizes entropy:

Maximize HD(m) =
∑

A⊆Ω,A ̸=∅

m(A) log |A|,

as proposed in Dubois and Prade (1987).
The resulting belief mass assignments under each objective are shown below for the

example with Ω = {ω1, ω2, ω3, ω4}:

Table 1: Comparison of belief mass assignments under different objective functions. Col-
umn mJ shows the pseudo-belief mass vector constructed directly from Jeffreys intervals
(Daniel et al., 2025).

A belJ(A) mJ(A) mZO(A) mSP (A) mCW (A) mHD(A)
{ω1} 0.164 0.163 0.400 0.163 0.164 0.174
{ω2} 0.211 0.211 0.321 0.297 0.211 0.222
{ω3} 0.179 0.179 0.229 0.317 0.179 0.190
{ω4} 0.050 0.050 0.050 0.222 0.050 0.060

{ω1, ω2} 0.461 0.086 0 0 0.081 0.065
{ω1, ω3} 0.423 0.080 0 0 0.075 0.059
{ω1, ω4} 0.262 0.048 0 0 0.044 0.027
{ω2, ω3} 0.480 0.089 0 0 0.089 0.068
{ω2, ω4} 0.314 0.052 0 0 0.052 0.031
{ω3, ω4} 0.279 0.050 0 0 0.050 0.029

{ω1, ω2, ω3} 0.778 -0.031 0 0 0 0
{ω1, ω2, ω4} 0.580 -0.032 0 0 0 0
{ω1, ω3, ω4} 0.539 -0.032 0 0 0 0
{ω2, ω3, ω4} 0.600 -0.032 0 0 0 0

Ω 1.000 0.117 0 0 0 0.075
HD 0 0 0.271 0.297

Discussion. Each optimization criterion leads to a different belief assignment. The
Sparsity (SP) solution concentrates belief on a minimal number of focal elements, which
may be beneficial for interpretability. TheCardinality-Weighted (CW) solution favors
larger sets, thereby reflecting cautious reasoning. The Dubois–Prade entropy (HD)
solution maximizes epistemic uncertainty and spreads mass over larger focal elements,
constrained by empirical bounds. Interestingly, the CW solution closely resembles the
approximation obtained in (Daniel et al., 2025) using the Upper Approximation Proce-
dure, which supports the validity of our optimization-based approach.

These results illustrate that geometric correction methods not only ensure consistency
with empirical estimates but also allow tailoring belief functions according to different
modeling principles or user preferences.
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4 A Generalization of Belief Discounting

Let us assume a PBF belJ constructed by application of the method of Jeffreys confidence
intervals (Daniel et al., 2025) or any general PBF, which does not satisfy the classic
Shafer’s definition of BF - there are some focal elements in respective BPA with negative
mass, cf. negative ε in lower approximation in Daniel et al. (2025). Our aim is simply to
find an acceptable way how to eliminate these negative belief masses. From the definition
of a PBF, all pseudo-beliefs are non-negative, thus also all belief masses of singletons are
obviously non-negative. Hence, an issue can appear only for X ⊆ Ω, |X| ≥ 2.

We can consider the negative mass m(X) as a consequence of over information about
the case which is the subject of the belief; excess information on subsets of X, which can
be corrected by removal of at least belief mass corresponding to the sum of negative belief
masses.
Example 1 In the simplest case of such a PBF, i.e., belS on |Ω2| = 2, mS(Ω2) = ε < 0,
we can simply solve the problem by discounting with discounting rate δ ≥ −ε/(1 − ε) :
mδ

S(Ω2) = (1 − δ)mS(Ω2) + δ ≥ (1 − (−ε/(1 − ε))ε − ε/(1 − ε) = ε(1 + ε/(1 − ε) −
1/(1 − ε) = ε(1 − 1) = 0, mδ

S(ωi) = (1 − δ)mS(ωi), which is also non-negative, as
1 − δ = 1 + ε/(1 − ε) = (1 − ε)/(1 − ε) + ε/(1 − ε) = 1/(1 − ε) > 0. Just the same
procedure we can use for correction of any PBF on |Ωn| = n, with the only negative belief
mass m(Ωn).

In general, we have to correct all negative belief masses, of any focal element |X| > 1.
We can do it in three different ways:
(i) local correction of m(X), related to the only focal element X ⊂ Ω and its subsets,
(ii) layered correction of all m(X), s.t. |X| = k, related only to focal elements |Y | ≤ k,
(iii) global correction which correct all the focal elements with negative masses together.

Motivated by the above solution of the simplest PBF case we will try to generalize
discounting as it follows.

Local discounting on X ⊂ Ω: m⌜X⌝δ(A) = (1 − δ)m(A) for any A ⊂ X, m⌜X⌝δ(X) =
m(X) + δ

∑
A⊂X m(A) and m⌜X⌝δ(A) = m(A) for other subsets A ⊆ Ω, i.e., for A ̸⊆ X.

Property 1: If X is disjoint with all focal elements of the same and less cardinality which
are not its subsets (X ∩ Y = ∅ for all |Y | ≤ |X| s.t. Y ̸⊆ X) we can describe reasonable
property of this definition of local discounting: (bel⌜X⌝δ(A) = (1−δ)bel(A) for any A ⊂ X,
bel⌜X⌝δ(A) = bel(A) if A ̸⊂ X).
Property 2: If X is disjoint with all focal elements of the same cardinality, we can describe
the following property of this definition of local discounting: (bel⌜X⌝δ(A) = (1− δ)bel(A)
for any A ⊂ X, (1−δ)bel(A) ≤ bel⌜X⌝δ(A) ≤ bel(A) for any |A| < |X| : A ̸⊂ X&A∩X ̸= ∅,
m⌜X⌝δ(A) = m(A) otherwise.
Example 2 Let suppose |Ω7| = 7, with only two focal elements of cardinality 3, |Ai| = 3:
A1 = {ω1, ω2, ω3}, A2 = {ω4, ω5, ω6}. Property 2 holds for both bel⌜Ai⌝δ. If further
m(X) = 0 for any X ⊆ A1∩A2, property 1 also holds for both bel⌜Ai⌝δ. If there are added
f.e.s A3 = {ω4, ω5, ω7}, A4 = {ω5, ω6, ω7}, the properties does hold only for bel⌜A2⌝δ.

Hence, the above useful properties does not hold for general PBFs. Jeffreys belJ has
often focal elements intersecting with the others of the same cardinality. Thus for our
reason the definition of local discounting should be improved in the future.
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Cardinality or k-discounting for 1 < k ≤ n: mkδ(A) = (1−δ)m(A) for any A : |A| < k,

mkδ(A) = m(A)+ δ
∑

B⊂A
m(A)∑

B⊂C:|C|=k m(C)m(B) for any |A| = k, and mkδ(A) = m(A) for

any |A| > k.
The formula - more precisely the coefficient of m(B) seems to be rather complicated

here, nevertheless we need to distribute any m(B) among subsets of cardinality k, resp.
just among all C, such that B⊂C & |C|= k.
Observation 1 We can observe that belkδ(A) = (1−δ)bel(A) for |X| < k and (1− δ)bel(A)
≤ belkδ(A) ≤ bel(A) for |A| ≥ k: the first equality holds for m(A) = 0 and the second if
there is the only one focal element of cardinality k, specially for k = n. [To be proved]
Observation 2 We can observem⌜Ωn⌝δ(A) = belnδ(A) = belδ(A) for |Ωn| = n. Thus both
local and cardinality discounting are generalization of the original Shafer’s discounting.
Proof. m⌜Ωn⌝δ(Ωn) = m(Ωn) + δ ·

∑
A⊂Ωn

m(A) = (1 − δ)m(Ωn) + δm(Ωn) + δ ·∑
A⊂Ωn

m(A) = (1−δ)m(Ωn)+δ(m(Ωn)+
∑

A⊂Ωn
m(A)) = (1−δ)m(Ωn)+δ = mδ(Ωn).

mnδ(Ωn) = m(Ωn) + δ ·
∑

B⊂Ωn
m(Ωn)/m(Ωn) · m(B) = (1 − δ)m(Ωn) + δm(Ωn) + δ ·∑

B⊂Ωn
m(B)) = (1− δ)m(Ωn) + δ = mδ(Ωn).

5 Reduction of Over-Belief by Generalized Discounting

5.1 General Remarks on PBF Correction

Motivated by the successful Example 1, we have generalized belief discounting to allow
analogous correction of general PBFs in the previous section.

As we have not yet been fully successful with the generalization of local discounting
for general PBFs while preserving the ratios of belief masses, we resort to using only
cardinality-based discounting in our corrections here. It affects all focal elements of a given
cardinality (it distributes the discounted belief mass among all of them) and, similarly to
classical Shafer discounting, adds the discounted mass to only one cardinality. Thus, our
local and global corrections are in fact mixtures of local/global and layered corrections.

We must correct all belief masses < 0, i.e., such that
∑

B⊂A m(B) > bel(A), i.e., with
ratio R(A) = bel(A)/

∑
B⊂A < 1. If the lowest ratio among focal elements of cardinality

k is used, then the strongest correction is performed, and the entire cardinality level is
corrected. If the highest ratio is used, the smallest correction is performed, and only
the focal element with that ratio is corrected. Note that a more complex formula for
distributing the discounted belief mass is applied in cardinality discounting compared
to classical discounting, and thus determining δ is also more complex, even though the
underlying idea is analogous to that in Example 1.

5.2 Local, Layered, and Global Corrections of PBFs

1 Local correction should be the most precise, nevertheless it appears more complicated
both from the theoretical point of view and also due to its computational complexity. As
the theoretical part is not yet fully investigated, we adopt a mixture of local and layered
approaches, correcting entire cardinality levels or individual focal elements one by one.

Milan Daniel, Radim Jiroušek, Václav Kratochvíl

109



2 Layered correction is a compromise approach that corrects entire cardinality levels.

3 Global correction should correct all negative belief masses of the entire PBF together,
if possible. Nevertheless, we again use only a mixture with layered correction.

5.3 Local Correction Algorithms

5.3.1 Algorithm 1-ugr

For each cardinality with negative pseudo-belief mass(es), we repeatedly utilize cardi-
nality discounting with minimal correction discount rates (i.e., upward from minimal
correction), correcting focal elements of cardinality k one by one using discount rates
δA = −

∑
|B|=k m(B)/

∑
C⊂A m(C) for |A| = k, ordered from minimal to maximal, cor-

recting pseudo-belief mass m(A) if it is negative.

Algorithm 1
Compute pseudo mJ by Möbius transformation from belJ , i.e., from the
lower bounds of estimated confidence intervals;
For all X ⊆ Ωn:

m1(X) := mJ(X),
R(X) := min(1, belJ(X)/

∑
Y⊂X mJ(X)) for |X| > 1, belJ(X) > 0,

R(X) := 1 for |X| = 1 or belJ(X) = 0 or
∑

Y⊂X mJ(X) = 0.
n := |Ωn|;
For k = 2, ..., n:

rk := max|X|=k R(X),
If rk < 1 Then RFE := {X ⊆ Ωn | |X| = k}

While RFE ̸= ∅:
AFE := {X ∈ RFE | with max

∑
Y ∈RFE mk−1(Y )}

sumA :=
∑

B⊂A mk−1(B) for some A ∈ AFE,
δA := −

∑
|B|=k mk−1(B)/sumA,

mk(X) := (1− δA) ·mk−1(X) for |X| < k,
mk(X) := mk−1(X)+

∣∣mk−1(X) ·
∑

Y⊂X m(Y )/sumA

∣∣ for |X| = k,

mk(Ωn) := m(Ωn) +
∑

|X|=k

(
mk−1(X)/sumA ·

∑
Y ̸⊂X mk−1(Y )

)
Else For all X ⊆ Ωn: mk(X) := mk−1(X);
% Now, m(X) ≥ 0 for all X s.t. |X| ≤ k

For all X ⊆ Ωn: m(X) := mn(X).

In the case of our cybersecurity data example from Daniel et al. (2025), there are four
negative pseudo-belief masses of 3-element focal elements: m({ω1, ω2, ω3}) = −0.03139,
m({ω1, ω2, ω4}) = −0.03158,m({ω1, ω3, ω4}) = −0.03159, andm({ω2, ω3, ω4}) = −0.03157
(see Table 1 and also the red values in Table 2). The corresponding discount rates are:
δ(123) = 0.155935, δ(234) = 0.044932, δ(124) = 0.002343, δ(134) = 0.000130. For the final
mass assignment further denoted as m1 and the corresponding BF bel1, see Tables 2 and
3. The belief function bel1 is in fact a composition of four 3-discountings:

bel1 = (((bel
3δ(123)
J )3δ(234))3δ(124))3δ(134) .
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5.3.2 Algorithm 1-dgr

We utilize cardinality discounting with the maximal correction rate (i.e., the highest rate
necessary to correct all negative belief masses of focal elements of cardinality k). Since this
correction always affects all focal elements of cardinality k simultaneously, it essentially
corresponds to Algorithm 2 from the next subsection.

5.3.3 Algorithms 1-ulr and 1-dlr

These algorithms aim to be closer to truly local corrections, either upward from the
minimal or downward from the maximal correction. However, it is still under investigation
whether it is possible to define an improved version of local discounting that preserves
belief mass proportions as much as possible.

5.4 Layered Correction Algorithm

We apply cardinality discounting with the maximal discount rate, i.e., the minimal rate
that corrects all negative belief masses of focal elements of a given cardinality k. This
correction thus always affects all focal elements of that cardinality together.

In the case of our cybersecurity data example from Daniel et al. (2025), the maxi-
mal discount rate is δ(134) = 0.2211. Since negative pseudo-belief masses only appear
at cardinality 3, the resulting BF further denoted bel2 is a simple application of 3-

discounting: bel2 = bel
3δ(134)
J , see Tables 2 and 3. Note that this discount rate corresponds

to {ω1, ω3, ω4}, which was the last focal element corrected in Algorithm 1-ugr. Never-
theless, the discount rate differs because here it is applied directly to the original belJ ,
whereas in Algorithm 1-ugr it was applied after three previous corrections.

Algorithm 2. Layered Correction
Compute pseudo mJ by Möbius transformation from belJ ;
For all X ⊆ Ωn:

m1(X) := mJ(X),
R(X) := min(1, belJ(X)/

∑
Y⊂X mJ(X)) for |X| > 1, belJ(X) > 0,

R(X) := 1 for |X| = 1 or belJ(X) = 0 or
∑

Y⊂X mJ(X) = 0,
n := |Ωn|;
For k = 2, . . . , n:

rk := min|X|=k R(X),
If rk < 1 Then

sumδ := min|X|=k

∑
B⊂X mk−1(B),

δk := −
∑

|B|=k mk−1(B)/sumδ,

mk(X) := (1− δk) ·mk−1(X) for |X| < k,
mk(X) := mk−1(X)+|mk−1(X)·

∑
Y⊂X mk−1(Y )/sumδ| for |X| = k,

mk(Ω) := mk−1(Ωn)+
∑

|X|=k

(
mk−1(X)/sumδ ·

∑
Y ̸⊂X mk−1(Y )

)
,

Else For all X ⊆ Ωn: mk(X) := mk−1(X);
% mk−1(X) ≥ 0 for all |X| ≤ k

For all X ⊆ Ωn: m(X) := mn(X).
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5.5 Global Correction Algorithm(s)

Unfortunately, we do not yet have a truly global correction. Since cardinality discounting
only corrects one cardinality level at a time, this method corresponds to an upside-down
layered discounting — starting from cardinality n downward.

In the cybersecurity data example, there is only one cardinality (3) with negative

pseudo-belief masses. Thus, the result of this approach is again bel3 = bel
3δ(134)
J .

Algorithm 3. Global Correction
Compute pseudo mJ by Möbius transformation from belJ ; n := |Ωn|;
For all X ⊆ Ωn:

m1(X) := mJ(X),
R(X) := min(1, belJ(X)/

∑
Y⊂X mJ(X)) for |X| > 1, belJ(X) > 0,

R(X) := 1 for |X| = 1 or belJ(X) = 0 or
∑

Y⊂X mJ(X) = 0;
For k = n, n− 1, . . . , 2:

rk := min|X|=k R(X),
If rk < 1 Then

sumδ := min|X|=k

∑
B⊂X mk−1(B),

δk := −
∑

|B|=k mk−1(B)/sumδ,

mk(X) := (1− δk) ·mk−1(X) for |X| < k,
mk(X) := mk−1(X)+|mk−1(X)·

∑
Y⊂X mk−1(Y )/sumδ| for |X| = k,

mk(Ω) := mk−1(Ωn)+
∑

|X|=k

(
mk−1(X)/sumδ ·

∑
Y ̸⊂X mk−1(Y )

)
,

Else For all X ⊆ Ωn: mk(X) := mk−1(X);
% mk−1(X) ≥ 0 for all |X| ≤ k

For all X ⊆ Ωn: m(X) := mn(X).

5.5.1 Alternative Algorithms

There are two ideas for alternative algorithms. The first is a layered approach that
mirrors Algorithm 1 in reverse: stepwise correction from the smallest to the largest R(X)
within each cardinality, moving downward from n to 2. The second is an open question:
whether it is possible to define some generalized discounting operation that can correct
all “negative” cardinalities at once.

6 Comparison on Cybersecurity Data Example

Let us compare lower and advanced lower approximations described in Daniel et al. (2025)
with the approaches studied here. Specially, with geometric cardinality-weighted mini-
mization (CW) and Dubois-Prade entropy (HD) and also with local and layered correction
based on generalized discounting.

As all studied approaches are just in the process of their development, also our im-
plementations are still in progress. Thus, we currently have correct comparable results
only on 4-element frames of discernment now. General procedures are still in the middle
of their tuning. Hence we will compare our approaches on the simplest case defined on
cybersecurity data by Table 2 in Daniel et al. (2025): having 52 data records on the
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4-element frame of discernment. For approximated/corrected belief mass assignments see
Table 2, for approximated/corrected BFs see Table 3. Note that indices of m1, m2, bel1,
bel2 refer results of Algorithms 1 and 2 here, not intermediate steps of their processing.

We skip here upper approximations from Daniel et al. (2025) as their results are not
BFs in general, as it was presented there. In the case of Table 4 (there) f(a) is even
more general than pseudo-belief function as the sum of corresponding belief masses over
all subsets of Ω is greater than 1. We also skip zero objective (ZO) and Sparsity (SP)
geometric approximation, as ZO with its zero objective function returns an ad-hoc BF
from the corresponding polytope and SP assigns all belief masses to singletons, thus a
large information is added there and the belief structure of pseudo-belief belJ is completely
lost there.

Finally, we have to recall that both correction Algorithms 2 and 3 produce the same
results on our simple data example, having negative pseudo-belief masses only on focal
elements of cardinality 3. Having our still limited experience with pseudo-belief functions
based on Jeffreys confidence interval, we have a hypothesis, the Jeffreys PBFs on |Ω| = 4
have either no negative pseudo-belief masses or have negative belief masses only on focal
elements of cardinality 3, hence Algorithms 2 and 3 both produce the same results on any
data on any 4-element frame.

Table 2: Comparion pseudo-belief masses derived from Jeffreys intervals mJ = mg with
degree of confidence α = 0.05 on cybersecurity data on |Ω| = 4 with its corrections: mf

and mf∗ from Daniel et al. (2025),mCW and mHD obtained by geometric Cardinality-
Weighted and Dubois-Prade entropy, m1 and m2 by correction Algorithms 1 and 2.

A belJ(A)
∑

B⊊AmJ(B) mJ(A) mf (A) mf∗(A) mCW (A)mHD(A) m1(A) m2(A)

{ω1} 0.1635 0 0.16346 0.1635 0.1635 0.1635 0.1739 0.1314 0.1273
{ω2} 0.2114 0 0.21145 0.2114 0.2114 0.2114 0.2219 0.1700 0.1647
{ω3} 0.1792 0 0.17920 0.1792 0.1792 0.1792 0.1897 0.1441 0.1396
{ω4} 0.0496 0 0.04962 0.0496 0.0496 0.0496 0.0603 0.0399 0.0387

{ω1, ω2} 0.4606 0.3749 0.08567 0.0682 0.0857 0.0810 0.0647 0.0689 0.0667
{ω1, ω3} 0.4226 0.3427 0.07998 0.0648 0.0643 0.0754 0.0590 0.0643 0.0623
{ω1, ω4} 0.2615 0.2131 0.04845 0.0367 0.0327 0.0438 0.0273 0.0390 0.0377
{ω2, ω3} 0.4798 0.3901 0.08919 0.0756 0.0735 0.0892 0.0683 0.0717 0.0695
{ω2, ω4} 0.3135 0.2611 0.05240 0.0422 0.0366 0.0524 0.0313 0.0421 0.0408
{ω3, ω4} 0.2786 0.2288 0.04982 0.0420 0.0497 0.0498 0.0287 0.0409 0.0388

{ω1, ω2, ω3} 0.7776 0.8089 -0.03139 0.0149 0 0 0 0 0.0131
{ω1, ω2, ω4} 0.5795 0.6111 -0.03158 0.0078 0 0 0 0 0.0022
{ω1, ω3, ω4} 0.5389 0.5705 -0.03159 0.0031 0 0 0 0 0
{ω2, ω3, ω4} 0.6001 0.6317 -0.03157 0 0 0 0 0 0.0034

Ω 1.0000 0.8830 0.11690 0.0409 0.0538 0 0.0749 0.1884 0.1952

What can we see in the tables?

The important is that both f and f∗ and also both m1 and m2 not increase or even
decrease their value comparing with g = belJ , i.e., all four are ≤ g; this corresponds to the
fact that f and f∗ are lower approximation and beli’s are constructed using generalized
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Table 3: Comparison of belief functions — corrected pseudo-beliefs derived from Jeffreys
intervals with degree of confidence α = 0.05 on cybersecurity data

A belJ(A)
∑

b⊊amJ(A) mJ(A) f(A) f∗(A) belCW (A)belHD(A) bel1(A) bel2(A)

{ω1} 0.1635 0.0000 0.16346 0.1635 0.1635 0.1635 0.1739 0.1314 0.1273
{ω2} 0.2114 0.0000 0.21145 0.2114 0.2114 0.2114 0.2219 0.1700 0.1647
{ω3} 0.1792 0.0000 0.17920 0.1792 0.1792 0.1792 0.1897 0.1441 0.1396
{ω4} 0.0496 0.0000 0.04962 0.0496 0.0496 0.0496 0.0603 0.0399 0.0387

{ω1, ω2} 0.4606 0.3749 0.08567 0.4431 0.4606 0.4560 0.4606 0.3704 0.3587
{ω1, ω3} 0.4226 0.3427 0.07998 0.4075 0.4069 0.4180 0.4226 0.3399 0.3292
{ω1, ω4} 0.2615 0.2131 0.04845 0.2498 0.2457 0.2569 0.2615 0.2103 0.2037
{ω2, ω3} 0.4798 0.3901 0.08919 0.4663 0.4642 0.4798 0.4798 0.3859 0.3738
{ω2, ω4} 0.3135 0.2611 0.05240 0.3033 0.2977 0.3135 0.3135 0.2521 0.2442
{ω3, ω4} 0.2786 0.2288 0.04982 0.2708 0.2785 0.2786 0.2786 0.2241 0.2170

{ω1, ω2, ω3} 0.7776 0.8089 -0.03139 0.7776 0.7776 0.7997 0.7776 0.6505 0.6432
{ω1, ω2, ω4} 0.5795 0.6111 -0.03158 0.5795 0.5795 0.6018 0.5795 0.4914 0.4782
{ω1, ω3, ω4} 0.5389 0.5705 -0.03159 0.5389 0.5389 0.5613 0.5389 0.4588 0.4444
{ω2, ω3, ω4} 0.6001 0.6317 -0.03157 0.6001 0.6001 0.6317 0.6001 0.5080 0.4954

Ω 1.0000 0.8831 0.11690 1.0000 1.0000 0.9954 1.0000 1.0000 1.0000

discounting. Thus all these corrections decreases information of the original PBF g.
Moreover, it holds bel2 ≤ bel1 ≤ f ≤ g and also bel2 ≤ bel1 ≤ f∗ ≤ g, while f and f∗ are
mutually ≤-incomparable. bel2 ≤ bel1, thus bel1 is closer to g, nevertheless it has higher
computational complexity, which does not play any role on our small example on |Ω| = 4.
Both f and f∗ are even closer to original g, nevertheless they use ad-hoc negative belief
mass redistribution, which may despite closeness to g to add a piece of ad-hoc information,
while both bel1 and bel2 satisfy all belief proportions at any cardinality of A ⊂ Ω, hence
they better keeps the belief structure of the original PBF g = belJ .

belCW is ≤-incomparable both with belHD and g while belHD ≥ g, thus also ≥ all other
which are ≤ g. belCW ≥ bel1, bel2, f and f∗. Thus both these geometric corrections add
some extra information. belCW has a strange ad-hoc feature: that belief of some couples
are increased ({ω1, ω2},{ω1, ω3},{ω1, ω4}), while the other keep the same belief mass as
the original PBF g has ({ω2, ω3},{ω2, ω4},{ω3, ω4}). Hence, there is a challenging open
problem: finding more convenient optimization criteria for pseudo-belief correction.

We can summarize our ≤-comparison by the following schema.

bel2 bel1

f

f ∗

g belDP

belCW

Unfortunately, negative pseudo-belief masses are relatively quite small and their values
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are almost the same (differ on 5th decimal place) in the compared example, thus also
the differences of their corrections are rather similar. Hence we have to compare our
approaches not only on greater frame of discernment but also on various cases on Ω4.

Finally, we have to note that this comparison is related only to the one simple case
or real data on very small frame of discernment. It is rather a presentation how we can
compare our approaches in near future having processed more examples.
One of the interesting open questions is which relations from the ≤-comparison schema
are general, which of them are frequent, and which of them are rare or even exceptional.

7 Conclusion

Following our preceding contribution Daniel et al. (2025), we have proposed and presented
several methods for transforming pseudo-belief functions into classical belief functions.
The investigated procedures are based on fundamentally different approaches to correcting
pseudo-beliefs. All the presented methods have been compared with those from Daniel
et al. (2025) using a simple example based on real cybersecurity data. The implementation
of our algorithms is currently under development. This will allow us to perform more
comprehensive comparisons on larger frames of discernment and to address several open
questions that have emerged in this interesting area of research.
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