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 A B S T R A C T

Visual inspection of nuclear fuel assemblies is critical for assessing fuel reliability and ensuring safe operation. 
However, the sensitivity of real inspection data, along with its inflexibility and high collection costs, limits its 
use for research and development (R&D) tasks. These challenges hinder the ability to test and validate new 
inspection methodologies, making innovation slow and expensive. To address these limitations, we propose the 
development of synthetic nuclear fuel datasets that simulate fuel assembly inspections. These data sets replicate 
various defects and degradations in fuel assemblies, providing a controlled environment for hypothesis testing, 
operator training, and the evaluation of automated inspection techniques. Unlike real-world data, synthetic 
data offers the advantage of known ground-truth parameters, allowing for rigorous testing and validation. This 
approach enables the continuous development of inspection technologies, regardless of hardware availability 
and operational outages in nuclear facilities. By reducing the reliance on costly real-world experiments, 
synthetic data offers a scalable and flexible solution for the advancement of nuclear fuel inspection methods.
1. Introduction

Visual inspection of nuclear fuel assemblies is a key factor in long-
term fuel management programs. Despite the geometric changes, usu-
ally measured by means other than the camera, that may still be visible 
in the images, the behavior of the fuel component surfaces plays a 
critical role in assessing fuel reliability. The fuel cladding is the first 
nonuranium safety barrier from the point of view of safe operation, and 
visual inspections provide an insight into its behavior during normal 
operation of the unit. Post-Irradiation Examination (PIE) programs take 
the approach of periodically inspecting at least part of the entire reactor 
core [1].

The primary output of nuclear fuel inspection is a video recording 
of the FA. Although this video directly captures the first safety barrier 
of the fuel, it contains a large amount of valuable data, including infor-
mation on the chemical and mechanical behavior of fuel rod surfaces, 
structural components, geometric changes, and indirect effects such as 
burnup, leakages, and interactions within the core. These inspection 
videos are used both during inspections to evaluate the current state of 
the FA and after inspections to document findings, compare them with 
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previous results, and generate reports. The combination of processed 
data, raw video files, and sometimes additional measurements, such 
as ultrasonic (UT) geometry data, creates a comprehensive database 
detailing how a specific fuel design behaves in particular environmental 
and operational conditions. However, due to the standardization of 
processes of a facility and the nature of the data, there is little flexibility 
for experimentation, driving the need for synthetic datasets that can 
provide a controlled environment for experimentation.

In a standard approach, the R&D actions addressing the fuel inspec-
tion programmes include a full-scale fuel mock-up, the experimental 
facility needs significant space, manipulators and handling equipment 
require materials, design, and construction. Each test also demands 
time for preparation and execution, leading to increased costs and 
workload over time. If the initial test setup is not optimal, these 
costs quickly escalate. A tool that can reduce these burdens during 
the testing or validation phase can greatly aid in developing new 
methods and technologies, enhancing the depth and quality of infor-
mation obtained from standard fuel inspections. Such a tool would still 
be valuable during final tests with real fuel mock-ups (verification) 
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Fig. 1. Comparison of frames from real (left) and synthetic (right) nuclear fuel inspection videos. The synthetic sample does not contain any camera distortion therefore the image 
can be post-processed to further resemble the real-world images.
without adding extra costs, as it would help identify dead ends and 
suboptimal arrangements during the validation phase, allowing for 
necessary improvements before final testing.

In this paper, we demonstrate the process of creating synthetic 
inspection videos for nuclear fuel assemblies (see Fig.  1). Synthetic data 
sets not only offer a cost-effective and scalable alternative to real-world 
inspections but also provide access to known ground-truth data, which 
is critical for the development of precise inspection algorithms. We 
outline methods for generating visuals of oxidized rod surfaces, defin-
ing rod bows and fuel assembly bow at various levels, and integrating 
scanning protocols into the video synthesis process. To achieve realistic 
results, we select the photorealistic renderer Mitsuba,3 [2], which pro-
vides advanced rendering capabilities that are suited to our needs. All 
operations and demonstrations are conducted using a publicly available 
Westinghouse FA model [3], which showcases the applicability and 
effectiveness of our approach.

1.1. Related work

Synthetic, or procedurally generated, data has been used exten-
sively in the entertainment industry and recently it has also been 
used in machine learning to enlarge or even create datasets. [4,5] 
demonstrate the power of synthetic data in machine learning, where 
procedurally generated data sets improve training and performance. 
Our work extends this principle to nuclear fuel inspection, providing 
a first step towards creating a digital twin-like environment for testing 
and validation. With a rough relation, the scope of the use of synthetic 
data in nuclear power production can be seen in the concept of Digital 
Twin [6]. Since synthetic fuel is not a direct concept of Digital Twin 
for fuels, it constitutes a first step to train the operators and optimize 
their work beyond the power plant itself.

Related work in the domain of nuclear fuel inspection is scarce 
mainly because of the reluctance to publish to avoid disclosing any 
manufacturer details. However, there are some exceptions. The thesis 
of [7] identified the benefits of constant camera speed for data pro-
cessing in nuclear inspections. Our synthetic data sets build on this by 
introducing known ground-truth parameters, which allow for an even 
more efficient analysis of fuel bow and surface degradation.

Another work in this domain was published by [8] using standard-
ized videos that allow the application of photogrammetry to extract 
twist and bow from three single-face videos of hexagonal FA.

This paper introduces a dataset of various FA recorded one side at 
a time with a fixed camera speed. The method of using a photorealistic 
renderer to synthesize videos is described in Section 2. The paper then 
follows with a description of the data sets in 3 and a discussion in 
Section 4.

1.2. Synthetized fuel assembly geometry

The geometric parameters of the synthetic FA were specified based 
on the experience of the fuel experts and the available information 
addressing the post-irradiation examination of the nuclear fuel as de-
scribed in [1]. During the performance inside the power unit, the FA 
undergoes several changes, including accumulation of the surface layer 
2 
(crud, oxides, etc.) and changes in geometry. The study described in [1] 
is a comprehensive insight into the fuel’s behavior over the course of 
almost 10 years of operation. In this way, it gives relevant information 
about the overall fuel design operation. Among the parameters that 
are important for fuel safe operation and the scope of fuel inspections 
are the fuel assembly bow & twist and the single fuel rod fuel rods
(FR) behavior. In favor of this article, the parameters that can directly 
interfere with the final scope of this study were selected, e.g., surface 
change implementation was limited to the basic level that represents 
only the burn up of fuel that corresponds with the projected FA and FR 
bow & twist. According to the study cited, most of the inspected FAs 
revealed the maximal bow of below 20 mm absolute, while the table 
value for the Zr-4 cladding type of fuel suggests the maximal bow on 
the level below 16 mm over the whole burn-up period.

According to Westinghouse data [9] on new fuel for WWER-1000 
units, the nominal rod-rod gap should be at the level of 3, 6 mm in the 
nominal state. Closing the gap leads to a decrease in cooling abilities 
and a disturbance in the moderator distribution (local power changes). 
If exceeded, this phenomenon can lead to cladding overheating and 
disintegration. Good practice and the experience of the fuel experts 
indicate that the rod-rod gap closure of 1, 5 mm and less requires special 
attention during the fuel inspections. The range specified in 2 reflects 
this with the approximation of 1, 6 mm.

The growth of the rod is not a crucial parameter for the scope of 
this work but is directly related to the geometrical changes of the entire 
FA. Depending on the design of the fuel and its burnup, the typical rod 
growth changes. This phenomenon is driven by the creep rate of the 
cladding material and the in-rod parameters of the inner pressure. With 
the burnup, the gaseous fission products accumulate, and the nominal 
pressure increases. This imposes an axial force over the fuel rod and 
prompts the growth. According to the [10] report, the rod growth can 
reach the level of 0, 83 – 1, 10% of nominal fuel rod length for high 
burnups. As the geometrical changes of the growth and bowing of the 
fuel in the full FA scope are combined, the reasonably and recognizable 
deformation of the FA will appear even in half of this scope, and 
the detected changes will be sufficient for this work. Furthermore, 
the changes in half of the level described by IAEA are more typical 
to the ones widely seen during the fuel inspections according to the 
experience of the fuel experts. This allows us to specify the maximal 
rod growth for this work on the level of 20 mm absolute.

2. Methods

The process of generating synthetic data follows the standard ap-
proach for creation any 3D rendered scene. It involves three key steps: 
modeling the geometry, assigning materials, and setting up the scene’s 
illumination. Once these elements are properly configured, each frame 
is rendered individually and composed into a video. In this study, 
two synchronized videos were produced by simulating two cameras 
recording a fuel assembly (FA) from different angles at the same time. 
Below, the key steps are detailed. The code is available at [11].
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Fig. 2. The mesh of the fuel rods (left) is composed of segments that are displaced in 
the 𝑋𝑌  plane based on the generated rod divergence curves. The right image displays 
the mesh of a fuel rod tip. The bottom image shows the mesh of a spacer grid. Note 
that in all the mesh images, each face is assigned a random color to highlight the 3D 
structure.

2.1. Modeling objects and parametrization

The generation of synthetic nuclear fuel assembly data begins with 
the accurate modeling of key components such as FR and spacer grids 
spacer grid (SG). These models are based on public blueprints and 
are designed to replicate the geometric and structural characteristics 
of real-world fuel assemblies, particularly Westinghouse [3]. The ge-
ometry of the spacer grid and fuel rod tips was created manually by 
replicating these blueprints.

The fuel rods are represented as a cylinder, each subdivided into 
smaller segments to facilitate realistic bending along their length (see 
Fig.  2). Segmentation allows for precise control over the deformation of 
the fuel rod, simulating the bowing that occurs in real assemblies due 
to operational stresses. The curvature of each fuel rod 𝐹𝑅𝑖 is defined 
by the bow curve 𝑏(𝑡), which models the collective bending/twisting 
behavior of the assembly. In addition, random deviations 𝑑(𝑡) are 
introduced between spacer grids to create realistic, non-uniform bow 
patterns for each rod. Both curves are applied when 3D FR id generated 
by:

𝑐𝑖(𝑡) = 𝑏(𝑡) + 𝑑𝑖(𝑡)

Additionally, fuel rod tips are shifted along the 𝑍-axis to simulate rod 
growth over time, which is a known phenomenon during operation.

The spacer grid is created by first modeling a single tooth, which 
is a repeating geometric feature within the grid. This tooth is then 
duplicated and mirrored along the 𝑋-axis to form a complete grid 
structure for one side of the fuel assembly. This process is repeated 
for each side of the assembly, allowing for a seamless creation of the 
entire grid. Using a modular approach, this model can be easily adapted 
to different grid types, supporting various fuel configurations such as 
square or hexagonal assemblies. The modular approach is beneficial for 
tasks such as semantic segmentation or debris detection, and procedural 
generation supports different fuel rod configurations, whether square or 
hexagonal, without requiring significant additional effort.

2.2. Materials and oxidation

To accurately simulate the appearance of nuclear fuel assemblies, 
it is essential to model the material properties of key components, 
particularly the metallic surfaces of fuel rods and spacer grids. In our 
simulation, we focus on replicating the behavior of zirconium alloys 
3 
Fig. 3. Fuel rod cladding made of zirconium alloy (top) and spacer grid material made 
of Inconel (bottom) are shown with varying parameters to illustrate surface changes in 
aging fuel, ranging from the newest (left) to the oldest (right).

and Inconel, which are commonly used materials in fuel rod cladding 
and spacer grids.

Incorporating realistic material properties is critical for generating 
high-fidelity synthetic videos. Using measured optical properties from 
zirconium and Inconel, we simulate the gradual oxidation of fuel rods 
over time, adjusting parameters such as reflectivity, roughness, and 
color to match real-world observations. This approach allows us to 
produce visuals that accurately represent different stages of fuel rod 
aging, providing valuable data for inspection training and algorithm 
development.

Over time, the surfaces of nuclear fuel rods undergo oxidation, 
leading to changes in their optical properties. Initially, the zirconium 
alloy used for cladding appears dark, smooth, and highly reflective. 
However, as the oxidation process progresses, the surface becomes 
lighter and rougher (as seen in Fig.  3, significantly altering its visual 
appearance. To simulate this transformation, we employ a linear inter-
polation between two materials: a reflective zirconium alloy [12] or 
Inconel [13] and a diffuse white material that mimics heavy oxidation. 
By applying a texture map across the model, we create an uneven sur-
face that realistically represents the wear and aging patterns observed 
in real-world assemblies.

By accurately modeling surface materials and their aging processes, 
we ensure that the synthetic videos can serve as a realistic proxy for 
real-world inspections, allowing for more reliable testing and develop-
ment of inspection technologies.

2.3. Illumination

Lighting plays a crucial role in the realism of synthetic fuel in-
spection videos. In real-world inspections, lighting conditions are often 
suboptimal, with variations in intensity and directionality that can 
obscure key features. The lighting configuration significantly affects the 
appearance of metallic surfaces, as demonstrated in 4. To address this, 
we fine-tuned the lighting parameters to achieve maximum possible 
realism.

The synthetic environment is illuminated using two point lights 
positioned symmetrically on either side of the camera. These lights 
are configured to simulate typical lighting conditions encountered dur-
ing real-world inspections, where cameras mounted on manipulators 
are equipped with built-in light sources. By adjusting the intensity 
and color temperature of these lights, we can mimic the variability 
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Fig. 4. The difference between local (top) and global (bottom) illumination is depicted. 
The dark background represents the surface of an inspection chamber, appearing nearly 
black with local illumination and gray with global illumination. The image highlights 
the significant impact that proper lighting has on the material’s appearance. The local 
illumination setup resembles the configuration of real-world camera mounts (right) used 
during inspections.

Table 1
Frame Generation Time by Video Resolution for GPU 
NVIDIA GeForce RTX 2080 Ti. 
 Video Resolution Rendering Time 
 750 × 600 0.8 - 1.2 sec  
 1920 × 1080 4 - 5 sec  

found in actual inspection scenarios, ensuring that the synthetic data 
is representative of the lighting challenges that operators face.

To further enhance the realism of the synthetic dataset, we exper-
imented with both local and global illumination setups. Local illumi-
nation, resembling real-world camera-mounted lights, are optimized 
for uniform illumination on the fuel assembly, however, creating high-
contrast shadows and reflections. Global illumination, on the other 
hand, diffuses light more evenly across the scene, producing softer and 
more readable images. The comparison between these two approaches, 
shown in 4, highlights the critical role of proper lighting in real 
inspection environments.

Following these steps, the synthetic video accurately mimics real 
fuel assembly inspections, providing valuable data for various inspec-
tion tasks. In this place, we discuss the possibility to test light source 
positioning in the virtual space to achieve high-quality scans in the 
real world. However, for this purpose, our model is too simple, mainly 
due to metallic surfaces present everywhere in the fuel pool. Metallic 
surfaces produce a huge amount of secondary reflections that are 
impossible to simulate without precise scene creation. Therefore, this 
application is still open for further research.

2.4. Computational challenges, optimization

The computational challenges associated with this project are signif-
icant, especially in terms of optimization. Each standard video frame 
requires approximately 0.8 to 1.2 s of rendering time using NVIDIA 
GeForce RTX 2080 Ti GPU, based on preliminary observations (see 
Table  1). Given that the average video comprises about 3,500 frames, 
rendering a single video would take between 46 and 70 min. With 
six videos, each corresponding to a different side of the object under 
observation, the total rendering time reaches around 6 h. Additionally, 
a high-definition version of each video was rendered, which increased 
the rendering time to approximately 4 to 5 s per frame due to the 
greater pixel density and detail. This substantially increased computa-
tional demands. Fortunately, it is feasible to parallelize the rendering 
process across these videos, thereby considerably reducing the overall 
computation time.

2.5. How synthetic data can be integrated with existing inspection processes

One of the biggest issues while working on nuclear fuel inspection 
is the relative lack of data. The main data holder is usually the utility 
4 
or the fuel vendor, and the inspection team is not always a part of 
either of them. This naturally limits the experience of working with the 
data or during the fuel inspection in general — the issues concerning 
fuel inspection cannot be regarded as open R&D activities so no direct 
educational work can be implemented or used. However, even fuel-
based companies (on the same level as fuel service companies) must 
maintain the experience of the new generation of workers. Even in this 
case, the on-site crew is not prepared for everything that can be seen 
during the inspections, especially when new types of fuel are regarded.

The use of synthetic fuels is the answer to the market’s needs. The 
real fuel data are a treasure and a trade secret, so those data are 
highly vulnerable. In the first aspect, the synthetic fuel provides total 
anonymization of the data and no direct relation to the special design, 
performance or/and unit parameters. In this way, all created data can 
be fully shareable and publishable. It unlocks the potential for more 
robust data processing and experiment preparation in favor of advanced 
inspection procedures. It enables collaboration with universities and 
also between industrial companies, so that fuel inspection issues, which 
were hidden beneath the fuel service, can be discussed in a wider 
context and problems solved around the world. Of course, the synthetic 
fuel will constitute here an information bearer, and only the data 
designer can decide on the levels of detail one will see in the data.

As fuel inspection data are limited and not fully accessible, even a 
prosaic task such as training new fuel inspection operators is sometimes 
problematic. Due to the data group and its homogeneity, the operator 
is oriented mainly on a FA design with a small relation to other, 
older types. It also reveals in a special scope of potential anomalies, 
so anything beyond it might be problematic for the operator. The 
current solution to this problem relies on long training of the operators 
and their work altogether with highly experienced senior employee. 
The knowledge and experience passing can mostly be done during the 
inspections themselves so the learning window is limited and narrow. 
However, this approach is not optimal from the point of view of the 
demand of the fuel inspection market. Having a tool that will help 
in continuous training and skilling of the personnel in the form of 
assisted training allows having more experts of higher expertise who 
will be prepared for non-standard findings because they have already 
seen something similar.

Finally, the main scope of this work is the perfect argument in favor 
of the development of synthetic fuels. Implementing any improvement 
in the fuel inspection policy requires R&D actions that consume man-
power and money. The new approach must be tested, verified, and 
validated in close-to-real conditions which sometimes require building 
up a vast facility of infrastructure — the FA is a reasonably big 
component to cope with it. Supposing the first outlay of the experiment 
was not perfect and did not cover all required parameters, there must 
be implemented new changes and upgrades in the infrastructure that 
pull the loads even more. By changing the approach and using synthetic 
fuel as a model, close to the digital twin of what is happening during 
fuel inspection, the costs and loads can be optimized. Of course, there 
is still the need for a new approach validation, but the majority blind 
ends and errors can be solved within the modeling part of the R&D 
activities. This approach can also accelerate the development of new 
inspection technologies for the limited workload of researchers.

3. Results

In the Results section, we provide a comprehensive overview of the 
generated synthetic data, detailing the details of the inputs, the videos 
produced, the duration of their creation, and the real-world conditions 
they simulate. We also discuss the limitations of our generator, as 
revealed through various experiments conducted with the generated 
data set. In addition, we describe two experiments performed using this 
synthetic dataset, which would be exceptionally challenging to execute 
in real-world scenarios. Each aspect is explored in greater detail in the 
following subsections.
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Table 2
Parameters and their respective distributions from which the generator draws a set before rendering a video. 
The distributions do not represent real-world measurements.
 variable distribution what affects  
 Max FA Bow [mm] Uniform(−20, 20) FA and FR geometry 
 Max Fuel Rod Divergence [mm] Uniform(−2, 2) FR geometry  
 Max Fuel Rod Growth [mm] Uniform(−10, 10) FR length  
 Amount of Surface Oxidation [%] Uniform(0.3, 0.9) FR optical properties 
Fig. 5. Example frames from fuel with high (top) and low (bottom) levels of oxidation.
3.1. Overview of generated synthetic data

The synthetic data generator was designed to replicate a range of 
fuel assembly geometries and surface optical properties, allowing the 
simulation of diverse inspection scenarios. These simulations capture 
key variables such as fuel rod bow, fuel assembly bow, surface oxida-
tion, and fuel rod growth, all of which are critical to real-world fuel 
assembly inspections (see Fig.  5). The generator [11] is in our data 
set [14] used to create seven videos per six face FA, i.e. six videos 
for each fuel face and auxiliary (see Section 3.2) from the top. The 
top camera is stationary and located 10 m above the FA top. As the 
video progresses to the end the distance between camera and the top 
is approaching 6.2 m (as the fuel is 3.2 m tall). Table  2 outlines how 
the geometry parameters are handled.

In the generated data set [14], the videos are synthesized using 
varying parameters for each FA, with each parameter sampled from 
its own distribution (see Table  2). The distributions for FA bow, FR 
bow, and FR growth are based on Section 1.2 and related papers. The 
percentage of oxidation then fits the visual properties of real-world 
videos.

To ensure the realism and accuracy of the generated videos, the 
synthetic data was compared against real inspection footage. A panel 
of experts from the nuclear industry reviewed the synthetic videos, 
confirming that the visual properties and geometric deformations were 
consistent with real-world observations. This validation step ensures 
that the synthetic data is suitable for both algorithm development and 
operator training.

The synthetic data set is designed to include information about 
the dimensions measured from specific experiments. In our case, this 
includes the bow of the fuel assembly as a continuous function, the 
swinging of the FA during scanning as a function, and rod distances 
(also represented as a function of time). Using functions allows us 
5 
to calculate precise values for each pixel. All ground-truth values are 
shown in Fig.  6.

Additionally, the model parameters are not the only important 
aspect. The generator parameters also encompass camera and light 
source positions. Adjusting the acquisition time 𝑡, we can model syn-
chronization issues within the scanning system.

3.2. Use case: Proof of concept prior to experimentation

In this use case, we demonstrate how synthetic data can be used to 
test and validate an extended dataset containing not only FA face videos 
but also top view. This experiment simulates real-world inspection sce-
narios, in which fuel assemblies are suspended on ropes and experience 
motion during visual inspections. The goal of a new approach is to 
use Digital Image Processing (DIP) algorithm for swinging trajectory 
extraction from the top view camera and to use it to stabilize the videos 
of faces (side views). From the currently used camera systems working 
with pulled (hanged) FA it is impossible to measure the bow or twist 
of FA, because such cameras are typically missing in Power plant (PP) 
facilities. We would like to demonstrate that an additional synchronized 
camera can significantly improve the outcomes of visual inspections, 
such as the photogrammetry of fuel bows. In comparison with other 
methods for bow measurement, this approach is cheaper and faster.

Conducting the same experiment in the real world poses several 
challenges related to additional camera placement. First, it requires 
special permission from the facility. Second, the scene is more complex, 
featuring elements such as cranes, ropes, and other objects that can 
obstruct the view. Third, creating a proof of concept that demonstrates 
the achieved quality will be complicated due to the intricate behavior 
of the scene, which includes varying lighting conditions and the optical 
properties of the fuel’s top surface. Finally, the absence of ground truth 
further complicates the evaluation of results.
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Fig. 6. Ground truth for various aspects of the FA includes: (a) Fuel bow and rod divergence curves; (b) Growth of individual rods (only five are shown); (c) Spacer grid mask 
(used for semantic segmentation) derived from frame (d); (d) Depth map corresponding to the same spacer grid.
Our application of synthetic data is to model an experiment focused 
on calculating the swinging trajectory of FA hanging on a rope. Input 
data is in a form presented in Fig.  7. The side view video is a pass 
along a FA side (one video per each pass). The top view is a video made 
from a static camera and moving FA (e.g., the top is either progressively 
closer).

The swinging trajectory can be understood as a moving center of 
the hexagon tracked across the video and normalized by the distance 
to the camera. The algorithm developed to extract angle of swinging 
works as follows.

• For each frame 𝑖, fit a circle with center 𝑐𝑖 and radius 𝑟𝑖 to the 
hexagonal outline of the FA’s top.

• Calculate trajectory offsets 𝑜𝑖 = 𝑐𝑖−𝑐𝑚 where 𝑐𝑚 is the mean center.
• Normalize offsets to account for changing distance from the cam-
era. Assuming that the ratio between the radius of FA 𝑟𝑓 (in mm), 
the trajectory offsets 𝑡𝑖 can be converted from the image domain 
to the spatial using formula 𝑡𝑖 = 𝑜𝑖

𝑟𝑖
∗ 𝑟𝑓 . 

The last step is to convert the trajectory offsets to angular units 
𝑎𝑖 = 𝑡𝑎𝑛−1(𝑡𝑖∕𝑑) where 𝑑 represents the maximum distance to FA. 
The algorithm was tested on synthetic top-view videos generated with 
known ground-truth parameters for the swinging trajectory. The results 
show that the algorithm successfully tracked the trajectory with a mean 
error of less than 0.002◦ compared to the ground-truth swing, as shown 
in Fig.  8. This demonstrates that a synchronized additional top-view 
camera can, under optimal conditions, enhance an already acquired 
dataset, particularly when FA scanning is performed while pulling the 
FA on a rope. This approach enables valuable photogrammetry to be 
conducted on the dataset.

It needs to be said that developing an algorithm against the syn-
thetic data does not warrant success in using the real one. In this 
case, it is a tool how to properly model an experiment in the real 
6 
world. Using synthetic data, we were able to test the approach in a 
controlled environment, adjusting variables such as camera position, 
lighting conditions, and the fuel assembly’s swinging patterns. This 
flexibility allowed us to fine-tune the algorithm before conducting real-
world experiments, saving both time and costs. In real-world scenarios, 
conducting this type of experiment would require special permissions 
and be subject to significant operational constraints.

This experiment highlights the potential of synthetic data as a 
tool for validating algorithms in the early stages of development. By 
providing a known ground truth and a controlled testing environment, 
synthetic data enables more efficient and accurate experimentation, 
reducing the need for costly and complex real-world trials:

• It provides a better understanding of the parameters of the exper-
iment.

• The generated video serves as a valuable tool for conducting the 
experiment.

• A prototype algorithm for processing the video can be developed.
• Thanks to the existence of ground truth in synthetic dataset, we 
are able to evaluate precision of a new approach in advance.

The practical impact of this use-case is a possible upgrade of a 
facility scanning process by demonstrating the principle on a synthetic 
dataset. The use-case helped to identify the potential problems, and this 
way allows us to better estimate risks and costs of real-world trial.

3.3. Use case: Evaluation of the photogrammetry algorithm

Synthetic data generated for this purpose is shared with the pub-
lic [14]. The code used for the generation of these data is available 
at [11].

In this use case, we evaluated a previously developed algorithm [8] 
for measuring the bow of fuel assemblies using photogrammetry. In 
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Fig. 7. The figure shows frames from the two types of auxiliary videos. The left column shows two frames capturing the same spacer grid where the top comes from the main 
video and the bottom is auxiliary. There is a noticeable shift in X axis that hints sideways movement. The right column shows two frames from the vertical type of auxiliary 
videos — one from the beginning and the other from the end (both in close up). As the fuel moves upwards, the hexagonal top approaches the camera. Notice that neither fuel 
head nor any rope was rendered.
Fig. 8. The figure shows circle around FA’s top (left) and swinging angle compared to ground-truth (right). The close match between the two demonstrates the accuracy of the 
synthetic dataset in replicating real-world fuel assembly movements.
contrary to previous use-case (Section 3.2) the algorithm works with 
fuel fixed during scanning (so there is no swinging and rotation of 
7 
the FA during acquisition). However, the absence of ground truth 
data in real-world inspection videos made it challenging to assess the 
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Table 3
The results of bow measurement on synthetic dataset. Every column corresponds to 
one FA modeled. Blur is the best blur used in Devernay edge detector. Max abs err 
(mm) row show the maximal absolute error of a frame in millimeters from the ground 
truth. Mean and standard deviation are computed over all FA sides. Last three rows 
compare the absolute values above with the bow of the FA side (100%).
 new semiold old  
 blur 1.1 1.0 0.9  
 max abs err (mm) 0.20 0.61 1.37  
 mean abs err (mm) 0.12 0.38 0.75  
 std abs err (mm) 0.05 0.23 0.31  
 max (%) err 38.87 19.66 25.60 
 mean (%) err 25.65 16.96 16.41 
 std (%) err 9.73 1.77 6.44  

algorithm’s accuracy and identify sources of error. To address this, we 
now used synthetic data with known ground-truth parameters for fuel 
bow, providing a reliable baseline for comparison.

The photogrammetry algorithm works as follows:

1. apply edge detector [15] with blur parameter
2. every edge having more than 20 points is approximated by a line 
(least squared error method) and calculate its direction (angle) 
and square error of approximated points.

3. use weighted average for an estimate of frame rotation. Weight 
is computed as follows:

𝑤(𝑃 ) =
|𝑃 |

∑

𝑝∈𝑃 (𝑝𝑥 − 𝑝𝑥)2 + (𝑝𝑦 − 𝑝𝑦)2
,

where 𝑤 is weight of a line approximated by points 𝑝 ∈ 𝑃 . 𝑝𝑥, 𝑝𝑦
are real coordinates of the point 𝑝. And 𝑝 is the closest point to 
𝑝 laying on the line.

FA bow is then computed as a x-shift for every frame from estimated 
rotations:

𝑓𝑥(𝑛) =
∑

𝑖∈{0,⋅,𝑛}
arctan(𝛼𝑖 − 𝛼),

where 𝑓𝑥(𝑛) denotes x-shift of the 𝑛th frame, 𝛼𝑖 is angle of 𝑖th frame and 
𝛼 is mean angle of the whole frame sequence (typically corresponding 
to a camera lean).

The use of synthetic data addresses the ground-truth issue. It also 
allows us to modulate input quality, allowing us to better define the 
limits of the algorithm and technology. Furthermore, synthetic data are 
ideal for testing both the algorithms and the operators.

The algorithm testing process is as follows:

1. Generate synthetic data within specific parameter ranges.
2. Photogrammetry is performed on the generated video.
3. The measured results are compared with the ground-truth.

We evaluate 3 fuel assemblies new one, semi old and old one. Results 
of the bow measurement are summarized in Table  3

So far, we have tested our algorithm for FA bow estimation, as 
published in [8]. This experiment demonstrates that the complexity of 
the synthetic data is relatively low and, compared to real-world data, is 
easier to process (e.g., there are no issues with threshold computations 
for edge detectors). Despite this, the experiment confirmed validity 
our approach to FA bow estimation and identify limits for our initial 
assumptions.

The current generator is capable of creating an effective platform for 
testing algorithms for fuel bow measurement and their future improve-
ments. Practically, we are now able to improve algorithms without the 
need of operators, their manual evaluations, and new data from a PP. 
This improves inspection accuracy and speeds up the development of 
operator software tools.
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4. Discussion

The R&D activities in favor of visual inspection of nuclear fuel face 
significant challenges due to the lack of large and diverse datasets. This 
is largely because data acquisition in these environments is inherently 
difficult, sensitive, and cannot be in raw format shared between fa-
cilities. As a result, each facility is forced to rely on its own limited 
data, which is often slow and costly to obtain. In addition, experiments 
are constrained by the need to avoid disrupting operations during 
power plant outages. Synthetic data offers a solution by replicating the 
complexity and variability of real-world inspection videos, providing 
a more efficient and scalable alternative to traditional data collection 
methods.

Our goal was to develop a synthetic video generator that simulates 
visual inspection data by focusing on several key aspects. We address:

• material optical properties of zirconium alloy and Inconel,
• changes in optical properties due to surface oxidation,
• geometric variations such as rod bow and fuel bow.

. Additionally, we account for different scanning protocols, includ-
ing fixed fuel with a moving camera, moving fuel with a station-
ary camera, and both in motion. This approach generates sufficient 
variability for creating a dataset that is valuable for e.g. verifying 
geometry reconstruction algorithms and also enables deepening collab-
oration among experts without worrying about disclosing any details 
and compromising security.

4.1. Limitations of synthetic data

All demonstrated use-cases are valid with current state of the gen-
erator. But we see a huge potential in synthetic videos on many new 
levels, e.g. in usage for:

• Artificial Intelligence (AI) training (segmentation, anomaly detec-
tion, preprocessing)

• Operator training
• Designing of new scanners
• Evaluation of acquisition processes
• Simulation of fuel handling

All of these steps lead to faster acquisitions, reproducible measure-
ments, redundancy, and robustness. Application of better fuel inspec-
tions then increases safety and prolongs the fuel lifespan.

However, for this very wide range of applications, the current model 
requires more context. That is, the current model does not contain 
all scene-specific objects (such as pool walls, ropes, handling crane 
parts, water, other FAs and pool structures interacting with the light 
rays). In addition, the generator does not cover various fuel designs, 
aging beyond oxidation, physical issues like missing parts or cracks, 
or other experiments-specific requirements. The context needs to be 
built according to the particular use-case/experiment requirements, 
and there is a potential to do so.

In the follow-up work we would like to improve the FR surface 
modeling and oxidation patterns for the use in AI training. This high-
lights the need for more advanced techniques to accurately capture and 
replicate the diverse and intricate oxidation patterns found in actual 
fuel assemblies.

High fidelity outcomes have also negative impact on performance. 
At this moment, it takes approximately one second1 to render a single 
video frame as described within this paper.

1 Using NVIDIA GeForce RTX 2080 Ti.
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4.2. Future work

This is an initial approach that paves the way for more effective 
experimentation, with the potential to incorporate more real-world 
conditions in future work. Looking ahead, we envision a future with 
fast, photorealistic rendering software and a shared database of ma-
terials, textures, and models to speed up the groundwork that must 
be done to prepare any experiment. Future research will focus on 
expanding the diversity of fuel designs represented in the synthetic 
dataset, incorporating more complex aging phenomena such as crack-
ing and missing parts. In addition, we plan to integrate more advanced 
machine learning algorithms to further unravel the synthetic and real 
fuel inspection videos without affecting the data sensitivity.

Synthetic data promise to overcome critical issues with the sharing 
of data related to nuclear fuel. Our synthetic data generator repre-
sents the initial effort to facilitate discussions on processing FA fuel 
inspection videos and to aid automating their analysis or updating the 
scanning protocols.
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