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Abstract
It is unclear whether generative approaches can achieve state-of-the-art performance with supervised classification in high-
dimensional feature spaces and extremely small datasets. In this paper, we propose a drop-in variational autoencoder (VAE)
for the task of supervised learning using an extremely small train set (i.e., n = 1, .., 5 images per class). Drop-in classifiers
form a usual alternative when traditional approaches to Few-Shot Learning cannot be used. The classification will be defined
as a posterior probability density function and approximated by the variational principle. We perform experiments on a
large variety of deep feature representations extracted from different layers of popular convolutional neural network (CNN)
architectures. We also benchmark with modern classifiers, including Neural Tangent Kernel (NTK), Support Vector Machine
(SVM) with NTK kernel and Neural Network Gaussian Process (NNGP). Results obtained indicate that the drop-in VAE
classifier outperforms all the compared classifiers in the extremely small data regime.

Keywords Small data classification · Variational autoencoder · Neural Tangent Kernel · Supervised learning

1 Introduction

Large quantities of train data, thousands to millions, are
often needed to train popular deep neural networks. This
is an obstacle in their application on open-ended long-tail
categories in the real-world, where data collection might
sometimes be extremely hard, expensive, or even impossi-
ble. In such a case,meta-learning [1] can be used if a variety
of suitable training tasks to pretrain a model is available.1In

1 “Suitable tasks”must be related to the targeted classification – the task
of interest: typically, a model is pre-trained on the source dataset con-
sisting of base classes. The acquired prior knowledge is then transferred
[2] into the target dataset consisting of novel classes with few examples,
where base and novel classes are disjoint. If source (base classes) and
target (novel classes) are from the same domain, the expectation is that
representations learned will generalize to the target.
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case this assumption is not met, meta-learning can not be
used efficiently.

Learning with few labeled data is known also as Few-
Shot Learning (FSL). It usually implements techniques of
(i) meta-learning, sometimes together with Graph Neural
Networks; and/or (ii) self-supervised learning (usually learn-
ing embeddings) or both. Note that recent FSL methods
have explored alternatives to traditional Maximum Likeli-
hoodEstimation (MLE). For instance, PrototypicalNetworks
[3] usemetric-based learning,whilemethods likeGEMapply
Bayesian principles to adapt across tasks. Other approaches,
such as MAML and Reptile [4], optimize for rapid adapta-
tion without relying on likelihoods. However, these methods
require meta-training on related tasks or access to unlabeled
data to learn transferable representations. These assumptions
do not hold in our setting.

In this paper, we address supervised learning in the
extremely low data regime, in which none of the aforemen-
tioned approaches to FSL can be used. It is the least favorable
scenario, which admits only a few labeled data, but no unla-
beled data or suitable, related, training tasks.

In extremely low data regime, a usual approach is simply
to apply a drop-in classifier such as Support Vector Machine
(SVM) on feature representations (these can be hand crafted
features or acquired using deep convolutional neural network
(CNN) representations). However, supervised learning in the
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extremely low data regime (and possibly high-dimensional
spaces) is challenging. The lack of training data often leads
to overfitting, which causes poor classification on unseen
data. The right choice of the drop-in classifier is crucial
for achieving a high accuracy and generalization. To this
end, extensive experiments have been conducted [5] on UCI
repository [6]. The UCI consists of a large range of clas-
sification tasks, including small data regime ones (mostly
with low-dimensional feature vectors). The authors of [5]
conclude that, in general, random forest (RF) is the winning
classifier, followed by the SVM.

Despite heavy overparameterization, modern Neural Net-
works (NNs) have low generalization error [7]. This moti-
vated recent research on NNs whose widths (i.e., number
of nodes in layers, or number of channels in convolutional
layers) goes to infinity. In the infinite-width limit, an infer-
ence on a large class of Bayesian NNs converges to Gaussian
process regression with a kernel given by the architecture of
the NN. This Gaussian process is called Neural Network
Gaussian Process (NNGP). This correspondence was first
established for shallow fully-connected networks by [8] and
was extended to a multi-layer setting [9]. In the limit of
infinite-width and infinitesimal learning rate, the trajectory
of (non-Bayesian) NN training under �2 loss converges to the
kernel ridge regression with a so-called Neural Tangent Ker-
nel (NTK) [10]. Interestingly, it was shown [11] that NTK
performs surprisingly very well in low data regime. It even
beats the earlier “gold-standard,” RF [5], on small datasets
in a majority of tested classification tasks. In [11], it was
also shown that SVMwith NTK kernel (NSVM) beats linear
SVMwhen trained on training sizes ranging from 20 to 160:
the setting in which SVM arguably is the most widely used
drop-in classifier.

Inspired by these results, demonstrating advantages of
Bayesian learning in the low data regime, we choose to
exploit the power of deep generative models formed by the
fusion of probabilistic modeling and deep NNs and pro-
pose amulti-class classifier based on variational autoencoder
(VAE) [12]. VAEs and their variants have seen significant
advancements in recent years. Among the most promising
developments are deep hierarchical VAEs [13, 14], which
increase the expressiveness of the latent variable prior and
posterior probability density functions (PDFs), and introduce
new training techniques; VQ-VAE [15, 16], which quantize
the latent space to provide better control over the latent vari-
able distributions; β-VAE [17, 18], which aim to eliminate
the issue of posterior collapse.

It is expected that VAE should perform well for the super-
vised learning in the extremely low data regime (same as
NNGP) because its regularization mechanism is based on
a probabilistic latent space. Given a diagonal prior of the
latent space, VAE has an incentive to use only as many latent
dimensions as needed to encode the available information.

With only very few training examples per class, VAE identi-
fies a minimal subspace – essentially, a manifold – that just
“fits” these isolated points. In doing so, the VAE performs
a kind of substantial dimensionality reduction where the
latent space is “compressed” to reliably reconstruct those few
training examples. We conjecture that if a high-dimensional
feature space already contains well-structured clusters cor-
responding to different classes, the VAE’s projection onto its
lower-dimensionalmanifold preserves the relative separation
among the classes because by distilling the data to its most
relevant aspects, the VAE identifies and retains the directions
in the data that are most influential for reconstructing and,
by extension, separating the classes.

Contribution:

1. We propose a VAE for supervised learning using an
extremely small dataset. The results of multi-class super-
vised learning with the number of training samples per
class ranging from 1 to 5 indicate that the VAE classifier
performs better than all the other tested classifiers mak-
ing it a strong candidate for the drop-in classifier in the
extremely small datasets.

2. The question, whether modern classifiers such as NTK,
NNGP, or SVM with NTK kernel (NSVM) can perform
well as a drop-in classifier on the extremely small datasets
(n = 1..5) and high-dimensional spaces is still unan-
swered. We conduct a large-scale empirical study using
a high variety of deep CNN feature representations to
answer this question.

Our classifier is built on the standard VAE, serving as a
baseline for VAE-based approaches. While we make no
architectural changes, our contribution lies in demonstrat-
ing its effectiveness as a drop-in supervised classifier in an
extremely low-data regime. This is a setting where most
Few-Shot and generativemodels are inapplicable due to their
reliance on meta-training or unlabeled data. We investigate
how the generative nature of VAEs can enhance robustness
compared to discriminative models. Furthermore, bench-
marking against kernel-based methods such as NTK and
NNGP helps reveal the strengths and weaknesses of VAE’s
stochastic nature.

The remainder of the paper is organized as follows. Sec-
tion 2 reviews the theoretical background of VAE. Section
3 details the methodology and the development of the VAE
classifier. Section 4 presents the experimental results and pro-
poses future research directions. Section 5 concludes with a
summary of the findings.
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Fig. 1 Each of N i.i.d.
observations (shaded) is
generated by a (local) latent
random variable z. They all
depend on the global parameter
θ .

2 Review of the Theory

We review the VAE, a deep generative model defined by an
explicit probability model, which lays the theoretical foun-
dations for the VAE classifier.

We restrict ourselves to the common case with a dataset
{x(i)} of independent and identically distributed (i.i.d.) sam-
ples whose generation is modelled by a continuous latent
variable z. Accordingly, the likelihood function is a product
of p(x(i) | zi ) where zi are all i.i.d. Since this PDF is often
unknown, we assume that it comes from a parametric family
of PDFs p(x | z) � pθ (x | z), where θ is a parameter vec-
tor2 (see Fig. 1a). Furthermore, we assume differentiability
almost everywhere w.r.t. θ as we wish to perform MLE or
maximum a posteriori inference on θ and variational infer-
ence on z.

This setup for doing variational inference enables efficient
inference and learning by using Auto-Encoding Variational
Bayes (AEVB) algorithm introduced in [12]. The unobserved
z is interpreted as a latent representation or code. Accord-
ingly, a map x → z is called a probabilistic encoder since
given a datapoint x(i), it produces a PDF (e.g., a Gaussian)
over the possible values of the code z from which the data-
point x(i)could have been decoded by pθ (x(i) | z), to which
in turnwe refer as a probabilistic decoder, denoted as Dec(z).
In a VAE, encoders and decoders are implemented as NNs.
Wewill define a decoder as a Gaussian multilayer perceptron
(MLP): pθ (x | z) � N (x;μ, I) where the mean vector μ

is calculated from z with an MLP whose parameters are θ .
This allows x to depend on z in a complex, highly non-linear
way.

Note that we can specify priors p(zi ) to inform and con-
strain our models. Also, there are no common simplifying
assumptions about, e.g., pθ (z | x) tractability [19] to enable
using the Expectation-Maximization (EM) algorithm [20,
21]. There is even no assumption about the tractability of
required expectations for themean-field variational Bayesian

2 We will use interchangeably the notation: pθ ( · ) ≡ p( · ; θ) where
the semicolon separates random variables on the left from parameters
on the right.

approach [20–22], which could approximate the intractable
pθ (z | x).

Taking the energy view perspective, we wish to minimize
the overall free energy of our training samples, which is
given by: F(x) = − 1

β
ln

∫
z e

−βE(x,z)dz , where E(x, z) �
C(x,Dec(z)) denotes the energy of the system, which is set
to be equal to the cost, C , of x and the image of z under the
function Dec. The integral is intractable because E is a com-
plex function of z, which leaves us with no analytic solution
for this log-partition function, a well known problem from
statistical physics. One of techniques to address this problem
is variational approximation.

First, let

F(x) = − 1

β
ln

∫

z
q(z | x)

[
e−βE(x,z)

q(z | x)

]

dz , (1)

where q is a PDF. By Jensen’s inequality,

F(x) ≤ F̃(x) =
∫

z
q(z | x)

[

− 1

β
ln

e−βE(x,z)

q(z | x)

]

dz , (2)

and we can bound F(x) by F̃ :

F̃(x) =
∫

z
q(z | x)E(x, z)dz

+ 1

β

∫

z
q(z | x) ln q(z | x)dz . (3)

The first term is an expected free energy w.r.t. q, the second
term is a negative entropy of q divided by β. This formula
is known in thermodynamics as Helmholtz (free) energy:
F̃ = 〈E〉 − T S , where T � 1

β
, S � − ∫

z q(z | y) ln q(z |
x)dz and 〈E〉 denotes expected value of E . It is also known
from thermodynamics that a system that tends towards the
equilibriumwill tend tominimize this free energy at the given
temperature. We want to find parameters of E and q that
minimize F̃ , thus minimizing also the free energy F(x).
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3 Methodology

We introduce the general probability model for our scenario,
define the correspondingVAE, and present the resultingVAE
classifier, our main theoretical contribution.

The Scenario. Let {(x(i), y(i))} be an observed i.i.d.
dataset generated by a continuous latent variable z. A num-
ber of probabilistic graphical models [20] is possible with
this choice. To increase the expressiveness of both prior
and posterior PDF, we consider a simple hierarchical model
depicted3 in Fig. 1b, i.e., pθ (x(i), y(i), z) = pθ (z2) · pθ (z1 |
z2) · pθ (x(i) | z1) · pθ (y(i) | z1) . A hierarchical model may
reduce the risk of posterior collapse [23, 24].

Naturally, it depends in large part on the dataset in ques-
tion when a particular factorization is appropriate. For the
sake of concreteness, suppose that x(i) is a text and y(i) is
its label as “boring” or “interesting.” In our model setup, the
latent random variable z generates the observed document
and also its observed label. Since x(i) and y(i) are condition-
ally independent given z1,4

x(i)
� y(i) | z1 , (4)

let us say that the value of z1 is, e.g., a detailed representation
of the content of a text, such as a PDF of its topics [25].

The Architecture of the VAE. We let the prior pθ (z2)
be a centred isotropic multivariate Gaussian: pθ (z2) �
N (z2; 0, I), which puts pressure on increasing the entropy
of q. Parameters of the other conditional PDFs are calcu-
lated from z with Gaussian and Bernoulli MLPs. We let
pθ (z1 | z2), pθ (x | z1) be a multivariate Gaussian with a
diagonal, unite covariance. The respective mean values are
calculated from z2 and z1 with fully connected networks
with one hidden layer: Dec0(z2) = z1, Dec1(z1) = μ. We
let pθ (y | z1) be a Bernoulli: pθ (y | z1) � Ber(y;μ). The
parameter μ is calculated from z1 with a fully connected
network with no hidden layers: Dec2(z1) = μ.

The true posterior pθ (z | x, y) is intractable in this
case. We assume that it takes on an approximate Gaus-
sian form with an approximately diagonal covariance.5 Thus
qφ(z1 | x, y) is a multivariate Gaussian with a diagonal
covariance structure: qφ(z1 | x, y) � N (

z1;μ, Iσ 2
)
. The

3 The generativemodels in Fig. 1b is a special case of the one in Fig. 1a.
Indeed, x corresponds to (x(i), y(i)), and z corresponds to (z1, z2). Also
note that Fig. 1b is in the Markov equivalence class that includes also
x(i) → z → y(i) and x(i) ← z ← y(i).
4 This can be read directly from the directed graph in Fig. 1b, making
use of the d-separation criterion [21].
5 This assumption effectively encodes that each latent dimension is
treated as independent, which is not only computationally efficient but
also a step toward disentangled representations (which would require
additional inductive biases, such as a weighted Kullback–Leibler (KL)
divergence term) [26].

parametersμ, σ are calculated from x with a fully connected
NN with one hidden layer because, by design choice, we let
the encoder ignore y: Enc(x) = μ, σ .

VAEClassifierOur goal is to estimate the true conditional
PDF p(y | x), i.e., given a document, what is the probability
of it being interesting? To this end, we derive the following
classifier:

(I.) Design encoder that takes x on input and ignores y.
(II.) Solve θ̂, φ̂ = argθ ,φ min

∑
i F̃(x(i), y(i); θ ,φ), where

F̃θ ,φ(x, y) =
∫

z
q(z | x)[α1E(x, z) + α2E(y, z)]dz

+ 1

β

∫

z
q(z | x) ln q(z | x)dz ,

θ , φ are parameters of E , q, respectively, and α1, α2, β

∈ R>0 modulate the learning constraints applied to the
model.

(III.) Given a new x, sample L values z(l) from the posterior
q(z1 | x; φ̂).

(IV.) Calculate the average of p(y | z(l); θ̂):

p(y | x) ≈ 1

L

L∑

l=1

p
(
y | z(l); θ̂

)
z(l) ∼ q

(
z1 | x; φ̂

)
.

Since p(y | x) = ∫
p(y | x, z1) · p(z1 | x) dz1 , it

suffices to show that

p(y | x, z1) ≈ p(y | z1; θ̂) ,

p(z1 | x) ≈ q(z1 | x; φ̂) .
(5)

To this end, recall that our learning objective yields: (a)
a generative model p(x, y, z; θ̂) of {(x(i), y(i))}; (b) an
approximation q(z | x, y; φ̂) of p(z | x, y; θ̂). By (a),

p(x, y, z1) ≈ p(x, y, z1; θ̂) , (6)

and using (4), we get (5). By (6) and (b), p(z1 | x, y) ≈
p(z1 | x, y; θ̂) ≈ q(z1 | x, y; φ̂) where φ̂ are the optimal
parameter values of the encoder. By (I), q( · | x, y; φ̂) ≡
q( · | x; φ̂) and p(z1 | x) = ∑

y p(z1 | x, y) · p(y | x) ≈
q(z1 | x; φ̂).

4 Experiments

We compare the VAE classifier with (i) RF, which accord-
ing to [5] can be considered a reference in low data regime
to compare with new drop-in classifier proposals to asses
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their performance; (ii) NNGP [27], NTK [27], and NSVM,
which according to [11] are serious contenders of RF in low
data regime; (iii) and Linear/RBF SVM, arguably the most
frequently used classifiers for small data tasks.

4.1 Feature representations

To be able to test classifiers with awide variety of feature rep-
resentations (i.e., feature datasets), the following ImageNet
pretrained convolutional layers followed by average pooling
have been extracted: conv3 (d = 256), conv4 (d = 512), and
conv5 (d = 512) from VGG 19; mixed 5d (d = 288), mixed
6e (d = 768), and mixed 7c (d = 2048) from Inception V3;
block3 rep 0 (d = 256), block12 rep 0 (d = 728), and act4
(d = 2048) from Xception; and conv3 (d = 512), conv4
(d = 1024), and conv5 (d = 2048) of Resnet 50. CIFAR 10,
MNIST, and Cat vs. Dog formed our test image datasets.

It is important to note that we do not claim the suitability
of the aforementioned representations for the specific clas-
sification tasks in our experiments. Our objective is not to
achieve the best possible performance on each dataset, but
rather to compare classifiers under consistent conditions. To
this end, we generate a wide variety of feature representa-
tions with varying dimensionality and quality. For the same
reason,we do not apply additional pre-processing, data trans-
formation, or feature selection. All classifiers are evaluated
on these fixed representations with no fine-tuning performed
on the pretrained models. This ensures a fair and consistent
comparison focused solely on each classifier’s performance
under extremely limited labeled data.

4.2 Comparison Setup

The classifiers are trained on balanced training sets with n
samples per class, where n = 1, 2, 3, 4, 5. We get 1,080
combinations of classifier – feature dataset– training size.
The following classifier implementations have been used:

RF inRandomForestClassifierofsklearn.Num-
ber of trees selected from {16, 64, 128, 256, 512}.

NNGP and NTK in Neural Tangents [27]6. Infinitely wide
NNs implemented in several architectures: including
with two hidden layers, each with 512 units followed
by ReLU activation function or with four hidden layers,
each with 2048 units followed by ReLU. The winning
architecture was always selected.

SVM in sklearn.svm.SVC. We did grid search along
kernel types (linear or RBF), regularization, C ∈
{1, 2, 5, 10, 100, 1000}, and kernel spread (for RBF),
γ ∈ {0.1, 1, 10, 100}.

6 https://github.com/google/neural-tangents

NSVM in [11]7. Grid search performed along maximal
depth in {0, 1, . . . , 4} and C ∈ {10−2, 10−1, . . . , 105}.

VAE in Pyro. Latent variable space dimensions: 80 for z2,
(80 + D)/2 for z1 where D is the dimension of x. The
numbers of hidden units in hidden layers are: (3D+80)/4
in Enc(x); (D+240)/4 in the encoder of z1; (D+80)/2
in the decoder of z1; D in the decoder of x, and 0 in the
decoder of y. All parameters (variational and generative)
are initialized by random sampling from N (0, 0.001).
We set α1 = 10, α2 = 100, β = 1, and we apply the
Bernoulli corruption process to x with the probability
0.1.

The training process of all classifiers is completely non-
adaptive. Hyperparameter tuning is performed on half of the
training data, and the second half was used for validation.
Then the classifier is retrained using the entire selected train-
ing set of size n = 1, …, 5 samples per class, and tested on
the standard test set samples of the datasets (the test sets are
fixed for all evaluations). This process is repeated 50 times
for each of the 1,080 combinations. Each split is defined as
selecting a random train set (shuffled by a function parame-
terized by a random state that ranges from 0 to 49). Results
from 50 splits are averaged.8

Following the non-adaptive methodology, we fixed all the
VAE parameters for our experiments. This is in accordance
with [28] that launches several criticisms about the usual
practice in experimental comparison. One of them is whether
the selected learners are properly configured for their best
performance. It suggests that proposals of new classifiers
usually design and tune them carefully, while the baseline
classifiers are run using baseline configurations.

4.3 Results and Discussion

We report average values of Average Precision (AP) together
with 25th and 75th percentiles (Q25, Q75) across the 50 splits
(to assess also the stability of classification across differ-
ent seed-runs9). The results obtained provide an interesting
insight into the performance of the compared state-of-the-art
classifiers on such small data tasks.

Table 1 demonstratesAP averaged over all feature datasets
for each n. It indicates that the VAE outperforms all the other
tested classifiers. It is followed by NTK, NNGP, and RF that

7 https://github.com/LeoYu/neural-tangent-kernel-UCI
8 Since results from the respective splits are i.i.d. , we can apply the
strong law of large numbers, bywhich the probability that the calculated
average tends to the true average, as the sample size increases, is 1.
In other words, the relatively high number of splits is more likely to
eliminate undesirable bias caused by potential outliers.
9 Since the AP may not be distributed symmetrically, percentiles are
more adequate than standard deviation or variance, which are usually
used to describe a symmetric PDF.
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Table 1 Average Precision (Q25- AP, Q75- AP) averaged over all datasets and n, where n denotes the number of training samples per class

n SVM RF NNGP NTK NSVM VAE

1 19.1% (-1.2, 0.8) 37.7% (-2.9, 3.2) 43.7% (-3.1, 3.5) 43.9% (-3.1, 3.5) 18.8% (-1.4, 1.0) 44.6% (-3.1, 3.6)

2 29.5% (-7.0, 5.8) 48.5% (-3.2, 3.8) 50.2% (-2.6, 2.9) 50.2% (-2.4, 2.9) 20.5% (-2.9, 1.9) 51.3% (-2.7, 3.0)

3 41.7% (-5.5, 6.9) 50.5% (-3.3, 4.2) 53.9% (-2.3, 2.6) 53.9% (-2.2, 2.5) 41.6% (-5.3, 7.0) 55.2% (-2.5, 2.7)

4 42.2% (-9.2, 9.6) 55.9% (-2.4, 2.9) 56.3% (-2.2, 2.4) 56.3% (-2.1, 2.4) 42.6% (-7.4, 9.5) 57.3% (-2.3, 2.5)

5 53.3% (-3.1, 4.2) 57.7% (-2.2, 2.8) 58.3% (-1.9, 2.1) 58.2% (-1.9, 2.1) 53.1% (-3.2, 4.2) 59.3% (-1.9, 2.1)

have also been found to be strong options for the extremely
small data regimes. It is interesting to note that widely used
SVM ended up significantly behind. Table 2 demonstrates
AP for each n and each feature dataset (i.e., tested CNN
layer averaged over image datasets). As apparent in most
cases, VAE outperforms all the other classifiers. Also note
that as expected, the intervals given by quartile values tend to
shrink with n getting larger, which corresponds to decreasing
epistemic uncertainty, typical for training set getting bigger.

We observe that VAE does particularly well on datasets
with lower Bayes error (feature datasets corresponding to
higher feature representations). We can see this on feature
datasets corresponding to lower-level CNN representations
(e.g., Inception V3 mixed_5d, Resnet50 conv3, Xception
block3.rep.0), which typically have a higher Bayes error rate.
Note, that NTK, NNGP and sometimes also RF beat VAE
mostly on these datasets.

We also performed aFriedman test to evaluate differences
among classifiers (H0: None of the classifiers performs sig-
nificantly better or worse than the others), followed by a post
hoc pairwiseWilcoxon signed-rank test to assesswhether one
classifier significantly outperforms another (one-sided, H0:
Classifier A performs at least as well as classifier B). Table 3
summarizes the Friedman ranking (FR) of AP, averaged over
all datasets and tested representations for each n. The results
indicate that VAE achieves the best FR, which is further sup-
ported by the Wilcoxon test (p-value ≤ 0.01). Additionally,
the last column of Table 2 reports the top-ranked method for
each n = 1..5 and feature representation averaged over all
datasets, based on the FR, with the rank shown in parenthe-
ses. VAE ranks the highest on 78% of experiments followed
by NTK.

Results obtained signify that VAE is superior for the
extremely low-data tasks, beating all the other classifiers.
We also note that NTK, NNGP, and RF are strong classifiers
for such tasks. The proposed VAE classifier has an average

inference time of 108 ms and training time of 14.59 seconds
on our setup (2.3 GHz quad-core i7, 32 GB RAM). When
operating in an extremely small data regime, all compared
methods, including VAE, are computationally efficient.

While our experiments focus on image features, the
proposed VAE-based classifier can in principle be applied
directly on original images as features or extended to other
data types such as text or time series by adapting the encoder
and decoder architectures accordingly (e.g., using RNNs).
These domains may present additional challenges, such as
modeling temporal dependencies or handling sparse rep-
resentations, but the core advantage of Bayesian learning
in low-data regimes remains relevant. A limitation of this
work is that the proposed VAE-based classifier is currently
designed for datasets with a relatively small number of
classes. Extending it to hundreds of classesmay require adap-
tations such as VAE with flows [29] (effectively replacing
the simple Gaussian latent prior with a flow-based trans-
formation, increasing the flexibility and expressiveness of
the learned latent representations), or class-conditional VAEs
[30, 31]. Addressing these challenges represents a promising
direction for future research.

5 Conclusion

Wedemonstrated that the proposedVAE classifier could gen-
eralize so well on small datasets that it outperforms all the
other tested classifiers, including, in lowdata regimearguably
the most frequently used, linear/RBF SVM and RF. Gener-
ative model classifiers perform well in a low data regime
because they do Bayesian learning, which can control over-
fitting better than its frequentist counterparts like SVM, and
RF, doing MLE. We base our conclusions on experiments
for which we have chosen a variety of features acquired from
different layers of popular NNs.
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Table 2 AP (Q25- AP, Q75- AP) for each n = 1..5 averaged over all datasets (for each n reported separately). The last column (FR) indicates the
top-ranked method based on the FR, with the rank shown in parentheses

Network Layer SVM RF NNGP NTK NSVM VAE FR

n= 1

VGG19 conv3 19.6% (-1.6, 1.5) 35.9% (-3.1, 3.2) 35.7% (-3.1, 2.8) 36.3% (-3.0, 3.0) 19.8% (-1.6, 1.4) 36.5% (-3.6, 3.7) VAE (2)

VGG19 conv4 17.0% (-1.2, 0.6) 40.7% (-4.0, 3.1) 47.2% (-3.3, 4.5) 47.6% (-3.3, 4.3) 17.0% (-1.3, 1.0) 49.9% (-3.4, 4.1) VAE (1.33)

VGG19 conv5 15.2% (-0.8, 0.0) 43.7% (-3.0, 4.0) 56.0% (-3.5, 3.6) 56.6% (-3.3, 3.9) 14.7% (-0.5, 0.1) 58.8% (-3.9, 4.7) VAE (1)

IncV3 mixed_5d 20.3% (-1.2, 1.1) 34.8% (-2.4, 2.8) 38.9% (-3.4, 4.0) 39.1% (-3.8, 3.8) 19.9% (-1.8, 1.4) 36.7% (-3.3, 3.7) NTK (2)

IncV3 mixed_6e 15.4% (-0.9, -0.1) 43.2% (-3.6, 4.3) 63.5% (-2.7, 4.9) 63.7% (-2.7, 4.7) 15.6% (-0.9, 0.2) 66.0% (-2.7, 5.1) VAE (1.67)

IncV3 mixed_7c 15.6% (-0.8, 0.2) 42.3% (-3.0, 4.2) 59.2% (-3.0, 4.3) 58.8% (-2.9, 4.3) 14.8% (-0.6, -0.2) 63.4% (-2.8, 4.5) VAE (1)

Resnet50 conv3 20.5% (-0.9, 1.0) 36.0% (-2.4, 2.6) 38.2% (-3.6, 4.0) 38.8% (-3.8, 3.9) 19.8% (-1.9, 1.4) 35.8% (-2.7, 2.8) NTK (1)

Resnet50 conv4 17.3% (-1.0, 0.7) 44.5% (-2.6, 2.9) 55.3% (-3.4, 4.1) 56.0% (-3.3, 4.3) 16.4% (-1.1, 0.4) 58.6% (-3.5, 4.9) VAE (1)

Resnet50 conv5 14.7% (-0.4, 0.3) 47.4% (-3.2, 3.7) 65.4% (-3.6, 3.8) 65.2% (-3.5, 4.0) 14.3% (-0.2, 0.0) 67.5% (-3.2, 3.5) VAE (1)

Xcep b3.rep.0 20.9% (-2.1, 1.7) 32.3% (-3.0, 2.7) 32.8% (-3.8, 3.6) 33.4% (-3.6, 3.6) 21.0% (-2.0, 2.3) 32.8% (-3.4, 3.2) NTK (1.33)

Xcep b12.rep.0 17.2% (-1.1, 0.4) 42.4% (-3.4, 3.5) 53.8% (-4.3, 4.9) 54.0% (-4.2, 4.8) 16.7% (-1.4, 0.9) 58.1% (-4.8, 4.8) VAE (1)

Xcep act4 15.4% (-0.9, 0.1) 47.1% (-3.4, 4.3) 59.8% (-1.7, 3.8) 59.5% (-1.9, 3.8) 14.7% (-0.6, -0.2) 61.2% (-1.3, 4.1) VAE (1.67)

n= 2

VGG19 conv3 28.6% (-3.6, 1.8) 42.2% (-3.6, 4.0) 42.1% (-3.1, 3.2) 42.1% (-2.9, 3.2) 18.7% (-1.2, 0.7) 43.0% (-3.3, 3.3) VAE (2)

VGG19 conv4 30.5% (-7.0, 2.2) 55.1% (-4.2, 5.6) 56.8% (-3.8, 4.2) 57.1% (-3.7, 4.0) 16.1% (-0.9, 0.4) 60.6% (-3.4, 3.5) VAE (1)

VGG19 conv5 35.1% (-8.6, 13.0) 62.7% (-3.4, 4.9) 65.3% (-2.2, 2.7) 66.0% (-2.0, 2.7) 14.8% (-0.8, -0.4) 69.2% (-2.6, 3.1) VAE (1)

IncV3 mixed_5d 23.0% (-3.2, 2.2) 42.2% (-2.6, 3.2) 46.1% (-3.2, 3.5) 45.6% (-2.9, 3.4) 20.3% (-0.8, 0.7) 43.7% (-2.7, 3.1) VAE (1.67)

IncV3 mixed_6e 36.1% (-15.5, 13.4) 65.0% (-3.3, 4.5) 74.5% (-1.9, 2.8) 74.7% (-2.1, 2.6) 19.1% (-0.9, 0.4) 77.5% (-2.1, 3.1) VAE (1.67)

IncV3 mixed_7c 29.9% (-11.8, 16.6) 66.3% (-2.5, 4.6) 70.0% (-2.2, 3.0) 69.6% (-2.2, 3.1) 28.2% (-13.3, 17.2) 73.3% (-2.1, 3.0) VAE (1)

Resnet50 conv3 28.2% (-3.6, 2.4) 43.7% (-3.5, 3.6) 43.7% (-3.3, 3.1) 44.2% (-2.9, 3.1) 19.2% (-1.6, 1.0) 41.5% (-3.7, 3.6) NTK (1.67)

Resnet50 conv4 32.4% (-6.9, 5.1) 63.1% (-5.7, 5.0) 65.7% (-2.5, 3.8) 66.3% (-2.2, 3.7) 19.8% (-3.9, -0.5) 67.7% (-3.0, 3.7) VAE (1.67)

Resnet50 conv5 42.1% (-18.6, 11.2) 71.2% (-2.1, 3.2) 75.9% (-1.9, 2.1) 75.9% (-1.7, 2.1) 14.1% (-0.2, -0.1) 77.0% (-2.1, 2.3) VAE (1)

Xcep b3.rep.0 28.5% (-2.2, 3.5) 35.1% (-3.1, 3.1) 36.5% (-2.9, 3.1) 36.4% (-2.8, 3.1) 20.9% (-2.4, 1.5) 36.1% (-2.8, 3.1) NTK (1.67)

Xcep b12.rep.0 30.9% (-8.5, 3.2) 61.6% (-4.4, 5.2) 65.7% (-3.7, 4.5) 65.6% (-3.2, 4.7) 15.6% (-0.8, 0.3) 69.1% (-3.4, 4.3) VAE (1)

Xcep act4 37.5% (-17.0, 11.1) 65.2% (-3.0, 4.3) 69.8% (-2.1, 2.5) 69.4% (-2.0, 2.5) 31.3% (-17.2, 11.9) 71.2% (-2.3, 2.8) NNGP (1.67)

n= 3

VGG19 conv3 32.6% (-5.8, 5.0) 45.0% (-3.8, 3.9) 46.2% (-2.9, 3.9) 46.2% (-3.0, 3.5) 31.7% (-5.4, 4.7 ) 47.9% (-3.6, 4.5) VAE (1.33)

VGG19 conv4 44.3% (-11.7, 13.0) 57.8% (-4.3, 5.8) 63.6% (-2.0, 3.2) 63.9% (-2.1, 3.0) 45.1% (-10.5, 12.8) 67.8% (-2.6, 3.4) VAE (1)

VGG19 conv5 57.1% (-3.8, 7.8) 65.0% (-4.6, 6.6) 70.9% (-1.7, 1.9) 71.5% (-1.6, 2.1) 57.2% (-3.5, 8.4 ) 74.7% (-2.1, 2.3) VAE (1)

IncV3 mixed_5d 33.3% (-5.7, 6.5) 44.7% (-3.6, 3.9) 50.8% (-3.0, 3.5) 50.3% (-3.2, 3.7) 34.6% (-5.0, 4.5 ) 49.4% (-3.8, 4.0) VAE (1.67)

IncV3 mixed_6e 61.1% (-1.5, 11.0) 68.8% (-3.3, 4.9) 79.7% (-1.6, 2.3) 79.9% (-1.6, 2.0) 61.3% (-3.8, 10.4 ) 82.8% (-1.8, 2.1) VAE (1.67)

IncV3 mixed_7c 55.6% (-5.3, 10.9) 66.7% (-5.3, 7.1) 75.1% (-1.9, 2.1) 74.9% (-1.9, 2.0) 56.4% (-5.6, 10.5 ) 78.1% (-1.8, 2.0) VAE (1)

Resnet50 conv3 34.4% (-5.9, 6.7) 46.2% (-4.0, 4.2) 47.3% (-3.6, 3.5) 48.0% (-3.3, 3.7) 33.6% (-5.8, 5.4 ) 45.9% (-3.4, 3.0) NTK (2)

Resnet50 conv4 52.4% (-13.1, 12.2) 65.5% (-3.7, 6.2) 71.7% (-3.0, 3.4) 72.2% (-2.5, 3.3) 51.0% (-13.0, 14.0) 73.7% (-3.0, 3.0) VAE (1)

Resnet50 conv5 69.2% (-4.5, 6.0) 72.6% (-4.0, 6.2) 81.0% (-1.4, 1.7) 81.1% (-1.5, 1.7) 66.8% (-4.8, 8.1 ) 82.3% (-1.7, 2.0) VAE (1.33)

Xcep b3.rep.0 30.3% (-3.7, 3.8) 36.8% (-2.3, 2.7) 38.5% (-2.8, 3.2) 38.1% (-2.8, 3.0) 30.2% (-4.5, 3.7 ) 37.7% (-2.5, 3.0) NTK (1.67)

Xcep b12.rep.0 50.5% (-15.3, 14.0) 64.6% (-2.7, 3.9) 72.2% (-2.8, 3.4) 72.2% (-2.8, 3.3) 48.5% (-13.3, 14.8) 75.9% (-2.6, 2.8) VAE (1)

Xcep act4 58.6% (-4.4, 9.2) 68.1% (-3.6, 5.4) 75.0% (-1.7, 2.0) 74.7% (-1.8, 1.9) 58.3% (-4.9, 8.5 ) 76.5% (-1.6, 2.2) VAE (1.33)

n= 4

VGG19 conv3 32.7% (-6.6, 6.0) 49.7% (-3.5, 3.1) 49.8% (-3.1, 3.2) 49.5% (-2.9, 3.1) 32.1% (-5.8, 5.7 ) 52.0% (-3.9, 3.9) VAE (1)

VGG19 conv4 45.6% (-9.1, 16.3) 66.6% (-2.6, 3.4) 67.4% (-2.0, 3.4) 68.0% (-1.9, 3.3) 45.8% (-8.2, 16.4 ) 71.7% (-2.3, 3.2) VAE (1)

VGG19 conv5 49.1% (-25.5, 20.1) 74.3% (-2.0, 2.4) 74.1% (-1.9, 1.8) 75.0% (-1.7, 1.8) 56.8% (-21.0, 13.1) 77.8% (-1.5, 1.9) VAE (1)

IncV3 mixed_5d 33.9% (-8.4, 6.5) 50.2% (-2.8, 3.4) 54.3% (-3.4, 3.4) 53.7% (-3.2, 3.6) 35.3% (-6.7, 6.9 ) 53.4% (-3.1, 3.6) VAE (2)
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Table 2 continued

Network Layer SVM RF NNGP NTK NSVM VAE FR

IncV3 mixed_6e 55.7% (-22.1, 22.2) 76.8% (-1.9, 3.0) 82.9% (-1.5, 1.8) 83.2% (-1.4, 1.8) 51.6% (-19.2, 26.8) 85.7% (-1.5, 1.5) VAE (1.67)

IncV3 mixed_7c 63.1% (-17.9, 13.1) 76.6% (-1.7, 2.5) 78.6% (-1.6, 1.9) 78.4% (-1.6, 1.8) 62.6% (-3.6, 9.8 ) 77.7% (-1.8, 2.4) NTK (2)

Resnet50 conv3 36.1% (-5.8, 5.3) 51.9% (-3.1, 3.1) 50.4% (-2.8, 3.1) 51.0% (-2.7, 3.1) 35.6% (-6.1, 5.8 ) 49.6% (-3.8, 3.6) NTK (2.33)

Resnet50 conv4 55.0% (-13.1, 17.7) 74.3% (-3.0, 3.8) 75.5% (-2.5, 3.0) 76.0% (-2.6, 3.0) 55.7% (-13.4, 14.1) 76.6% (-2.5, 2.9) VAE (1.67)

Resnet50 conv5 62.5% (-12.9, 16.7) 81.3% (-1.8, 2.2) 84.2% (-1.2, 1.6) 84.3% (-1.4, 1.6) 56.4% (-16.0, 23.7) 85.6% (-1.4, 1.6) VAE (1)

Xcep b3.rep.0 30.6% (-3.0, 4.8) 38.5% (-2.5, 3.0) 40.5% (-2.7, 2.7) 39.5% (-2.5, 2.8) 30.9% (-4.3, 4.2 ) 38.8% (-2.5, 2.8) NTK (1.67)

Xcep b12.rep.0 54.1% (-19.0, 17.4) 73.6% (-2.1, 3.9) 75.6% (-2.8, 2.7) 75.8% (-2.7, 2.7) 54.3% (-12.5, 16.4) 79.6% (-2.4, 2.7) VAE (1)

Xcep act4 65.0% (-3.2, 11.1) 75.4% (-2.1, 2.6) 78.2% (-1.4, 1.7) 78.0% (-1.3, 1.7) 64.8% (-3.1, 10.4 ) 79.1% (-1.4, 1.7) VAE (1.67)

n= 5

VGG19 conv3 42.2% (-6.5, 6.0) 51.4% (-2.6, 3.4) 52.4% (-2.4, 2.6) 52.1% (-2.9, 3.1) 40.5% (-7.1, 6.6) 55.0% (-2.8, 3.2) VAE (1)

VGG19 conv4 62.6% (-1.6, 7.4) 68.7% (-3.3, 3.9) 70.4% (-2.1, 2.7) 71.1% (-2.0, 2.6) 62.6% (-2.0, 7.2) 74.6% (-2.0, 2.2) VAE (1)

VGG19 conv5 73.8% (-2.3, 2.8) 77.0% (-1.4, 2.6) 76.5% (-1.5, 1.2) 77.4% (-1.3, 1.3) 72.9% (-2.4, 3.1) 80.2% (-1.3, 1.3) VAE (1.67)

IncV3 mixed_5d 46.2% (-6.2, 6.4) 52.6% (-2.6, 2.9) 57.1% (-2.6, 2.9) 56.5% (-2.7, 2.7) 46.2% (-6.5, 6.6) 56.7% (-2.7, 2.8) VAE (1.67)

IncV3 mixed_6e 81.4% (-2.4, 2.7) 79.7% (-1.5, 2.4) 85.0% (-1.0, 1.2) 85.4% (-1.0, 1.0) 81.1% (-1.6, 2.7) 87.6% (-0.8, 1.0) VAE (2.33)

IncV3 mixed_7c 76.7% (-3.0, 4.5) 79.2% (-1.2, 2.4) 80.9% (-1.2, 1.4) 80.8% (-1.2, 1.4) 77.6% (-2.5, 3.5) 82.2% (-1.4, 1.4) VAE (1.67)

Resnet50 conv3 44.5% (-5.2, 6.1) 53.8% (-2.9, 3.5) 52.9% (-2.4, 3.0) 53.3% (-2.7, 2.7) 42.8% (-5.6, 6.4) 52.0% (-2.8, 3.0) NTK (2.33)

Resnet50 conv4 71.4% (-1.4, 5.6) 76.4% (-2.5, 3.7) 78.3% (-2.2, 2.3) 78.7% (-2.2, 2.1) 70.5% (-0.9, 6.8) 79.9% (-1.8, 2.1) VAE (1)

Resnet50 conv5 83.4% (-0.9, 2.3) 83.0% (-1.2, 1.8) 86.3% (-0.9, 1.1) 86.5% (-1.0, 1.0) 83.0% (-1.9, 2.6) 87.3% (-1.1, 1.2) VAE (1.67)

Xcep b3.rep.0 35.1% (-3.4, 4.4) 39.9% (-2.5, 3.3) 42.4% (-3.0, 2.8) 40.9% (-2.7, 3.0) 35.0% (-4.2, 4.3) 40.1% (-2.3, 2.6) NTK (1.67)

Xcep b12.rep.0 70.5% (-1.2, 6.7) 76.3% (-2.3, 2.8) 78.3% (-1.6, 2.5) 78.5% (-1.5, 2.4) 70.9% (-0.6, 5.7) 82.2% (-1.3, 2.0) VAE (1)

Xcep act4 77.0% (-2.9, 3.2) 77.2% (-1.5, 2.3) 80.4% (-1.2, 1.3) 80.3% (-1.2, 1.2) 76.3% (-2.8, 4.5) 81.8% (-1.2, 1.3) VAE (2.33)

The bold values indicate the best-performing method

Table 3 Friedman ranking of AP results averaged over all datasets and tested representations for each n

n SVM RF NNGP NTK NSVM VAE

1 5.6 3.1 2.81 2.18 5.4 1.92

2 5.05 2.94 2.73 2.4 5.95 1.94

3 5.45 3.32 2.71 2.45 5.37 1.69

4 5.58 2.63 2.81 2.68 5.32 1.98

5 4.77 3.11 3.02 2.87 5.05 2.18

The bold values in the tables are important, as they highlight the best-performing method
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