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Abstract The increasing complexity of modern constitutive models of cyclic metal plasticity requires more
efficient ways to achieve their optimal calibration. Traditional approaches, such as random search combined
with Nelder–Mead optimization, are computationally expensive. In addition, they struggle with highly non-
convex functions that have numerous local minima and complex behavior, making these methods highly
sensitive to initial conditions. While numerical refinement is key, a better prediction for its initial point directly
saves costs. In this work, we focus only on the uniaxial cyclic loading, as it is the dominant part of a general
calibration process for such a model and can also utilize a closed-form solution, further speeding up the
procedure. We propose a neural network framework with a loss function that combines the loss on both the
predicted parameters and the generated stress responses. This network is then used to predict an initial point
for Nelder–Mead optimization. Our method was also compared to the non-gradient Tensor Train Optimization
method on both synthetic data and measured experiments.

1 Introduction

In this era of increasing demands for safety, durability, and material efficiency, increasing the accuracy of
predicting the behavior of solid materials under various forms of loading is of great importance, as it also
allows for more reliable maintenance planning. To this end, very advanced constitutive models are being
developed.

Following numerous bridge and railway failures, cyclic plastic loading has become an important topic in
materials research. Under such loading, metals can manifest a strong Bauschinger effect as well as several
other recognizable phenomena. A constitutive model that accounts for some of these features is the main focus
of this paper.

Before being used, such a material model must first be calibrated with data from a real uniaxial cyclic
loading experiment. A detailed description of such a procedure is in Suchocki and Kowalewski [1]. Regardless
of the form of its control, the experiment represents a link between time t , tensile stress S(εt , q) and total axial
deformation εt (t), which is a sum of the elastic and plastic deformation εe(t) and ε(t), respectively. The set of
evolving internal variables q reflects the loading history via evolution rules that are functions of the associated
plastic strain. Since the elastic deformation can be easily subtracted, it is more convenient for the following
analysis to work with the plastic deformation only, provided that stress points within the active elastic region
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are skipped. The relevant elastic property of the material, defined by the Young’s modulus E , is determined
analytically at the beginning of the analysis.

Many constitutive models have been developed to deal with various identified phenomena. A leading
example of a single yield surface model with nonlinear kinematic hardening rule is the one introduced by
Frederick and Armstrong [2]. Chaboche and Rousselier [3] then introduced a superposition of several of these
hardening rules and obtained the multicomponent Armstrong–Frederick.

1.1 The constitutive model

The original constitutive model “MAFTr” chosen as the testing subject for this paper is described by Dafalias
and Feigenbaum [4] as featuring a multicomponent Armstrong–Frederick kinematic hardening rule with a
stress threshold and r-modification. In tensor form, the model uses von Mises theory for its yield function as

f = 3
2 (s − α) :(s − α) − k2, (1)

where (:) denotes the double dot product, s is the deviatoric stress tensor obtained from the Cauchy stress
tensor σ , α is the sum of four evolving deviatoric backstress components as α = ∑4

i=1 αi , and k stands for
the evolving size of the yield surface, initiated as the yield stress k0. A normalized associative flow rule is
ε̇p = λn, where the dot denotes the time derivation, λ is the plastic multiplier, and n is the unit outer normal
to the yield surface,
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The first three components of backstress evolve according to

α̇i = λ

√
2
3ci

(√
2
3ain − (riαi + (1 − ri ) (αi :n))

)

(3)

with i = 1, 2, 3. The initial hardening rates depend on parameters ci and saturation levels ai . This kinematic
hardening rule employs a BCD modification using the ratio ri = √

3/2 ‖αi‖ /ai that alters the behavior in
multiaxial loading by applying a weighted average between two recovery terms. No dedicated parameter is
used to further control this property, so the model calibration process only requires uniaxial cyclic loading.

The evolution of the fourth component of backstress

α̇4 = λ

√
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3
c4

(√
2

3
a4n − (r4α4 + (1 − r4) (α4 : n))

〈

1 − ā

‖α4‖
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(4)

usesMacaulay brackets that deactivate the recovery terms, thereby injecting a region of linear hardening within
the thresholdmarked by the parameter ā. Amodified ratio r4 = √

3/2 ‖α4‖ / (a4 + ā) reflects the added region
of linear hardening. For all components, ri ∈ [0, 1].

To take into account the phenomena of isotropic hardening, a simple nonlinear hardening rule is added to
the model after Chaboche and Rousselier [3] as

k̇ = λκ1 (1 − κ2k) (5)

where κ2 represents the inverted saturation level of the isotropic variable k. Parameter κ1 further multiplies the
rate of hardening.

1.2 Model’s closed-form solution

For the uniaxial case, the axial stress response of the model can be reduced to a scalar function of plastic strain
only. Orientation of loading is denoted by the variable D = 1 for tension and D = −1 for compression. Given
the initial values of oriented backstress component norms α0

i and the value of accumulated equivalent plastic
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Table 1 Parameters of analytical model developed by Marek et al. and their descriptions

Parameter Unit Description

k0 MPa Initial yield strength
κ1 MPa Adjustment of the rate of isotropic hardening
κ2 MPa−1 Inverted saturation limit of isotropic hardening
ci - Adjustment of the evolution rates of the backstress components
ai MPa Saturation limits of the backstress components
a MPa The threshold of the last component to nonlinear behavior

strain ε0, the next increment of accumulated plastic strain �ε > 0 in the direction D drives the evolution of
model’s internal variables according to

k = κ−1
2

[

1−(1−κ2k0) exp

(

−
√

3
2κ1κ2

(
ε0 + �ε

)
)]

(6)

and

αi =
√

2
3Dai −

(√
2
3Dai − α0

i

)

exp (−ci�ε) (7)

for i = 1, 2, 3. If ā > 0, the evolution of the fourth component of backstress requires calculating thresholds
of plastic strain increments required to enter and exit the region of linear hardening. See Marek et al. [5] for
the details of the procedure. Finally, the axial stress response of the model reads

Mθ =
√
3

2

4∑

i=1

αi + Dk. (8)

The vector parameter θ of the model includes the initial yield strength k0, the adjustment of the rate of
isotropic hardening κ1, the inverted saturation limit of isotropic hardening κ2, coefficients ci of the evolution
rates of the backstress components, the components’ saturation limits ai , and the linear threshold of the last
component, see Table 1.

The vectors c and a have the same arbitrary length representing the number of backstress components.
With a higher number, the model may provide better accuracy, but at the cost of increased complexity and
memory requirements. As in the original paper by Dafalias and Feigenbaum [4], four components are used,
which gives θ ∈ R

12+ .
The task is to propose reliable methods for estimating an optimal θ∗ for the model to describe the material

behavior in a given experiment as accurately as possible. Formally, the goal is to obtain

θ∗ := argmin
θ∈R12+

L2
(∣
∣Sm − Mθ (ε)

∣
∣
)

(9)

for a known ε corresponding to the measured experiment, where Sm refers to the measured stress response
and L2 stands for the L2 norm in the space of the stress responses.

1.3 Organization of the paper

The remainder of the paper is structured as follows. Section 2 summarizes the optimization techniques. Section 3
describes how the real experimental data are processed to be used for neural networks. It also proposes the a
priori distribution of the estimated parameters of the material model. This distribution is then used in the data
generation procedure needed to train neural networks. Two synthetic datasets are generated, one for a fixed
plastic deformation sequence and the second for multiple setups. In Section 4, four different neural network
architectures are described along with the training strategy and the used loss function. Section 5 presents
the results of these approaches and then compares the best trained network with the control procedure and
the randomly initialized Nelder–Mead method. Finally, in Section 6, the accuracy of the found parameters is
analyzed using CRLB and Monte Carlo simulations. Concluding remarks are given in Section 7.
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2 Optimization techniques

Estimating θ∗ is a non-trivial problem since L2(|Sm − Mθ (ε)|) is generally not a convex function. Current
approaches often use a random search to determine the initial point of the Nelder and Mead [6] method. This
method is a non-gradient optimization technique that iteratively refines potential solutions until an optimal
result is achieved. However, this approach is time-consuming and usually finds a suboptimal solution that is
far from the global minimum.

In this section, we review the optimization techniques that we propose to use. First, there are neural network
techniques, see, e.g., a comprehensive review of deep learning methods applied to computational mechanics
of Vu-Quoc and Humer [20]. Second, it is the tensor-based optimization TTOpt [7].

2.1 Neural networks

Neural networks started to dominate over other methods in more and more domains because of their ability
to learn non-trivial features from the training dataset using a gradient-based back-propagation method. For
the calibration of material models (i.e., the estimation of model parameters), the early neural network models
were based on feed-forward networks (FFNs), e.g., in Mareš et al. [8]. FFNs consist of layers of neurons where
information flows in one direction, from input to output, without loops, making them relatively simple and
efficient for many tasks. Other approaches included physically informed neural networks (PINNs), introduced
by Raissi et al. [9]. These networks integrate physical laws into the neural network training process, often
by incorporating differential equations as part of the loss function. PINNs also face challenges, such as the
complexity of incorporating complex physical laws into neural architectures. This is treated in Haghighat et
al. [10].

Recently, Schulte et al. [11] proposed using a neural network to predict an initial point for a subsequent
Nelder–Mead optimization method. This approach significantly reduces the time complexity compared to a
random search that yields similar stress estimates. They showed that the integration of ANNs with classical
parameter identification significantly improves the initial guess accuracy for material model calibration, thus
increasing the overall efficiency.

Early convolutional neural networks (CNNs)were designed as a stack ofmultiple convolutional and pooling
layers. This linear scheme was soon abandoned after the introduction of GoogLeNet (also known as Inception
v1) by Szegedy et al.[12]. Soon this scheme began to be used for signal processing as well. For example,
InceptionTime, developed by Fawaz et al. [13], outperformed the best previous methods in a variety of time
series classification contests.

Alternatively, recurrent neural networks (RNNs) can also be applied to signal data. However, these net-
works often suffered from vanishing or exploding gradients. To solve this problem, Hochreiter and Schmid-
huber developed a module called the long short-term memory (LSTM) [14], which introduces a complex
gating mechanism to regulate the flow of information, allowing the network to retain important long-term
dependencies while avoiding the vanishing gradient problem. This architecture effectively maintains a balance
between remembering and forgetting information through its unique design of input, output, and forgetting
gates. The main drawback is its computational complexity. This problem was partially solved after many years
in the gated recurrent units (GRUs) module created by Cho et al. [15]. GRU simplified the LSTM design by
combining the input and forget gates into a single update gate, and merging the cell state and the hidden state.
This step significantly reduced the complexity of the module and made all training more efficient.

Overall, a challenge that seems to be consistent among various neural network based papers is to obtain
a good training dataset. This problem is usually solved by generating synthetic data using a chosen material
model. In this paper, we propose two different ways of generating a training dataset. The first one contains only
one plastic deformation sequence. However, subjecting a new specimen to a prescribed sequence of plastic
deformations requires monitoring of stress levels and a dynamic control of loading amplitudes, which can be
difficult to achieve. The second approach involves a variety of plastic deformation sequences and is therefore
more general, but also more complex and challenging for neural networks.

Finally, in this paper we also propose a loss function based on stress prediction, which significantly
improves the network capabilities. However, there are still challenges in proposing an appropriate architecture
and finding optimal hyperparameters. This often involves training multiple architectures on the training dataset
and selecting the best performing one on the validation dataset.
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2.2 Tensor train optimization

TheTensor TrainOptimizationmethod, TTOpt,was introduced bySozykin et al. [7]. It is a general non-gradient
method for minimization of multivariate functions. This method uses sampling of the function on a rectangular
grid to obtain a high-order tensor. The tensor is then approximated by the Tensor Train (TT) model [16] with
a moderate number of parameters. Although the number of tensor elements can be astronomically large, only
a fraction of them is used to build the model, as is done in the so-called TT-cross algorithm introduced by
Oseledets and Tyrtyshnikov [17].

The minimum tensor element is found as a by-product of the TT model construction. It does not use any
database, and it is just a special optimization procedure. It only requires the utility function to be callable
and a discrete grid over which the function is to be minimized. A python implementation of the procedure
is available online [21]. The optimization result lies in the chosen grid, so it is only an approximation of the
function minimum. Similar to neural networks, it can also be used as an initialization point for the simplex
refinement procedure.

3 Data preparation

Experimentalmeasurements of two 304-L stainless steel specimenswere performed to test the newly developed
tools.

Sequences of generic uniaxial strain-controlled loading segments were performed on individual specimens,
while the stress response was recorded at a sampling rate of 10 Hz for a total of 4h. A moving average noise
reduction technique was chosen for further processing. A mild smoothing process was applied first, followed
by the identification and reconstruction of reversal points. These appear partially rounded due to inherent
viscoplastic and other hysteretic phenomena. As the model in question does not capture this type of behavior,
a controlled elimination of this minute detail was chosen. A final round of smoothing was then applied, which
worked between these reversal points without affecting them. In addition, where necessary, subtle corrections
were made to ensure that the plastic strain data points within each loading segment represented monotonic
functions to ensure an existing solution for interpolation. Overall, this method effectively reduces noise while
maintaining the integrity of the data.

Since the MAFTr model does not depend on the speed of the experiment, only the plastic modulus and its
change indicate the density of samples required to retain most of the contained information. Downsampling
the data is desired as it reduces computational cost. However, this process needs to preserve points of reversals
as they in fact define the experiment. Rather than simply choosing the sampling rate according to the plastic
modulus, we have decided to help the neural networks by preparing the data with a preset period of N = 17
increments for each segment of plastic loading, so as not to confuse them with randomized occurrence of
reversals. In extreme cases of very short segments of loading, this can produce oversampling.

Let ε0 = 0 stand for the plastic deformation at the beginning of the experiment, and let ε
(rev)
1 , . . . , ε

(rev)
K

represent the plastic deformation at the end of each segment, where K is the number of all loading segments.
In this paper, K = 40 is chosen for both measured and synthetic data. Then, the k-th segment is divided into
N increments of different lengths δ

(n)
k such that

ε
(rev)
k = ε

(rev)
k−1 +

N∑

n=1

δ
(n)
k . (10)

This setup gives a total of Q = 1 + NK = 681 points.
More data points are needed at the beginning of each loading segment, where the stress level changes more

rapidly. For this purpose, the increments of plastic deformation are generated with a bias using a geometric
sequence. Let R = δ

(N )
k /δ

(1)
k be the ratio between the first and last increment. In this paper, R = 20 was

chosen. The geometric sequence of the increments δ
(1)
k , . . . , δ

(N )
k is generated as

δ
(n+1)
k := N−1

√
R δ

(n)
k , ∀n ∈ {1, . . . , N − 1}, (11)

where

δ
(1)
k :=

(
ε
(rev)
k − ε

(rev)
k−1

)( N−1
√
R − 1

)

RN/(N−1) − 1
. (12)
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Fig. 1 Top: Example of the first 200 points of plastic deformation from the first measured experiment generated using Eq. (14)
to cover each loading segment by 16 inner points in a geometric sequence of increments. Bottom: Interpolated stress from the
measured data corresponding to the interpolated deformation points

Table 2 Range of the a priori uniform distribution for each (transformed) parameter, given the conditions
∑

ai ∈ [100, 400] and
c1 ≥ c2 ≥ c3. The symbol log stands for the natural logarithm

k0 κ1 κ−1
2 log(c1) log(c2) log(c3,4) a1,2,3,4 a

min 15 100 30 log(1, 000) log(10) log(10) 0 0
max 250 10,000 150 log(50, 000) log(5, 000) log(2, 000) 200 500

The interpolated data points are then calculated as

ε
(n)
i = ε

(rev)
i−1 +

n∑

k=1

δ
(i)
k , (13)

∀k ∈ {1, . . . , K }, ∀n ∈ {1, . . . , N − 1}.
The resulting plastic deformations interpolated from the first measured experiment are therefore defined

as

ε(exp1) := (
0, ε(1)

1 , . . . , ε
(N )
1 , . . . , ε

(1)
K , . . . , ε

(N )
K

)
, (14)

where ε
(N )
k := ε

(rev)
k stands for the k-th reversal point, see Figure 1.

3.1 A priori θ distribution

After preparing the sequence of plastic deformations and their associated stress responses, it is possible to
estimate the parameter θ . For both neural networks and TTOpt, it is necessary to first select an a priori
distribution for θ . In the case of neural networks, this allows the creation of a training set of parameters and
corresponding stress responses (see Sect. 3.2). TTOpt, on the other hand, requires a region defined by the
Cartesian product of intervals [θi,min, θi,max] for each parameter θi in which the optimal θ is to be found, and
an appropriately chosen sampling for each of these intervals.

To cover the entire hand-picked interval, a uniform distribution is chosen separately for each parameter θi ,
see Table 2. All suggested ranges are more than adequate for most structural steels and can be easily adjusted
as needed. There are two additional constraints. The parameters ai are generated so that their sum would be
in the range [100, 400]. Second, since the pairs (ci , ai ), i ∈ {1, 2, 3} are commutative, they are generated
with the condition c1 ≥ c2 ≥ c3 to make the training objective unique. Unsorted parameters would make it
harder for neural networks to predict correct values because their order would be inconsistent. For example,
an optimal solution with permuted (ci , ai ) pairs could be considered incorrect.
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In practice, the first condition is realized by first generating ã ∼ U [100, 400] and a′
1, . . . , a

′
4 ∼ U [0, 1].

Then, the desired parameters a1, . . . , a4 are calculated as

ai := a′
i

∑4
j=1 a

′
j

ã, ∀i ∈ {1, . . . , 4}. (15)

This process is repeated until the ai satisfy the condition ai ∈ [0, 200]. The second condition is solved by
simply sorting the first three ci parameters.

3.2 Dataset

Training neural networks requires large amounts of data. Running real experiments on such a scale is not
feasible. However, the analytical model Mθ provides a fast method to obtain an approximate stress response
in a cyclic plastic loading experiment, given the parameter θ and the plastic deformation ε. For this reason,
the dataset is created by generating θ from a designed random distribution and then obtaining stress responses
using the analytical model Mθ .

In this paper, two datasets are created. The first dataset is generated to train neural networks specifically
for the plastic deformation measured in the first real experiment ε(exp1). The second dataset is then generalized
so that the neural networks would be able to perform parameter estimation for experiments with any sequence
of plastic deformation with at least 40 segments.

Let P12 represent the a priori distribution for θ described in Section 3. The first dataset D1 consists of pairs
(Si , θ i ) and is created as

D1 :=
{(

Mθ i

(
ε(exp1)

)
, θ i

)
, i ∈ {1, . . . , I }

}
, (16)

where θ1, . . . , θ I
iid∼ P12 and I = 106 is the chosen length of the dataset. Our experiments showed that taking

more data does not significantly improve the quality of trained models, see Sect. 5. The plastic deformation
does not need to be a part of the dataset, because it is identical for all loading trajectories in the dataset.

The second dataset is generated to develop models capable of parameter estimation independent of the
experimental deformation setting. In this case, the newly generated dataset D2 must also include the plastic
deformation, since it is different in all generated data. These deformations need to be generated to mimic real
experiments. Since the material model depends only on the deformation and the speed of the experiment is
arbitrary, it is convenient to first generate the plastic deformation only at the end of each loading segment
ε
(rev)
1 , . . . , ε

(rev)
K , where K = 40 stands for the number of segments.

Let [−B, B], B = 0.007, represent the boundary interval of ε
(rev)
k , κ = 0.0002 stand for the minimum

allowed absolute value of the increment and ε
(rev)
0 = 0 represent the starting point. Then, each new reversal

point is generated recursively as
ε
(rev)
k = ak + βk

(
(−1)k+1B − ak

)
, (17)

where ak is defined as
ak := ε

(rev)
k−1 + (−1)k+1κ (18)

and βk ∼ Beta(2, 6) is a randomly generated parameter that satisfies the condition 0 ≤ βk ≤ 1. An additional
rule is set so that for k > 2 there is a 20% chance that ε(rev)

k = ε
(rev)
k−2 . This simulates repeating the same cycles

multiple times, which is often present in real applications, albeit in the form of total strain or stress control. An
example of randomly generated plastic deformations is shown in Fig. 2. The data points within each segment
are then generated using the Eq. (13). An example of a randomly generated set of data points is shown in Fig. 1.

Let Uε represent the combined distribution of all data samples generated using the procedure described in
Eq. (14), i.e.,

ε := (
0, ε(1)

1 , . . . , ε
(N )
1 , . . . , ε

(1)
K , . . . , ε

(N )
K

)
, (19)

∀ε ∼ Uε , where ε
(N )
k := ε

(rev)
k stands for the k-th reversal point, N = 17 is the number of deformation points

in each segment, and K = 40 stands for the number of segments. Then, the second dataset D2 consists of the
triplets (Si , εi , θ i ) and is created as

D2 :=
{(

Mθ i

(
εi

)
, εi , θ i

)
, i ∈ {1, . . . , I }

}
, (20)
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Fig. 2 Example of 3 different randomly generated sequences of plastic deformation in the dataset D2

where θ1, . . . , θ I
iid∼ P12, ε1, . . . , ε I

iid∼ Uε and I = 106 is the chosen length of the dataset. The overall
generation of both dataset D1 and D2 takes about 5min on AMD Ryzen 9 7900 processor.

Similar to the training datasets D1 and D2, corresponding validation datasets DV
1 , DV

2 with 20,000 tuples
and test datasets DT

1 , DT
2 with 1024 tuples are created for evaluation purposes.

4 Optimization details

In this paper, feed-forward networks (FFNs), convolutional neural networks (CNNs), gated recurrent unit
(GRU), and long short-term memory (LSTM) are evaluated. Each architecture takes as an input a matrix of
shape 1×681 for the datasetD1 and 2×681 forD2 because the second dataset also contains plastic deformation.
To bring the variance closer to 1, each architecture first transforms the signal using the batch normalization,
which converts the input data separately for each channel (for both stress and plastic deformation, if applied).

The hyperparameters of the architecture (number and type of layers, number of neurons in each feed-
forward layer, etc.) are first found by a manual directed search based on their performance on the validation
datasets DV

1 or DV
2 . Networks are trained on the training set in two epochs using the AdamW optimizer created

by Loshchilov and Hutter [18], with a learning rate of about 10−3 and a weight decay of 10−2. Our experiments
showed that the best performing networks were trained with a learning rate in the range of [0.0005, 0.002]. The
batch size is always set to 128. Finally, each network is evaluated on a test datasetDT

1 orDT
2 . All neural network

implementations were done using the PyTorch framework on the NVIDIA GeForce RTX 4090 graphics card.

4.1 Loss functions

Each θi parameter has a different order of magnitude. For this reason, it would be difficult to train neural
networks to predict them directly, since the L2 loss function used would most likely favor some parameters
over others. To avoid this potential problem, each θ is normalized element-wise based on means and vari-
ances determined by the distribution P12. In practice, these means and variances are computed based on 106

realizations of the P12 distribution.
Let θ (N ) represent the parameter θ normalized element-wise using the mean and variance estimates. The

output of each model is a vector of length 12 representing the parameter θ (N ). After scaling, there is no easy
way to prevent the networks from predicting negative values for individual parameters. For this reason, the
post-processing should include replacing any negative estimated parameter with a small number η = 10−9

chosen for numerical stability. On the other hand, since negative values were not present in the training dataset,
a prediction with negative parameters may indicate a poorly designed network.
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Fig. 3 LS and LSr metrics for randomly configured FFN and GRU trained with Lβ

θ ,S for different β ratios, see Eq. (23)

The performance of the developed architectures is measured by 2 metrics. The first one is the Lθ , defined
as

Lθ := 1

12

12∑

i=1

(
θ

(N )
i − θ̂

(N )
i

)2
. (21)

The normalized parameter θ (N ) is used to deal with different scales between individual parameters. The
second metric is the LS, which measures the average quadratic difference between the reference stress S and
the predicted stress, i.e.,

LS := 1

Q

Q∑

i=1

(
Si − Ŝi

)2
, Ŝ := Mθ̂ (ε), (22)

where Q = 681 is the number of plastic deformation samples. This metric indicates how far the predicted
stress is from the reference stress. Since the neural network works with the stress responses only, the latter
criterion seems more natural.

Note that unlike the former criterion, LS requires additional implementation, since the gradient must flow
through the analytic model Mθ̂ here. This was achieved by using the PyTorch autograd method [19], which
automatically calculates gradients for the computational graph defined by Mθ̂ .

Although LS is more difficult to evaluate, it is easier to learn by the network. Typically, only two epochs
of training appear to be needed compared to ten epochs when Lθ is used.

It was observed that the training can be further improved by using a linear combination between the
parameter loss and the stress loss, i.e.,

Lβ

θ ,S := βLθ + α(1 − β)LS, (23)

β ∈ [0, 1], α ∈ R+. The parameter α = 30 is chosen for convenience to minimize the difference between Lθ

and LS at the beginning of training.
Numerical experiments show that training the networks with Lβ

θ ,S improves the performance of the models,
as they are now trained to make closer stress estimates while trying to predict similar θ , see Fig. 3. The optimal
β seems to be β ∈ [0.4, 0.8] for randomly generated FFN and GRU. This observation seems to be consistent
across our experiments. In this paper, β = 0.5 was chosen for all architectures. Note, however, that the
improvement in performance becomes apparent only after the Nelder–Mead refinement is applied.

4.2 Feed-forward networks (FFN)

One of the simplest architectures is a neural network based solely on feed-forward layers. Each hidden layer
is followed by a ReLU activation function. Since θ (N ) can be negative, no activation function is used after
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Fig. 4 Diagram of InceptionBlock used in this paper

the last layer. ReLU is used because it is the simplest nonlinear activation function commonly used for
neural networks. The advantage of using this architecture is its low computational complexity while achieving
sufficient performance. The disadvantage is the need to have a fixed input size. In this paper, this is not a
problem since the input always has a fixed length of Q = 681. In practice, however, the measured stress would
have to be clipped to this length. The set of hyperparameters consists of a number of layers with a decreasing
number of neurons in each successive layer.

4.3 Convolutional neural networks (CNN)

Convolutional neural networks have gained popularity for tasks such as image recognition and object detection.
Soon they began to be tested also on 1D signals. In 2020, an architecture called InceptionTime, developed
by Fawaz et al. [13], surpassed the previous best non-neural model, HIVE-COTE, in terms of time series
classification performance. For this reason, a modification of InceptionTime is tested for parameter estimation.
In this paper, we use a sequence of N InceptionBlocks followed by a Conv1D layer to produce only 1 signal
channel in the output. This result vector is then processed in some cases by M stacked FFN layers and finally
by a feed-forward layer to get 12 outputs.

Each InceptionBlock consists of 2 parallel threads. The first uses maximum pooling with a size of 3,
followed by a Conv1D layer with 32 filters of size 1. In the second thread, the signal is first processed with 64
Conv1D filters of size 1, creating a so-called bottleneck. This bottleneck is then processed by 3 groups of 32
Conv1D filters with sizes k1, k2 and k = 1

2 (k1 + k2), where k1 and k2 are hyperparameters to be found. These
4 × 32 output channels are then concatenated along the channel axis into a final output matrix. A diagram of
the InceptionBlock is shown in Fig. 4.

4.4 Recurrent neural networks (RNN)

In recent years, recurrent neural networks have been widely used for time series analysis. Their great advantage
is that they can take an input of any length and produce a constant output shape. This makes them potentially
more suitable for this task, since in practice the experiment may always vary in length.

The main drawback is that recurrent networks must be able to remember all the necessary information
from the entire signal. For this reason, the simple recurrent unit tends to perform poorly for longer inputs.
In this paper, we instead use bidirectional versions of both the gated recurrent unit (GRU) [15] and the long
short-term memory (LSTM) units [14]. These commonly used units are designed to overcome the problem of
vanishing gradients when processing long sequences by implementing a form of memory called hidden state.
This allows the networks to better retain information from the beginning of the signal to the end.

LSTM and GRU both have the number of layers and the size of the hidden state as hyperparameters. The
number and size indicate the dimensionality of the hidden state and directly affect the capacity and complexity
of the model. Our experiments showed that adding fully connected layers does not generally lead to better
performance. For this reason, all considered networks did not include feed-forward layers.
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Table 3 Metrics of 12 chosen FFN networks on test dataset DT
1

id FFN layers LS LSr

1 [231, 210] 155.16 2.874
2 [231, 225] 186.29 3.223
3 [250, 183] 231.84 4.486
4 [302, 127] 269.11 5.217
5 [167, 130, 64] 247.27 6.579
6 [324, 205, 123] 200.53 4.603
7 [393, 208, 98] 151.73 3.149
8 [182, 171, 119, 101] 84.02 2.492
9 [218, 208, 142, 53] 167.37 3.778
10 [236, 140, 117, 113] 124.15 2.644
11 [393, 208, 98, 52] 106.90 2.314
12 [393, 208, 113, 52] 170.36 4.039

Table 4 Metrics of 11 chosen InceptionTime networks on test dataset DT
1

id k1 k2 Blocks FFN layers LS LSr

1 3 11 2 – 94.34 1.169
2 9 21 2 – 144.57 0.343
3 21 45 1 – 177.14 3.691
4 9 37 1 [310] 228.68 1.241
5 9 39 1 [310] 104.15 0.366
6 7 15 2 [295, 143] 238.78 1.593
7 17 17 3 [172, 138] 139.93 1.552
8 15 19 1 [359, 155] 89.16 0.245
9 7 23 2 [232, 155] 143.85 1.205
10 21 27 2 [232, 223] 119.52 0.435
11 9 31 2 [357, 85] 267.66 3.218

5 Results

The performance of 12 selected FFN networks on dataset DT
1 is shown in Table 3. These results show that

it can be difficult to find the best performing FFN network, as even a small change in the network structure
has a large effect on the overall network performance, e.g., networks #11 and #12. In addition, performance
improves dramatically after a Nelder–Mead simplex refinement is used. It is also worth noting that the best
performing network does not necessarily perform well after refinement, indicating that the prediction may be
closer to a worse local minimum.

Table 4 shows that InceptionTime has a potential to produce better predictions than FFN. However, similar
to FFN, it is very difficult to find appropriate hyperparameters, see, e.g., networks #4 and #5. Furthermore,
since the output is generated by a fully connected layer, the trained networks must also have the same input
shape.

The results of 14 LSTM networks are shown in Table 5. These metrics show that using a too small hidden
size value leads to poorly performing networks, even with a high number of layers. These results also show that
while the best performing InceptionTime network seems to give better results than the best LSTM network,
the LSTM seems to be more stable with respect to the choice of hyperparameters.

The final architecture that has been tested is based on GRU. The results shown in Table 6 indicate that this
architecture is both stable and very powerful. The refined predictions are better compared to all previously
tested methods. For large hidden size value, this architecture seems to overfit the training data and therefore
performs poorly on the test data.

5.1 Results for dataset D2

All previous results were associatedwith theD1 dataset. The second dataset consists of both stress response and
plastic deformation, as it is designed to train networks capable of estimating parameters for various deformation
sequences. This makes the second dataset more challenging.
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Table 5 Metrics of 14 chosen LSTM networks on test dataset DT
1

id Hidden size Layers LS LSr

1 38 5 397.51 13.669
2 41 2 362.42 13.132
3 97 6 283.98 4.207
4 124 5 278.95 4.178
5 136 2 235.66 2.263
6 152 5 149.91 0.510
7 163 2 267.55 2.949
8 169 2 228.27 1.654
9 172 7 172.97 0.585
10 213 6 146.08 0.637
11 217 4 195.70 0.645
12 220 5 174.14 0.774
13 267 2 162.68 0.661
14 274 2 206.03 0.771

Table 6 Metrics of 12 chosen GRU networks on test dataset DT
1

id Hidden size Layers LS LSr

1 38 9 152.93 0.657
2 45 8 135.45 0.273
3 59 8 111.64 0.137
4 84 4 143.48 0.262
5 96 3 135.01 0.269
6 110 5 148.99 0.164
7 154 3 173.91 0.993
8 193 5 133.06 0.154
9 197 7 154.69 0.234
10 225 3 103.47 0.167
11 298 3 135.64 0.165
12 385 3 266.96 8.971

Table 7 Metrics of 12 chosen TTOpt models on test dataset DT
2 . F describes the fineness of the grid, i.e., the number of points

along each dimension

id Rank F LS LSr

1 1 210 1461.41 326.960
2 1 215 410.85 16.785
3 2 28 90.03 1.960
4 2 210 165.84 5.089
5 3 28 48.93 3.638
6 3 210 63.30 0.961
7 3 212 91.16 4.463
8 5 220 149.65 4.569
9 7 220 295.06 4.826
10 10 220 617.58 38.652
11 15 220 1021.95 133.278
12 20 220 1747.98 289.652

Since the TTOpt method does not require a training dataset, all variants were tested on the D2 dataset
only. The results for 12 different models are shown in Table 7. Our experiments show that the best performing
TTOpt #6 has a rank of 3 and the used grid has 1024 points along each dimension.

To compare the performance of neural networks on the D2 dataset, the 3 best performing networks from
each architecture tested were modified to take 2 input channels and then trained on the D2 dataset. The results
are shown in Table 8. As expected, the results are generally worse than for the D1 dataset. However, only the
GRU networks seem to keep the performance at a similar level.
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Table 8 Metrics of TOP 3 networks of each tried architecture on test dataset DT
2 compared to TOP3 TTOpt models

Network LS LSr

FFN #08 350.02 7.058
FFN #10 336.91 6.378
FFN #11 377.13 8.957
GRU #03 207.18 1.015
GRU #06 242.43 0.500
GRU #08 182.71 0.762
InceptionTime #02 450.62 4.383
InceptionTime #05 580.00 4.137
InceptionTime #08 526.86 4.578
LSTM #06 619.05 14.187
LSTM #09 558.68 18.547
LSTM #10 528.03 7.523
TTOpt #03 90.03 1.960
TTOpt #05 48.93 3.638
TTOpt #06 63.30 0.961

Fig. 5 Histogram of refined predictions of both GRU #6 and TTOpt #6 on test dataset DT

A histogram of predictions of both GRU #6 and TTOpt #6 on test dataset DT is depicted in Fig. 5. These
graphs show that the medians of predictions on the synthetic dataset are lower than the mean values, meaning
that most of the data are predicted better than the average.

The predictions of GRU #6 and TTOpt #6 are shown in Figs. 6 and 7. The refinedGRU prediction is slightly
better than the refined TTOpt prediction, but both approaches produce high-quality results. As expected, the
model’s performance tends to be worse during randomized loading due to the limitations of its underlying
constitutive theory.

Both methods also perform well against random search with Nelder–Mead simplex optimization. Figures
8 and 9 show a histogram of LSr values based on 400,000 randomly generated θ from the a priori distribution
described in Section 3.1 and a histogram of 4,000 TTOpt predictions after their refinement using Nelder–Mead
simplex optimization. For comparison, a single GRU refined prediction is depicted by a dashed line. These
figures show that the use of both GRU and TTOpt provides a high-quality starting point for the Nelder–Mead
optimization, as they outperform the vast majority of randomly generated estimates after refinement. This
proves that pure random search with Nelder–Mead is very inefficient.

All trained neural networks were trained on 1 million data samples. Figure10 shows how different amounts
of training data affect the GRU #6 architecture. Intuitively, the more data the network is trained on, the better
its performance on synthetic data. At the same time, however, the quality of the prediction does not improve
or even deteriorates for real data. This could be explained by the limitations of the used MAFTr model and
also by the noise contained in the measured data. For this reason, 1 million data samples seem sufficient for
all tested neural networks for this material model.

Each approach has a different time complexity. As shown in Table 9, training the GRU network takes
about 4,000 s, while the other approaches do not require any training. On the other hand, the evaluation of



M. Kovanda et al.

Fig. 6 Top: Plastic deformation in the measured experiment #1. Middle: Predicted stress using the refined estimated parameters
θ of both GRU #6 and TTOpt #6. Bottom: Stress prediction error. The vertical line indicates the end of the signal on which the θ
parameter was estimated and refined

Fig. 7 Top: Plastic deformation in the measured experiment #2. Middle: Predicted stress using the refined estimated parameters
θ of both GRU #6 and TTOpt #6. Bottom: Stress prediction error. The vertical line indicates the end of the signal on which the θ
parameter was estimated and refined
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Fig. 8 Histograms of randomly generated θ using the a priori distribution described in Section 3.1 and the TTOpt #6 predictions
after their refinement using the Nelder–Mead simplex optimization on experiment #1. For comparison, the refined prediction of
GRU #6 is depicted by a dashed line

Fig. 9 Histograms of randomly generated θ using the a priori distribution described in Section 3.1 and the TTOpt #6 predictions
after their refinement using the Nelder–Mead simplex optimization on experiment #2. For comparison, the refined prediction of
GRU #6 is depicted by a dashed line

Fig. 10 Refined loss on synthetic data (top) and on 2 measured experiments (bottom) given by GRU #6 trained on various amount
of data

the trained GRU takes only about 40 ms, which makes it very useful for scenarios where time is limited. For
a more accurate prediction, the use of TTOpt seems to be a better choice, because although each evaluation
takes about 10 s, the obtained estimates are of better quality than a simple random search. In all cases, the
Nelder–Mead refinement takes about 0.2 s, which corresponds to about 2,000 steps. Our experiments show
that after this time the improvement in prediction is negligible.
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Table 9 Comparison of time complexity for different approaches

Approach ttrain (s) tpred (s) tref (s)

GRU #06 4,000 0.04 0.2
TTOpt #06 – 10 0.2
Rsandom Nelder–Mead – – 0.2

6 Sensitivity analysis

In addition to the refined prediction itself, it is also useful to estimate its standard deviation. Since the analytic
model is differentiable in parts (locally differentiable), one way to estimate the standard deviation is to use
the Cramér–Rao lower bound (CRLB) computed at the point of current parameter estimation. The CRLB is
a theoretical bound that provides a lower bound on the variance of unbiased estimators of a parameter and
indicates the best accuracy achievable by such estimators. Since the neural networks may not provide unbiased
estimates, this bound is only a rough approximation of the variance.

For simplicity, let us assume that the measurement noise is Gaussian distributed with variance σ 2,

S ∼ N
(

M(θ), σ 2IL
)
, (24)

where M(θ) stands for the closed-form solution of the MAFTr material model seen as a function of θ , and IL
represents the identity matrix. In this paper, Q = 681 is used in all experiments. Then, it can be shown that
the Fisher information matrix is given by

[
J(θ)

]
i j = 1

σ 2

[∂M(θ)

∂θi

]T [∂M(θ)

∂θ j

]
. (25)

Here, the derivatives are calculated using the PyTorch autograd function. Assume that J(θ) is a regular
matrix. Then, every unbiased estimator θ̂(S) satisfies a condition

cov(̂θ) − J−1(θ) ≥ 0 (26)

and therefore also
var(θ̂i ) ≥ CRLBi = [J−1(θ)]i i . (27)

These variances depend on θ . For this reason, the refined θ̂ provided by GRU #6 is used as an approximation
of the optimal θ∗.

To further analyze the error, the STD can also be estimated using the estimation method itself. The desired
estimated STD (ESTD) of the i−th parameter can be calculated as

ESTD2
i = 1

N

N∑

n=1

[
MET

(
M(̂θ

) + εn
)
i − θ̂ i

]2
, (28)

where εn ∼ N (0, IQ), ∀n ∈ {1, ..., N } is a randomly generated standard Gaussian noise and MET stands
for the estimation method (e.g., GRU or TTOpt). In our experiment, Q = 681 and N = 1, 000. The model
prediction along with the ESTD, CRLB with σ 2 = 1, and the ratio of ESTD and the parameter value for GRU
is shown in Table 10. For some parameters, the empirical STD of the error is observed to be greater than the
CRLB. This may indicate that the GRU was trapped in a suboptimal local minimum. On the other hand, the
ESTD of κ2 was smaller than the corresponding CRLB, probably because the estimator is not unbiased.

7 Conclusion

Parameter estimation for a constitutive model of cyclic plasticity is a challenging task because it leads to the
minimization of a non-convex function with many local minima. One possible solution is to train a neural net-
work on a synthetic dataset consisting of stress–parameter pairs (D1 dataset) or stress–parameter–deformation
tuples (D2 dataset). Our experiments show that training can be significantly improved using a loss function
based on a combination of MSE losses from both parameter estimation and the corresponding stress response
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Table 10 Refined parameters of experiment #1 predicted using GRU#6 trained on dataset D2 with their estimated STD (ESTD),
Cramér–Rao lower bound (CRLB) and the ratio of ESTD and the parameter value

θ̂ i ESTDi
√
CRLBi ESTDi /̂θ i

k0 195.3 2.534 0.7936 0.01297
κ1 23,207 190.5 16.78 0.008210
κ2 0.02872 0.000891 0.01682 0.03103
c1 31,844 360.4 16.08 0.01132
c2 2,539 142.1 3.221 0.05596
c3 424.1 62.86 5.868 0.1482
c4 410.3 108.9 7.932 0.2655
a1 67.57 6.086 0.5326 0.09006
a2 138.9 5.721 0.6352 0.04117
a3 16.27 8.293 0.8546 0.5094
a4 84.07 3.890 3.560 0.04627
a 100.4 23.57 0.7223 0.2348

prediction. This technique makes training slower as the gradient must propagate through the analytical con-
stitutive model, but it reduces the number of training steps required and results in better quality networks. The
improvement in performance is significant, namely after the Nelder–Mead refinement is applied.

Recurrent networks based on GRU and LSTM proved to be a good choice for the simpler D1 dataset, as
they both gave similar results for different hyperparameters. On the other hand, CNNs and FFNs seemed to be
unstable with respect to the hyperparameter search. Only the GRU networks showed a good performance on
the more advanced D2 dataset, which aims to generalize over different plastic deformation sequences.

The reference non-neural method based on Tensor Trains (TTOpt) also proved to provide high-quality
results. Compared to GRU, TTOpt needs about 250 times more time for evaluation (50 times including
Nelder–Mead optimization); however, since it is a non-deterministic method, it can be run multiple times and
eventually achieve better results. This makes GRU a better choice for tasks where speed plays a major role,
while TTOpt may be a better choice where the priority is to get the optimal prediction.

The advantage of TTOpt also is that it does not require any training and therefore does not depend on the
structure of the training data. Both GRU and TTOpt performed better than random generation of estimates
after their refinement using the Nelder–Mead method.

The entire approach used in this paper is not model specific and can therefore be adapted relatively easily
to other constitutive models of rate-independent plasticity.
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