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Abstract 
 

The draft paper deals with the possibility to solve the antibacklash task  
of the redundant parallel robots. This type of the robot is generally 
described by Lagrange’s equations of mixed type, on which base 
the used controls (Inverse Dynamics Control - IDC, Sliding Mode 
Control - SMC and Generalized Predictive Control - GPC) are 
designed. This paper discusses the two following ways. The first is 
based on solution of systems with the deficient rank matrix inversion 
(IDC, SMC) and the second is general utilization of the quadratic programming (GPC). 

 
 
1 Introduction 
 

This paper deals with the possibility of solution of the antibacklash task in the new robot concept 
based on the parallel construction improved by redundant action. The results can be used both 
for once-redundantly actuated systems (section 2) and even for systems without any redundancy 
(section 3). 

The antibacklash task is solved as additional requirement on control (the torques should have only 
one sign) within usually used control approaches (Inverse Dynamics Control IDC (Siciliano 1996), 
Sliding mode control SMC (Elmali 1992) and Generalized Predictive control GPC (Ordys 1993)), 
which are briefly described. 

From general point of view, the mechanical systems powered from outside e.g. by direct current 
motor (DC motor) and consisting of sets of arms and joints (the most of the robots and manipulators) 
have drive backlashes (motor backlash) and gearing backlashes Fig.1. 
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Fig. 1.   The presumptive backlash characteristics 
occurred in a robot: 
(a) the DC motor hysteresis backlash; 
(b) the gearing backlash. 
e pseudoinverse and quadratic programming has been 
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2 Pseudoinverse solution 
 

The first two subsections briefly introduce IDC and SMC approaches (they have been already 
introduced in detail in the papers (Siciliano 1996, Elmali 1992, Belda 2001)) and the last subsection 
explicates the solution of deficient rank system on which these approaches lead. 
 
2.1 Inverse dynamics control 
 

Consider mechanical system (robot manipulator) described by nonlinear differential equation 
( ) uyByyfy )(, +−= DDD            (1) 

The approach (IDC) is based on the idea to find a control vector u as a function of system state. 
The classical approach (Siciliano 1996) assumes that matrix B(y) is a full rank matrix which can be 
inverted. If it is valid, we can obtain the continuous control law as a function of the robot state 
in the form: 

( ) ( )( )yyfyyBu ��� ,)( 1 += −           (2) 
The nonlinear control law eq. (2) is termed as inverse dynamics control because it includes 
computation of the robot inverse dynamics itself. The system with this control is linear with respect 
the new input – second derivation of y. 

When the matrix B is singular as in our case, it can’t be inverted. It is caused by redundant action. 
By using this property and algorithm for orthogonal-triangular decomposition, we have 
a possibility to compute control law and perform the antibacklash condition together. 
The sequence is described in subsection 2.3. 
 
2.2 Sliding mode control 
 

Discrete type of the Sliding mode control (Elmali 1992) is derived analogically to the theory 
of stability in a continuous domain. Generally it is based on the ‘switching’ control action and 
the performance of Lyapunov stability theorem. 

The state is driven towards a desired switching (sliding) hyperplane under Lyapunov control. 
The ‘switching’ maintains the state on this hyperplane, once it has been reached, in spite of perturbations. 

Let us consider the nonlinear equation (1), which can be transformed and simply discretized 
by Taylor series with sampling period δ to the following state formulation: 

( ) ( )( ) ( )( ) ( )kkkk uXBXAX +=+1            (3) 
With this state description, we can obtain control law in similar structure as in the previous section: 

( ) ( )( ) ( ) ( ) ( )[ ] ( ){ }11Ψ1 +−+−+−= − kkkkkk d sXACCBu  ( ) ( )( )dk XXFBu ,  ~  1−=       (4) 
Now we have defined control laws (IDC, SMC) and we can discuss the solution of their 

expressions. 
 
2.3 Solution of backlashes by pseudoinversion 
 

Consider now the eq. (2) and eq. (4) in the case that the inverse operation can’t be provided. These 
equations have the same form as the ordinary system of the linear equations: 

BAx =     (5) 
and it has an infinite number of solution. It is caused by deficient rank of matrix A. 

The approach for removing the backlashes is based on computation of the pseudoinverse operation 
and on the idea of the non-changing signs of the torques during the robot movement along the certain 
finite trajectory. 

The computation of the pseudoinverse operation gives the solution of the minimal length and some 
certain number of free parameters, which are used for change of undesirable signs of torques. This 
way, we obtain suitable solution, but it must be noted that this solution is not the same 
in the magnitude and it costs some additional energy and thus at least more powerful drives. 



For showing the algorithm of pseudoinverse with eq. (5) the following theorems (Lawson 1974) 
are needed. 
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Note:  This arbitrary vector is used for solution of backlashes. 
 
Theorem II.: 
 

Let A be an m x n matrix of rank k then there is an m x m orthogonal matrix H and an n x n orthogonal 

matrix K such that HTAK = R,  A = HRKT where 







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00
0R11R  and submatrix R11 is an k x k 

nonsingular triangular matrix. 
 
These theorems give the mathematical relations on which the following algorithm is based. 
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The algorithm uses the orthogonal matrixes Q, K and the permutation matrix P so that R and W 

are upper triangular and R11 is nonsingular. It was the first step to the solution of the backlashes. 
Now the sequence of suitable choice of an arbitrary vector y2 follows. 

The solution (8) can be divided for once redundantly determined system 
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For defined safety bounds around the zero on torque axis, which can be represented by vector 
rl = [rl1, rl2, rl3, rl4]T              (11) 

 

the following sequence is being applied. 
 
Step1. find >∉< ubrliu i ,)(1  for req. positive signs 
                 >∉< jrllbiu ,)(1  for req. negative signs 

Step2. for such u1(i) compute 
)(

)()()( 1
2 iu

iuirliy −=  

pr
su
the
 
3. 
 

on
of
 
3.1
 

of

pr

top

an

wh

On

ze

upper torque bound - ub

b  0 

the area of the torques with positive signs 

rli

rlj 
torque 
acklash
          
 

 

Then final u equals U*(i). Such result
ocess, however, it changes the magnitu
pply of the drive energy against re
 required drive energy increases sever

Quadratic programming Soluti

This section generally introduces 
 adequately actuated problem and c
 the quadratic programming (QP) for p

 Generalized predictive control (G

The Generalized predictive control (O
 the quadratic criterion. For quadrat

epared in this classical form:  
( )

( )k
k
y

X
      

 1
=
=+

The base of predictive control is th
ical state X. Now we consider the N s

fuGy +=    � where 









=
− BCA

BC
G �

1N

d further the quadratic criterion 
({
({ G

ykJ

      
 

 
  

=

=

εεεε
εεεε �

ere N is a horizon of prediction y� . εεεε
 condition ,! min=kJ  we obtain the cont
It must be noted that only the first elem
ro, the matrix GT · G is regular and the 

lower torque bound - lb 

the area of the torques with negative signs 

. 
torque 
range
2
           (eq.(10) with substitution rl(i) for u). 
Step3. for these y2(i) compute U(i) 
           U(i)=u1+u2·y2(i) 
Step4. choice U*(i) which satisfies min)(U   =− irl  
Step5. check U*(i) with considering to bounds 
           (Fig.2) and provide hard restrictions. 
 
Fig. 2. The definition 
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 is operator of mean value and  λλλλ   is a penalization of u. 

rol law: ( ) ( )fwGλGGu −+= − TT 1                                             (15) 

ent uk from vector u is used. If penalization λλλλ is greater than 
problem with redundant action disappears. 



3.2 Solution of backlashes by quadratic programming 
 

This subsection takes into account fact of regularity of matrix GT· G and briefly introduces utilization 
of the Quadratic programming (the references on it were noted in previous papers). The main concern 
is how to form the constraining antibacklash inequalities. 

Standard task of the Quadratic programming minimizes the quadratic purposive function with some 
linear constraints. 
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where H is an n x n, f an n vector, A is an m x n matrix and b is an m vector. The function F(x) is 
obtained from quadratic criterion eq. (24) as follows 
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After satisfying of all assumptions, the Quadratic programming gives always some solution, which is 
not optimal but the found solution of the full rank problem has the smallest aberration that can be 
attainable. 
 
4. Simulation example and illustration of preparation of real-time control 
 

For the simulation of the robot, some plan of the trajectory must be prepared. One example 
of the desired trajectory is shown in overall Fig. 3. 
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Fig.3.: Trajectory; the time histories of four torques, firstly 
without constrains and consecutively with satisfying 
of antibacklash condition for rl = [-1,1,-1,1]. 

 

Fig.4.: Example of real-time circuit with using MATLAB 
SIMULINK environment. 

 

Designed solutions are suitable for classical parallel robots 
(QP prog.) and for parallel robots with one redundancy 

(Nonmin. s.). At present the algorithms are being prepared for real application Fig.4. 
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