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Abstract: The paper deals with the possibility of solution of the antibacklash task 
in the new concept of the robots based on the parallel construction improved by 
redundant action. This type of the robot is generally described by Lagrange’s equations 
of mixed type. On their base the used controls (Inverse Dynamics Control - IDC, 
Sliding Mode Control - SMC and Generalized Predictive Control - GPC) are designed. 
This paper discusses the two following ways. The first is based on solution of systems 
with the deficient rank matrix inversion (IDC, SMC) and the second is general 
utilization of the quadratic programming (GPC). 
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1 INTRODUCTION 

The area of the robots and manipulators is in the 
constant development caused by the fact that the 
robots are the basis of the most machine and 
production lines in the factories. 

The uncompromising requirements on their new 
types are primarily high accuracy, high speed and 
price constraints. It means that the robot’s structure, 
with considering the previous, must have high 
stiffness, good dynamic properties and acceptable 
price. The price includes requirements on design 
control and complexity of the construction. 

The main long - term conceptual problems, how 
to satisfy such requirements, are the following: 

• the large moving masses during the robot 
movement, 

• the backlashes and inaccuracies in the chain 
of the robot structure. 

This paper deals with the possibility of solution 
of the antibacklash task in the new robot concept 
based on the parallel construction improved 
by redundant action. The results can be used both for 
once-redundantly actuated systems (section 2) and 
even for systems without any redundancy (section 3). 

The antibacklash task is solved as additional 
requirement on control (the torques should have only 
one sign) within usually used control approaches 
(Inverse Dynamics Control IDC (Siciliano 1996), 
Sliding mode control SMC (Elmali 1992) and 
Generalized Predictive control GPC (Ordys 1993)), 
which are briefly described.  

From general point of view, the mechanical 
systems powered from outside e.g. by direct current 
motor (DC motor) and consisting of sets of arms and 
joints (the most of the robots and manipulators) 
have drive backlashes (motor backlash) and gearing 
backlashes Fig.1. 
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2 PSEUDOINVERSE SOLUTION 

This section deals with two control approaches, 
which keep the redundancy of system. The first two 
subsections briefly introduce these approaches (they 
have been already introduced in detail in the previous 
papers (Siciliano 1996, Elmali 1992, Belda 2001)) 
and the last subsection explicates the solution 
of deficient rank system with necessity of pseudoinverse 
operation to which the approaches lead. 

2.1 Inverse dynamics control 

Consider mechanical system (robot manipulator) 
described by nonlinear differential equation 

( )    u(y) B  y y -fy  ,  +=   DDD   (1) 

The approach (IDC) is based on the idea to find 
a control vector u as a function of system state. 
The classical approach (Siciliano 1996) assumes that 
matrix B(y) is a full rank matrix which can be 
inverted. If it is valid, we can obtain the continuous 
control law as a function of the robot state 
in the form: 

( ) ( )( )yyfyyBu DDD ,)( 1 += −  (2) 

Such control leads to finding stabilizing control 
law for system with yq ��=  

( )( ) ( )( )yyfqyBu �,1 += −  (3) 

where q represents a new input vector to the whole 
robot control circuit. The nonlinear control law 
eq. (3) is termed as inverse dynamics control because 
it includes computation of the robot inverse dynamics 
itself. The system with this control is linear with 
respect to the new input q. 

When the matrix B is singular as in our case, 
it can’t be inverted. It is caused by redundant action. 
By using this property and algorithm for orthogonal-
triangular decomposition, we have a possibility 
to compute control law and perform the antibacklash 
condition. The sequence is described in subsection 2.3. 

2.2 Sliding mode control 

Discrete type of the Sliding mode control (Elmali 
1992) is derived analogically to the theory of stability 
in a continuous domain. Generally it is based on the 
‘switching’ control action and the performance 
of Lyapunov stability theorem. 

The state is driven towards a desired switching 
(sliding) hyperplane under Lyapunov control. The 
‘switching’ maintains the state on this hyperplane, 
once it has been reached, in spite of perturbations. 
This method offers an advantage of accuracy 
at the cost of control dithering, which ensues from 
the ‘switching’ part. 

Let us consider the nonlinear equation (1) which 
can be transformed and simply discretized by Taylor 
series with sampling period δ to the following state 
formulation: 

( ) ( )( ) ( )( ) ( )kkkk uXBXAX +=+1  (4) 

With this state description, we can obtain control 
law in similar structure as in the previous section: 

( ) ( )( ) ( ) ( ) ( )[ ] ( ){ }11Ψ1 +−+−+−= − kkkkkk d sXACCBu  

( ) ( )( )dk XXFBu ,                   ~        1−=  (5) 

where  ( ) ( ) ( )( )ksignkek P sKss −=+ − δ1  (6) 

with considering  s(k) = f(X(k) – Xd(k)) (7) 

is the choice of hyperplane. It satisfies Lyapunov 
stability theorem and ( )kΨ  represents unknown 
perturbation, which can be estimated by 

( ) ( ) ( ) ( ) ( )1111 −−−−−=− kkkkk
topical
actual uBAXΨ (8) 

With the assumption that the dynamics of perturbation 
is considerably slower than discretization frequency 
and the order of the perturbation magnitude is much 
smaller, the estimation is valid. 

Now we have defined control laws (IDC, SMC) 
and we can discuss the solution of their expressions. 

2.3 Solution of backlashes by pseudoinversion 

Consider now the eq. (3) and eq. (5) in the case 
that the inverse operation can’t be provided i.e.  

),()(  yyfquyB �+=   and  ( ) ( )dk XXFuB ,~ =  (9) 

these equations have the same form as the ordinary 
system of the linear equations: 

BAx =   (10) 

and it has an infinite number of solution. It is 
caused by deficient rank of matrix A (~ B(y), B~ ). 

The approach for removing the backlashes is 
based on computation of the pseudoinverse operation 
and on the idea of the non-changing signs of the 
torques during the robot movement along the certain 
finite trajectory. The latter means that the switching 
of the torque signs disappears and the problem 
with backlashes should not exist. 

The computation of the pseudoinverse operation 
gives the solution of the minimal length and some 
certain number of free parameters, which are used 
for change of undesirable signs of torques. This way, 
we obtain suitable solution, but it must be noted that 
this solution is not the same in the magnitude and it 
costs some additional energy and thus at least more 
powerful drives. 



 

For showing the algorithm of pseudoinverse 
with eq. (10) the following theorems (Lawson 1974) 
are needed. 
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Suppose that A is an m x n matrix of rank k and 

that THRKA = where H is an m x m orthogonal 
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Note:  This arbitrary vector is used for solution 
of backlashes. 

Theorem II.: 
Let A be an m x n matrix of rank k then there is an 
m x m orthogonal matrix H and an n x n orthogonal 
matrix K such that HTAK = R,  A = HRKT where 
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These theorems give the mathematical relations 
on which the following algorithm is based. 
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 y2 is arbitrary 

 and   R 2222   yc −=−Axb  (16) 

Note that expression (if y2 = 0)  = 2 c . 

The algorithm uses the orthogonal matrix Q and 
the permutation matrix P so that R is upper triangular 
and R11 is nonsingular. It was the first step 
to the solution of the backlashes. Now the sequence 
of suitable choice of an arbitrary vector y2 follows. 

The solution (15) can be divided for once 
redundantly determined system 
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For defined safety bounds around the zero on 
torque axis, which can be represented by vector 

rl = [rl1, rl2, rl3, rl4]T  (20) 
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3 QUADRATIC PROGRAMMING SOLUTION 

This section generally deals with adequately 
actuated systems, which must perform the condition 
of antibacklashes. It concerns only the simple 
example of the utilization of the quadratic 
programming (QP). 

Firstly, the Generalized Predictive Control (GPC) 
is introduced, in which the antibacklash condition is 
implemented by QP algorithm. 

3.1 Generalized predictive control 

The Generalized predictive control (Ordys 1993) 
is a multi-step control based on local optimization 
of the quadratic criterion. This approach combines 
feedback-feedforward relation. For quadratic 
criterion, the linearized discrete state formula must 
be prepared (linearization, Valášek 1999) e.g. 
in this classical form: 
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The base of predictive control is the expression 
of new unknown output values y from actual topical 
state X. Now we consider the N step prediction 
of y as follows 
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and further the quadratic criterion 
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at certain instant k, with using N step prediction yK . 
εεεε  is operator of mean value and λλλλ  is a penalization 
of actuator u. 

On condition ,! min=kJ  we obtain the control law: 

( ) ( )fwGλGGu −+= − TT 1  (25) 

which can be already used. 

It must be noted that only the first element uk from 
vector u is used. If penalization λλλλ is greater than 
zero, the matrix GT· G is regular and the problem 
with redundant action disappears. 

The following subsection will take into account this 
case and it will show the utilization of the Quadratic 
programming for the specific category (as in the previous 
section) of the constraints – antibacklash condition. 

3.2 Solution of backlashes by quadratic programming 

There is only short introduction of the Quadratic 
programming here, because it has been already 
introduced in detail e.g. in the paper (Gill 1977). 
The main concern is how to form the constraining 
antibacklash inequalities. 

Standard task of the Quadratic programming 
minimizes the quadratic purposive function 
with some linear constraints. 
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where H is an n x n, f an n vector, A is an m x n 
matrix and b is an m vector. The function F(x) is 
obtained from quadratic criterion eq. (24) as follows 
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then the structure of the inequalities eq. (27) is 
such as this 
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After satisfying of all assumptions, the Quadratic 

programming gives always some solution, which is 
not optimal but the found solution of the full rank 
problem has the smallest aberration that can be 
attainable. 

4 SIMULATION EXAMPLE AND CONCLUSION 

For the simulation of the robot, some plan 
of the trajectory must be prepared and must be 
realizable for the robot. For example in our 
simulation, the trajectory composed of bisector 
segments and arc segments was chosen. 
The trajectory was time-parameterized with constant 
period. That is the matter of choice. 

During the trajectory planning, the kinematic laws 
have been considered i.e. as a relationship between 
acceleration, velocity and position. 



 

One example of the desired trajectory and its 
kinematic characterizations are shown in Fig. 3. 
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Fig.3. The desired trajectory with the kinematic 
characteristics. 

 
As a test example, we consider one type of the 

redundantly actuated planar parallel robot (Fig.4). 
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Fig. 4. Scheme of planar parallel robot with the most 

important geometrical description 
(The coordinates of center E of movable platform 

and its angle of winding ψ). 

This configuration partly solves the question 
of moving masses, because all or almost all drives 
are located on the basic frame (i.e. the drives do not 
move with the robot). Moreover truss (parallel) 
construction of the robot leads to higher stiffness 
than in serial types. It is advantageous for accurate 
machining and positioning. 

For the described trajectory above, the time 
histories of four torques are shown in Fig.5., firstly 
for unconstrained case and consecutively with 
satisfying of antibacklash condition for rl = [-1,1,-1,1]. 
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Fig.5. Unconstrained and constrained control
(the time histories of four robot torques). 

Therefore, the difference between the severable 
introduced approaches is not appreciable, the time 
histories of the aberrations are only compared. 
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Fig.6. Antibacklash condition within IDC. 
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Fig.7. Antibacklash condition within SMC. 
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Fig.8. Antibacklash condition within GPC. 

From figures it is appreciable that the former 
approach - solution of the deficient rank problem 
gives better result than the latter approach - quadratic 
programming. It is caused by fact that the first gives 
the optimal exact solution while the second gives 
only a suboptimal solution without utilization 
of the redundant property of the robot construction. 
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