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Probabilistic design and tuning of LQ control

KVĚTOSLAV BELDA

Important point of each control design is a selection of suitable weight parameters, that
balance various control aims assigned by user. This paper proposes the new way to set control
parameters automatically by evaluation of system response in comparison with system model.
Considering stochastic nature of real-life applications, fully probabilistic design is used. It em-
ploys complex information on controlled system behavior by means of probabilistic description.
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1. Introduction

The most general formulation of control problem is based on minimization of ex-
pected value of a suitably chosen loss function. The loss function is defined as a function
of system inputs, outputs and desired behavior with respect to used control strategy,
which is chosen in correspondence with a purpose of control.

Standard strategies select control actions that make the closed-loop behavior as close
as possible to desired one by minimization of loss function including differences be-
tween actual and desired system outputs. One example of standard strategy is LQ control
employing linear system model and quadratic criterion [2]. Its more general interpreta-
tion, fully probabilistic control [4] is presented here, with emphasis on control tuning.
The proposed approach takes into account more complex information on controlled sys-
tem behavior by probabilistic description of the closed-loop (Fig. 1) comprising con-
trolled system and controller.

In fully probabilistic design, all aspects of the closed-loop, expected and desired
inputs and outputs, are defined as probability density functions. Consequently, the prob-
abilistic design may use more of available information contrary to standard control de-
sign. The standard control design may have an insufficient number of representative
parameters or interpretations for the information available.
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Figure 1. Block diagram of closed-loop.

Usually, the controller is based on user-provided parameters, which have the mean-
ing of different balance weights in the evaluative loss function. They are called penal-
izations. Their physical meaning may be interpreted as the proportion between rigidity
of input and output signals. This paper is focused on tuning of these on-line controller
parameters. The tuning is based on actual system state and its behavior.

The on-line parameter tuning is motivated and geared to the mechatronic systems
of particular type. The type of systems we focus on, are mechatronic systems repre-
senting a chain of different elements, causing inaccuracies. The important property of
such systems is that combination of their elements has stochastic character. Therefore,
probabilistic control design is particularly suitable for control design of such systems.

Two examples attached to this paper, demonstrate the algorithm. The practical appli-
cation of the algorithm (e.g. manipulators-robots [8], [9]) would be in the same class as
examples below.

The paper is organized as follows. In Section 2, the basic principles of fully prob-
abilistic control design is outlined. Section 3 describes the idea of on-line fully proba-
bilistic control tuning. In Section 4, the practical implementation of proposed design is
demonstrated by examples.

2. Principles of fully probabilistic design

The aim of fully probabilistic design used in automatic control is to determine ad-
missible strategy, which forces closed-loop behavior as close as possible to the desired
user ideal. The closed-loop behavior involving behavior of controlled system and con-
troller together (i.e. joint behaviour) is represented in fully probabilistic design by joint
probability density functions (joint pdf s).
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The following subsections outline in general individual steps of the design from start-
ing assumptions, through optimization procedure to suitable probabilistic model repre-
sentation in regard to fully probabilistic tuning.

2.1. Starting assumptions

From control point of view, the design is based on a specific optimization proce-
dure, evaluation of which arises from several starting assumptions. The assumptions are
connected with joint pdf s describing the closed-loop behavior. These joint pdf s are as-
sumed to be operating on their domain i.e. on a set X∗ of all values X . Considering the
time for computation of control law and its digital realization, the pdf s are represented
in discrete-time instants within appropriate finite discrete-time interval.

The design is provided for topical time instant or appropriate time interval respec-
tively. For determination of admissible control strategy, the joint pdf s represent real and
ideal closed-loop behavior:
• joint pdf that represents the real closed-loop behavior

f ( X ) = fN ≡ f (xk+N ,uk+N−1, · · · ,uk,xk) (1)

=

{
k+N

∏
j=k+1

f (x j|x j−1,u j−1) f (u j−1,x j−1)

}
f (xk)

• joint pdf that represents the ideal closed-loop behavior

If ( X ) = I fN ≡ I f (xk+N ,uk+N−1, · · · ,uk,xk) (2)

=

{
k+N

∏
j=k+1

I f (x j|x j−1,u j−1) I f (u j−1,x j−1)

}
f (xk)

These pdf s are considered to be defined for values in given time and their parameters to
be valid within specific finite horizon N called control horizon. The label N represents
the number of discrete time instants j from instant k within the horizon; i.e. j = k +
1, · · · ,k +N; u(·) are control actions.

Due to practical consequences, the pdf s arise from the assumption that succeeding
system state x j follows from previous system state x j−1 and system input u j−1 only.
Thus, x j is independent of past system states and system inputs. The assumptions are
defined as follows:

f (x j|x j−1,u j−1, · · · ,x0,u0) = f (x j|x j−1,u j−1) (3)

f (u j|x j,u j−1, · · · ,x0,u0) = f (u j|x j) (4)

I f (x j|x j−1,u j−1, · · · ,x0,u0) = I f (x j|x j−1,u j−1) (5)
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I f (u j|x j,u j−1, · · · ,x0,u0) = I f (u j|x j) (6)

where pdf s labeled by superscript I denote user requirements, i.e. user ideals. Thus,
the pdf s (1) and (2), or pdf s (3) to (6) respectively, describe real and ideal behavior of
individual parts of given closed-loop i.e. behavior of the system and controller; e.g. in
instant j = k + 1, the real and ideal system behavior is modeled by pdf s f (xk+1|xk,uk)
and I f (xk+1|xk,uk); and real and ideal controller behavior is modeled by pdf s f (uk|xk)
and I f (uk|xk), respectively.

2.2. Optimality criterion

To measure level of proximity of real and closed-loop behavior, the Kullback-Leibler
divergence (KL-divergence) D( f || I f ) is used [3], [4]

D( f || I f ) ≡ E
{

ln
f (X)

I f (X)

}
=

∫
f (X) ln

f (X)
I f (X)

dX (7)

In it, the pair of pdf s f and I f operate on their domains according to starting assumptions.
From control point of view, the KL-divergence represents the loss function or optimality
criterion. By its minimization, the optimal control law - optimal pdf o f (uk|xk) of the pdf
f (uk|xk) can be obtained as follows:

{o f (u j−1|x j−1)} k+N
j=k+1 ∈ argmin

{ f (u j−1|x j−1)}k+N
j=k+1

D( fN || I fN) (8)

As indicated in (8), the task of design consists in minimization of KL-divergence. The
following subsection outlines the minimization procedure, which leads to the optimal
pdf of the controller and the optimal control law respectively.

2.3. Minimization procedure

This subsection presents minimization procedure briefly, the detail derivation is
in [5]. Optimal pdf of the controller can be obtained using (8). From control theory
point of view, considering the assumptions from subsection 2.1, the equation (8) can be
interpreted as expression of specific dynamic programming procedure [1].

min
{ f (u j−1|x j−1)} k+N

j=k+1

D( fN || I fN) =

= min
{ f (u j−1|x j−1)} k+N

j=k+1

E

{
k+N

∑
j=k+1

z j

}

· · · = min
{ f (uk|xk)}

{
E(zk+1)+ · · ·
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min
{ f (uk+N−2|xk+N−2)}

{
E(zk+N−1)

+ min
{ f (uk+N−1|xk+N−1)}

{E(zk+N)}
}
· · ·

}
(9)

where z j = ln f j(x j|x j−1,u j−1)
I f j(x j|x j−1,u j−1)

is jth partial loss. This expression leads to the following pdf
of optimal control:

o f (uk|xk) =
1

γ(xk)
I f (uk|xk) e− δ (uk,xk) (10)

where δ(uk,xk) and γ(xk) are defined as follows

δ(uk,xk) = f (xk+1|uk,xk) ln f j(xk+1|xk,uk)
I f j(xk+1|xk,uk)

dxk+1 (11)

γ(xk) =
∫

I f (uk|xk) e− δ(uk,xk)duk (12)

The definition of the parameters δ and γ arises from (9) leading to their recursive
evaluation.

2.4. Real probabilistic model of controlled system

As formerly mentioned, the system behavior can be described by probability density
function (pdf ). Since the controlled system is influenced by different stochastic effects
acting simultaneously in general conditions, let the system behavior has normally dis-
tributed character. This assumption follows from practical consequences, that sum of
independent stochastic quantities arbitrarily distributed has approximately normal distri-
bution [7].

Considering this practical assumption, the pdf denoted by f (y) describing controlled
system is defined as follows

N (µy,ry) : f (y) =
1√
2πry

e−
(y−µy)2

2ry (13)

where µy represents mean value, i.e. expected value of system output y (µy = E{y}),
σ2

y = ry denotes a dispersion (variance; ry = E{(y−µy)2}).
In control design, these parameters are considered to be continuous in values and

discrete in time. Their continuity follows from the character of the system. The discrete-
ness in time is given by discrete realization of control, which naturally respects the time
for its computation.

Internal structure of parameters mentioned above can be specified in more detail
either as ARX model or as state-space model – the both models with normally distributed
noise.



360 K. BELDA

• ARX model [6] is defined as:

yk =
n

∑
i=1

biuk−i −
n

∑
i=1

aiyk−i︸ ︷︷ ︸
µy

+ eyk , eyk ∼ N (0,ry) (14)

where n is an order and eyk is a model noise, which has a dispersion ry.
• State-space model is defined as:

xk+1 = Axk +Buk︸ ︷︷ ︸
µx

+ exk , exk ∼ N (0,R) (15)

yk = Cxk︸︷︷︸
µy

+ ẽyk , ẽyk ∼ N (0, r̃y) (16)

Equations (15) and (16) represent general state-space notation, in which the state xk
may be available or not; e.g. it has not a physical interpretation and for control purposes
it has to be estimated. To avoid this drawback, it is suitable to use so-called pseudo
state-space model [2], which is a direct reinterpretation of ARX model (14).

Such reinterpretation means state-space model with nonminimal state, which con-
tains only delayed values of inputs and outputs. The values of system inputs and outputs
are known from measurement, therefore they need not be estimated. In spite of increase
of elements of the state, the usage stays the same as in case of standard minimal state-
space model.

An internal structure of the reinterpretation is defined as follows:

xk =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

uk−1
...

uk−n+1

yk
...

yk−n+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 0 · · · 0

1
. . .

...
...

. . .
...

0
. . . 0 0 · · · 0

b2 · · · bn −a1 · · · −an

0 · · · 0 1 · · · 0

0
. . . 0 0

. . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (17)

B = [1, · · · , 0, b1, · · · , 0]T, (18)

C = [0, · · · , 0, 1, 0, · · · , 0] , r̃y = 0 (19)

Relation of the pseudo-state space model to ARX model is obvious from the following
corollary:

yk = CAxk−1 +CBuk−1︸ ︷︷ ︸
µy

+Cexk︸︷︷︸
eyk

, eyk ∼ N (0,ry) (20)

Models (14); or (15) and (16); or (15) to (19) are suitable models for implementation
of fully probabilistic control design.
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3. Fully probabilistic control parameters tuning

This section introduces the problem of parameters in probabilistic controller (Sec-
tion 3.1) and introduces the method of on-line tuning of these parameters based on data
in closed loop (Section 3.2).

3.1. Control law and its parameters

General expression (10) is the pdf (Section 2), that represent the control law. To
compute real parameters of this pdf, individual pdf s from assumptions (3), (5) and (6)
have to be defined. These pdf s represent both real and ideal behavior of closed-loop
(Fig. 1). Assuming model given by (15) to (19), i.e. finite memory and known parameters
of appropriate distributions, then pdf s are defined as follows:
• pdf of the real controlled system output behavior

N (µy,ry) : f (yk+1|uk,xk) =

=
1√
2πry

e−
1
2 (yk+1−µy)

T
r−1

y (yk+1−µy) (21)

• pdf of the ideal controlled system output behavior

N (Iµy,
Iry) : I f (yk+1|uk,xk) =

=
1√

2πIry
e−

1
2 (yk+1−Iµy)

T Ir−1
y (yk+1−Iµy) (22)

where ideal Iµy is the desired output value wk+1;
• pdf of the ideal controlled system input behavior

N (Iµu,
Iru) : I f (uk|xk) =

=
1√

2πIru
e−

1
2 (uk−Iµu)

T Ir−1
u (uk−Iµu) (23)

where Iµu is assumed to be the previous action uk−1 and the dispersion Iru can be viewed
as a tuning parameter of the controller. For pdf s defined like that, the computation of pdf
(10) leads to the following expressions:

o f (uk|xk,uk−1) =

=
1√

2πoru
e−

1
2

or−1
u {uk+oru b}2

(24)

=
1√

2πoru
e
− 1

2
or−1

u {uk+kxxk−
k+N+1

∑
j=k+1

kw j w j−kuuk−1}2
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ouk = −kxxk +
k+N+1

∑
j=k+1

kw j w j + kuuk−1 (25)

where ouk is the optimal control law with horizon N.

3.2. Principle of on-line tuning of control parameters

Dispersions Iru and Iry are very important for control, because they are determining
factors for the gains kx, kw j and ku in equation (24). In non-probabilistic control design
(e.g. LQ control), their reciprocal values represent input penalization factor (qu = 1/Iru)
and output penalization factor (qy = 1/Iry), which together adjust individual terms in
loss-function. Their choice is based on experience or on experimental tuning. In fully
probabilistic control design, interpretation of these quantities is more straightforward.
The equations (22) and (23) imply that Iru and Iry represent noise dispersions for ideal
distribution of the system and controller.

The algorithm proposed in this paper is intended for systems (e.g. mechatronic one),
where the system model together with the noise can change substantially, possibly due to
additional interference, that may occur randomly during the control. Inadequate choice
of input and output penalizations or Iru with Iry respectively, can cause serious problems
for controller. Unexpected system noise increase may force the controller to generate
inputs, that are suddenly out of any reasonable physical range of the device or at least
represent unreal magnitude change.

This may lead to serious device failures, e.g. system actuators (servo motors etc.)
might not be able to achieve designed control interventions or may be damaged by them.
It will be documented by figures in Section 4. In such cases, it would usually be ac-
ceptable to decrease control quality in order to achieve at least some reasonable value.
Fully probabilistic control interpretation of penalization as dispersions can achieve it via
on-line control tuning algorithm presented below.

3.3. Real implementation of on-line parameter tuning

On-line control tuning is based on the idea of changing Iry so that its amplitude is
proportional to the output dispersion ry or practically to its estimate r̂yi = eyi eT

yi
, which

is calculated from current data yi. The effect is that during periods of increased output
noise, output ideal is set to be less strict. It causes the output to be tracked less closely.
This allows the input to stay in its reasonable constraints. However, current output dis-
persion can change very quickly causing big changes in Iry. In order to avoid this, r̂yi

has to be filtrated. As a suitable filter, exponential forgetting is used. It can be defined as
follows:

r̃y1 = (1−λ)r̂y1 (26)

r̃yi = λr̃yi−1 +(1−λ)r̂yi , i = 2, · · · ,k (27)
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where λ is a forgetting factor influencing quickness of weight decrease of individual
contributions r̂yi . The equations (26) and (27) can form one general expression:

r̃yk = (1−λ)
k

∑
i=1

λk−ir̂yi (28)

In order to find reasonable value for parameter λ, the suitable number of time instants �
has to be defined in correspondence to the character of control process. During these �
time instants, the contribution of r̂yk to r̃yi drops to the given level. Standard choice is to
select the number of instants (denoted by �1/2) that cause dropping the contribution of
r̂yk to one half of the original value. It implies that �1/2 satisfies the equation:

λ�1/2(1−λ)r̂yk =
1
2
(1−λ)r̂yk (29)

Figure 2. Trend of contribution of r̂yk to r̃yi .

See Fig. 2 for illustration of this effect. Producing ‘half-time’ �1/2 is user-friendly
way to find a suitable value for constant λ, because user can easily imagine what is the
time needed for a contribution of r̂yk to drop to one half. Consequently, suitable λ can be
found like this:

λ =
(

1
2

) 1
�1/2

(30)

where �1/2 is provided by the user.

4. Probabilistically tuned LQ control examples

This section demonstrates the presented fully probabilistic control design including
the on-line tuning. Two representative examples are described here - one simulated and
one real-time experiment. The aim is to illustrate improvements in control that follows
from consequences of Section 3.2.
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4.1. Simulated experiment - system given by ARX model

The simulated experiment considering structure in Fig. 1 was provided with simple
system represented by ARX model (n = 2, (14)) forming the following transfer function:

G(z−1) =
B(z−1)
A(z−1)

=
0.0047z−1 +0.0044z−2

1−1.8097z−1 +0.8187z−2

with Ts = 0.1s (31)

The results are registered in Fig. 3 to Fig. 5.

Figure 3. Simulated experiment: standard LQ control qy = 1000 (desired and real system output w(t) and
y(t); input u(t); penalization qy(t)).

Figure 4. Simulated experiment: control designed by fully probabilstic approach including on-line tuning
(desired and real system output w(t) and y(t); input u(t); penalization qy(t)).

The figures show a comparison of standard LQ controller and controller based on
fully probabilistic design (Section 2) with on-line tuning (Section 3.2).
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Figure 5. Simulated experiment: noise e(t).

The noise e ∼ N (µe = 0, re = 0.022) simulating disturbance was artificially 4×
increased in intervals 〈40s;60s〉, 〈100s;120s〉, and 〈140s;160s〉. In LQ control, input u(t)
is alternating. In comparison, the probabilistic design with tuning maintains relatively
stable u(t) at the expense of control quality.

4.2. Real-life experiment - Application to gearbox system

The real system used for experiment consists of three wheels, which are mutually
connected by two elastic belts (see Fig. 7(e)). Position of the wheel 1 is controlled by
servo-motor, and the position of the wheel 3 is measured.

The experiment was arranged in analogical way as in previous simulated case. The
system is controlled by adaptive controller with ARX model (14) with n = 6 (each wheel
≈ 2 orders). During control process, the discrepancy between model estimated and the
real system occurs, and this causes input to change dramatically. This phenomenon can
be suppressed by algorithm of adaptive controller tuning proposed in this paper (see
Fig. 7(d)).

Fig. 6 to Fig. 7 demonstrates the controlled process behavior. Sub-figures (a), (b), and
(c) show the control with different but constant output penalization (qy). In all cases of
constant qy, the input magnitude changes rapidly. Furthermore, in case (c) the controller
have not stabilized at all. With adaptive tuning proposed in this paper the changes in
input are reasonably small, moreover, the output matches desired value much better.
On top of that, the the system is much less susceptible to destabilizing as in Fig. 6(c).

5. Conclusion

The advanced on-line tuning was introduced in this paper. This is made possible
by usage of the principles and practical aspects of fully probabilistic control design.
This approach of design forms sound physical interpretation for tunable LQ controller
parameters.

The design with tuning was applied and demonstrated both on simulated and real
experiments. The representative results are documented and discussed in the section on
application examples.
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Figure 6. Real experiment: comparison of standard LQ control for different penalizations settings (a) qy = 1,
(b) qy = 100 and (c) qy = 200, respectively.
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Figure 7. Real experiment: (d) control generated by probabilistic design with tuning (desired and real system
output w(t) and y(t); input u(t); penalization qy(t)); (e) gear system.
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Optimized bayesian dynamic advising, Theory and algorithms. Springer, 2006.
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