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Abstract: Industrial robots and manipulators are being
constantly developed in order to improve their accuracy
and speed. Parallel robots seem to be the promising way
of the solution to this problem. This paper deals with the
design and simulation of control of one such robot.
Generalized Predictive Control (GPC), Inverse Dynamics
Control (IDC) and Sliding Mode Control (SMC) are
discussed here. The main reasons for their choice were
that these control approaches are suitable for adaptation
on redundant case and they can be successfully
implemented for nonlinear systems and used for control
in real time.
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I. INTRODUCTION

The most topical industrial robots and manipulators do
not cope with increasing requirements on speed and
accuracy. This is caused mainly by the limitation of the
acceleration given by their construction. Therefore, new
approaches of their construction are being found, in order
to allow performance of these requirements. Parallel
robots seem to be one of the promising ways, how to
solve this problem [2]. And, moreover, they have several
advantages over traditional serial robots:

* All or almost all drives are located on the basic
frame i.e. drives do not move with the robot and
they do not have any hold on the moving mass
and stiffness.

e Truss construction of the robots leads to higher
stiffness than in serial types. It is advantageous
for accurate machining and positioning.

On the other hand, the parallel robots have also several
disadvantages:

e Their workspace is mostly smaller than for serial
ones and includes the singular positions where
the robot loses controllability. They can be
removed by the redundant actuation as in our
case.

¢ Collisions of arms with the platform are more
probable than in the case of actual robots. This
must be taken into account at the planning of
desired trajectory.

As an example, let us consider one such redundantly
actuated planar parallel robot (Fig.1), which will be
presented here.
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Fig. 1. Scheme of planar parallel robot with the most important
geometrical description (The coordinates of center E of movable
platform and its angle of winding ).

It consists of the basic frame, which at the same time
encloses workspace of the robot, four independent drives,
movable platform and eight arms, which connect the
movable platform with the basic frame. The arms are
parallelly situated.

From the mechanical point of view, the robot has one
drive and one pair of arms redundant, because generally
the number of degrees of freedom of body in a plane is
only three (movement in the direction of axis x,
movement in the direction of axis y and angle of
winding). Accordingly, for controlling the robot and for
its mechanical determination, only three pairs of
appropriate arms are necessary. But in this case, the
singular position in workspace will appear. Therefore a
redundant drive is used in order to overcome the problem.
And, moreover, it improves stiffness and rotation speed of
movable platform and gives the possibility to comply with
the other additional control requirements.

The aim of this paper is to investigate the way how to
provide the control of overactuated parallel robot and to
try to satisfy the specific performance requirements like
anti-backlash control within possible control approaches.



II. MODEL OF THE ROBOT

From the control point of view, the principal task of a
robot is its movement along a planned trajectory. For this
type of the robot, it is usually given in Cartesian
coordinates, which are very efficacious for users. In these
coordinates, the robot motion can be described by the
following nonlinear differential equation [2]:

R'MRyj+R"MRy-R"g=R"Tu (1)
it can be rewritten in the state formula in this form:

X(r)=£(X)+gX)u()
y(O)=hX()

The input variables are torques of all drives. The state
variables are coordinates of center E ( Xg , yg ) of movable
platform, its angle of winding ( v ) and their derivative.
The output variables are only a few selected from state
variables, i.e. coordinates of the center (Xg , yg, ¥ ).
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The functions f(X), g(X) are highly nonlinear
reflecting the kinematics structure of the parallel robot.
The non-linearity stems from nonlinear dependence of the
center coordinates on the coordinates of drives, where
torques are applied.

The other possibility is the description in joints
coordinates [3], which is applied in classical
constructions, but for our case it would be more difficult.

III. APPROACHES TO CONTROL

The control should ensure the best possible compliance
of the trajectory and at the same time -effective
cooperation between the necessary drives and one
redundant drive. As a solution several approaches have
been chosen, namely, discrete Generalized Predictive
Control (GPC) [1], continuous Inverse Dynamics Control
(IDC) [3] and discrete Sliding Mode Control (SMC) [4].
The main reasons for their choice are the following:

* The model of robot is well known.

* All named controls can be modified to reflect
various control requirements (minimum energy,
torques of one sign - anti-backlash etc.).

* Their algorithmization is relatively simple and it
can be easily implemented in computer.

Now they can be separately introduced.

- PREDICTIVE CONTROL (GPC)

The Predictive control [1] is a multi-step control based
on local optimization of the quadratic criterion, where the
linarized equation or state formula can be used (i.e. only
the nearest future control signal is used). The approach
admits combination of feedback~feedforward parts.

As mentioned above, for the quadratic criterion the
nonlinear model (2) must be linearized [2] and converted
from continuous to discrete time. After that we can
consider discrete state formula in this form:

X(k+1)= A X(k)+Bu(k)

A3)
y(k) =CX()

where sense of X and y are the same as in (2). The base of
predictive control is the expressing of new unknown
output values y from actual topical state X. The following
rows imply it.

y(k) =C X()
X(k+1) = A X(k)+ B u(k)
(k) “)

y (k+1) =CA X(k)+C Bu

X(k+N)= AYX(k)+ A'Bulk)++ Bulk+N-1)
y(k+N)=CA" X(k)+CA""'Bu(k)+---+CBu(k + N-1)

prediction of'y is then following = y=Gu+f (5a)

C B0 CA
where G= : . ¢ | and f=
CA"'B---CB CA"Y

X(k) (5b)

Now we can optimize quadratic criterion at certain

instant k using predictions of y ( y=[y,.," Viun]’)

5= E{5-w)"(F-w)+u7u)=

T (©)

=€ {(Gu+f—w)T(Gu+f—w)+ u'l u}
where € is operator of mean value, N is horizon
of prediction, y is vector of outputs, w are desired values,
A is penalization of input and u is vector of robot inputs.

! _

Condition is.J; =min =u=(G'G+1) G"(w—£)(7)
This control law can be already used. It must be noted that
only the first element w; from vector u is used. If
penalization A is greater than zero, the matrix G™ G is
regular and the problem with redundant action disappears.

For constraint of actuators the quadratic programming is
used.

Graphical representation of system with Predictive
control is in Fig.2.
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Fig. 2. Control circuit with GPC and parallel robot.



- INVERSE DYNAMICS CONTROL (IDC)

Consider the robot described by nonlinear differential
equation (1) R"MRY + R"MRy —R’g = R"Tu, which can
be rewritten (for simplification) as follows

7-(R"MR)'(R’g - R"MRy)= (R"MR) 'R Tu
y- f(y,y) = B(y) u

Note the matrix R"MR is a square regular matrix. It
ensues from mechanical interpretation.

®)

The approach (IDC) is based on the idea to find a
control vector u as a function of system state. The
classical approach [3] assumes that matrix B(y) is a full
rank matrix which can be inverted. After we can obtain
control law as a function of robot state in the form:

u=(By))'y+(By) (y.y) ©)

Such control leads to finding stabilizing control law for
system described by q =y

u=B(y)q+n(y.y) (10)

where q represents a new input vector to all robot
control circuit. The nonlinear control law eq. (10) is
termed as inverse dynamics control since it includes
computation of robot inverse dynamics itself. The system
with this control is linear with respect to the new input q.

In view of eq. (10) the choice:

q:_KPy_KDy+r (11)
leads to the linear system of second-order equations:

y+K,y+K,y=r (12)
which, on the assumption that positive definite diagonal
matrices Kp = diag.{Q?} and Kp = diag.{2{Q}, is stable.
(yp+2¢ )';+Q2 y=0 the analogy with math model of free

damping of mechanical systems, where € represents
natural frequency and ( is damping ratio).

Eq. (10) considering eq.(11) represents global
linearization of system dynamics. The eq. (12) may be
also written for desired values yq(t):

yd+KDyd+KPyd =r (13)

Subtracting eq. (12) from eq. (13) gives the homogeneous
second-order differential equation:

Y+K, ¥+K,§=0, §=y, -y (14)

expressing the dynamics of position aberration (error)
during tracking the desired trajectory (desired values).

Block diagram of a system with described Inverse
dynamics control is in Fig.3.
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Fig. 3. Control circuit with IDC and robot.
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Now we must come back to the case when the matrix
is singular as in our case. It is caused by redundant action
and the size of matrix B is 3x4 because output vector y
has three elements [x,y,y]” and input vector u consists of
four actuators. This problem is solved by orthogonal-
triangular decomposition (The Least square methods for
deficient rank problem [5]). This result gives possibility to
compute a control law, let us say actuators, with minimum
energy or using free redundant element to perform
requirement on anti-backlash control.

- SLIDING MODE CONTROL (SMC)

Nowadays a lot of controls are implemented by digital
computers, but the most systems have -continuous
character described by differential equations. That is why
this discordance must be solved. The systems must be
transformed into discrete form, used for the design of
controller.

Here presented discrete type of Sliding mode control
[4] is derived analogically to the theory of stability in a
continuous domain. Generally it is based on the
‘switching’ control action and the performance of
Lyapunov theorem of stability conditions. The state is
driven towards a desired switching (sliding) hyperplane
under Lyapunov control. The ‘switching” maintains the
state on this hyperplane once it is reached, in spite of
perturbations. This method offers an advantage of
accuracy atthe cost of control dithering, which ensues
from the ‘switching’ part.

Let us consider the nonlinear state formula (2) without
X(0)=1(X)+g(X)u(r) (15)
It can be simply discretized by Taylor series with
sampling period & in the following form:

output equation

X(k+1)= AX(k))+B(X(K))u(k) (16)
where
F = +0 X f:z,+6_2 |
N
k) 46 s (X)) [
[ 62 -
Bxhse| 20O
& g, (X (k)

and X(k)=[x(k)1.¢]) =[xe(k) ys(k) k) xe(k) yu(k) Yo"



Now we can start with derivation of control law.
Firstly let us define a discrete Lyapunov function:

V(X(k))=5"(X(k))>0 (18)
s*(X(k+1))-s*(X(k))<0 (19)

represents the discrete attractivity condition. It can be
rewritten as follows into two inequalities (20) (21)

8 (x(k + 1)) <5 (k) = |slk+1)| <[s(k)] Fsign (50))
|s(k +1)-sign (s(k))| < |s(k)'sign (s(k))| =s(k)-sign (s(k))
we solve two cases :

1. s(k+1)-sign (s(k))> 0= sign (s(k +1))= sign (s(k))

s(k +1)-sign (s(k)) < s(k) -sign (s(k))
s(k +1)—s(k))-sign(s(k))< 0 (20)
2. s(k +1)-sign (s(k))< 0= sign (s(k +1)) = sign (s(k))
—s(k +1)-sign (s(k)) < s(k)- sign (s(k))
= (s(k+1)+s(k))-sign(s(k))=0 @1

Eq. (21) and (22) are an attractivity condition and a
convergence condition, respectively. According to them
the s dynamics may be chosen as

s(k+1)=e"s(k)-Ksign(s(k)) (22)

where P is positive scalar, 0 is sampling and K is positive
diagonal matrix. Then eq. (20) and (21) are satisfied. (It is
also possible to choose s dynamics with opposite signs.)
Now, we define the sliding hypersurfaces as:

s(k) = Ce(k) (23)

where s(k)=[s, (k) s,(k) -+ s, (k)] , e())=X(k) — Xq(k).
Xq(k) is a vector of desired values with the same size as a
vector X(k), C =diag(C'),C' =[¢! ¢ -+ ¢']. C'is chosen
in order to satisfy Jury’s stability condition of discrete
systems, i is state variable index and # is order of system.
At this moment we can write s at time t=(k+1) &:

s(k+1)=
= Ce(k +1)=C[A(k)+B(k)u(k )+ ¥ (k)-

then AV (X (k )) =

X, (k+1)] (24)

Using (22), the discrete control law is obtained like this:

u(k)=—(CB(k)) {Cl[A(k)+¥(k)- X, (k+1)]
—ePs(k)+Ksign(s(k))}  (25)

(k) represents unknown perturbation in time & J, which
can be estimated by W(k —1)

Y(k-1)=x,,, (k)-A(k-1)-Blk-1)uk-1) (26)

topical
This estimation process is valid provided the dynamics of
perturbation are considerably slower than discretization
frequency and moreover an order of perturbation
magnitude is much smaller.

If (25) substitutes into (24), we obtain:
s(k+1)=e"s(k)+C[¥(k)-¥(k —1)|-Ksign(s(k)) (27)

And on this basis considering conditions (20), (21) and
the fact that variations in perturbation are slow against
sampling frequency, the diagonal elements of matrix K
can be selected as:

[k, k, -k, ]'=n C|¥(k-1) > C| Pk
for n>0

) N,

Finally we must afresh answer to question of
redundancy. In the text above we consider that the product

of matrices CB(k) is regular and may be inverted, but the

product in our case has again deficient rank. We can use
the same solution as previous part — orthogonal-triangular
decomposition — Least square method for deficient rank
problem [5]. This result gives anew possibility to compute
control law, let us say actuators, with minimum energy
and using free redundant element to perform requirement
on anti-backlash control.

IV.ILLUSTRATIVE EXAMPLES

For the simulation of the robot a plan of trajectory
must be prepared and must be realizable for the robot. For
example in our simulation a trajectory composed
of bisector segments and arc segments was chosen. The
trajectory was time-parameterized with constant period.
That is the matter of choice. When planning trajectory we
have considered kinematics laws as a relationship
between acceleration, velocity and position, and,
moreover, constrains of torques etc. This desired
trajectory and its kinematic characterizations are shown in
Fig.4 and Fig.5.
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Fig.4. Desired trajectory for planar redundant robot.
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Fig.5. Kinematic characterizations.
(positions x, y, y, velocities and accelerations)



For the described trajectory above, the time history
of four torques is shown, firstly for the control with
minimum energy, secondly one figure deals with their
comparison and finally, an example of anti-backlash will
be introduced.
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Fig. 6. The first and second torque-actuator.

The sharp jumps are caused by the change of kinematic
characterizations of the trajectory. To be exact, there,
where the bisector segment of the trajectory turns into arc
segment or one arc segment changes into another arc
segment, the change of kinematic properties happens.

From kinematics point of view the components of
velocities and accelerations change, but against these,
their common resulting velocities have constant
magnitude only with modified direction.

All presented control approaches have smooth trend
(except for points with change of segment character). It is
good for drives.

At predictive control approach there is a possibility to
influence smoothness of torques-actuators. If we wish to
have a smooth torques, and it does not depend on accurate
compliance of the planed trajectory, we can reset

the penalization of actuator in quadratic criterion on
higher value. The multi-step character of GPC provides
smooth torques without alternating. This property is more
needful for manipulators than for robots because
at manipulator it depends only on final position.
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Fig. 8. Zoom of fourth drive uy4 at time 2 — 2.25s
for all presented control approaches.

In Fig.8. the multi-step character of GPC is perceptible
well (Note: Setting of horizon of GPC is N = 10 steps).
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Fig. 9. An example of torques of anti-backlash control.

And finally, Fig.10.-12. show some quality results
of presented controls.
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Fig. 10. Aberrations of trajectory GPC.

x 10”° Abberation of position. x 10™* Abberation of angle of winding.
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Fig. 11. Aberrations of trajectory IDC.

In Fig. (10), (11) and (12), the actual process
of velocity of position and velocity of winding are shown.
It corresponds with desired ones.
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Fig. 12. Aberrations of trajectory with SMC.

These results have been obtained at setting
of parameters of controls, described in Tab. 1.

Table of one setting of parameters of presented approaches

Generalized predictive control (GPC)

Penalization A = 10", Horizon N = 10.

Inverse dynamics control (IDC)
Diag. element of matrix Kp= 18000, diag. element of matrix Kp= 400
Sliding mode control (SMO)

Damping P=8, gain coefficient n=1.25, Jury’s polynom C' [110 10]

Tab. 1. Setting of parameters.

Controls of the robot were also tested with certain
additional noise in range 10* mm (10% of average
aberration). The effect did not markedly appear in trends
of torques.

V. CONCLUSION

All approaches indicated here (GPC, IDC, SMC) are
certainly a way to control given redundant parallel robot.
Designed controls are suitable even for classical robots
and their design arises from them. The tuning of
parameters is not critical, but all controls pose claim on
accuracy of the model of the robot.
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