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Abstract: The paper deals with the possibility of solution of the antibacklash task
in the new concept of the robots based on the parallel construction improved by
redundant action. This type of the robot is generally described by Lagrange’s equations
of mixed type. On their base the used controls (Inverse Dynamics Control - IDC,
Sliding Mode Control - SMC and Generalized Predictive Control - GPC) are designed.
This paper discusses the two following ways. The first is based on solution of systems
with the deficient rank matrix inversion (IDC, SMC) and the second is general
utilization of the quadratic programming (GPC).
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1 INTRODUCTION

The area of the robots and manipulators is in the
constant development caused by the fact that the
robots are the basis of the most machine and
production lines in the factories.

The uncompromising requirements on their new
types are primarily high accuracy, high speed and
price constraints. It means that the robot’s structure,
with considering the previous, must have high
stiffness, good dynamic properties and acceptable
price. The price includes requirements on design
control and complexity of the construction.

The main long-term conceptual problems, how
to satisfy such requirements, are the following:

+ the large moving masses during the robot
movement,

« the backlashes and inaccuracies in the chain
of the robot structure.

This paper deals with the possibility of solution
of the antibacklash task in the new robot concept
based on the parallel construction improved
by redundant action. The results can be used both for
once-redundantly actuated systems (section 2) and
even for systems without any redundancy (section 3).

The antibacklash task is solved as additional
requirement on control (the torques should have only
one sign) within usually used control approaches
(Inverse Dynamics Control IDC (Siciliano 1996),
Sliding mode control SMC (Elmali 1992) and
Generalized Predictive control GPC (Ordys 1993)),
which are briefly described.

From general point of view, the mechanical
systems powered from outside e.g. by direct current
motor (DC motor) and consisting of sets of arms and
joints (the most of the robots and manipulators)
have drive backlashes (motor backlash) and gearing
backlashes Fig.1.
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Fig. 1. The presumptive backlash characteristics occurred in a robot:
(a) the DC motor hysteresis backlash; (b) the gearing backlash.

As a solution of the constrained control problem,
pseudoinverse and quadratic programming has been chosen.



2 PSEUDOINVERSE SOLUTION

This section deals with two control approaches,
which keep the redundancy of system. The first two
subsections briefly introduce these approaches (they
have been already introduced in detail in the previous
papers (Siciliano 1996, Elmali 1992, Belda 2001))
and the last subsection explicates the solution
of deficient rank system with necessity of pseudoinverse
operation to which the approaches lead.

2.1 Inverse dynamics control

Consider mechanical system (robot manipulator)
described by nonlinear differential equation

y=-(y.5) +Bm)u (1)

The approach (IDC) is based on the idea to find
a control vector u as a function of system state.
The classical approach (Siciliano 1996) assumes that
matrix B(y) is a full rank matrix which can be
inverted. If it is valid, we can obtain the continuous
control law as a function of the robot state
in the form:

u=(By)'F+£(.¥) ©)

Such control leads to finding stabilizing control
law for system with q =y

u=(B(y))" (a+£(v.y)) 3)

where q represents a new input vector to the whole
robot control circuit. The nonlinear control law
eq. (3) is termed as inverse dynamics control because
it includes computation of the robot inverse dynamics
itself. The system with this control is linear with
respect to the new input q.

When the matrix B is singular as in our case,
it can’t be inverted. It is caused by redundant action.
By using this property and algorithm for orthogonal-
triangular decomposition, we have a possibility
to compute control law and perform the antibacklash
condition. The sequence is described in subsection 2.3.

2.2 Sliding mode control

Discrete type of the Sliding mode control (Elmali
1992) is derived analogically to the theory of stability
in a continuous domain. Generally it is based on the
‘switching’ control action and the performance
of Lyapunov stability theorem.

The state is driven towards a desired switching
(sliding) hyperplane under Lyapunov control. The
‘switching’ maintains the state on this hyperplane,
once it has been reached, in spite of perturbations.
This method offers an advantage of accuracy
at the cost of control dithering, which ensues from
the ‘switching’ part.

Let us consider the nonlinear equation (1) which
can be transformed and simply discretized by Taylor
series with sampling period dto the following state
formulation:

X(k +1) = ARX(x))+ BX(x)u(k) 4)

With this state description, we can obtain control
law in similar structure as in the previous section:

u(k) =-CB(k)) {clA(k) +¥ (k) =X, (k +1] -s(k +1}

ulk)= B” (F(x.x,)) )
where s(k +1) = e s(k) - Ksign(s(k)) (6)
with considering s(k) = f(X(k) — Xq(k)) @)

is the choice of hyperplane. It satisfies Lyapunov
stability theorem and ‘I’(k) represents unknown

perturbation, which can be estimated by

¥k 1) =X, (k) -A(k 1) -B(k —1)u(k -1)(8)

actual
topical

With the assumption that the dynamics of perturbation
is considerably slower than discretization frequency
and the order of the perturbation magnitude is much
smaller, the estimation is valid.

Now we have defined control laws (IDC, SMC)
and we can discuss the solution of their expressions.

2.3 Solution of backlashes by pseudoinversion

Consider now the eq. (3) and eq. (5) in the case
that the inverse operation can’t be provided i.e.

B(y)u=q+f(y,y) and Bu(k)=F(X,X,) (9

these equations have the same form as the ordinary
system of the linear equations:

Ax=B (10)

and it has an infinite number of solution. It is
caused by deficient rank of matrix A (~ B(y), B ).

The approach for removing the backlashes is
based on computation of the pseudoinverse operation
and on the idea of the non-changing signs of the
torques during the robot movement along the certain
finite trajectory. The latter means that the switching
of the torque signs disappears and the problem
with backlashes should not exist.

The computation of the pseudoinverse operation
gives the solution of the minimal length and some
certain number of free parameters, which are used
for change of undesirable signs of torques. This way,
we obtain suitable solution, but it must be noted that
this solution is not the same in the magnitude and it
costs some additional energy and thus at least more
powerful drives.



For showing the algorithm of pseudoinverse
with eq. (10) the following theorems (Lawson 1974)
are needed.

Theorem I.:

Suppose that A is an m x n matrix of rank £ and

that A = HRK' where H is an m x m orthogonal
matrix, R is an mxn matrix of the form

R, O
R:{ 0” 0} with kx k submatrix R;; of rank k

and K is an nxn orthogonal matrix. Define the

k
vector H'b =g = {gl }} and introduce the new
g, [ym=k

k
variable K'x =y = {yl}} . And finally define
V) tn—k

¥, to be the unique solution of Ry, =g, then all
solutions of system equations are of the form

2

X = K{yl } where y, is arbitrary.

Note: This arbitrary vector is used for solution
of backlashes.
Theorem II.:

Let A be an m x n matrix of rank k then there is an
m x m orthogonal matrix H and an »n x n orthogonal
matrix K such that H'AK = R, A = HRK" where

R: Rll
0

nonsingular triangular matrix.

0
O} and submatrix R;; is an kxk

These theorems give the mathematical relations
on which the following algorithm is based.

QAP_R= Rll RIZ }k 11
Ul o R, |im-k (b
7; nTk
Qb =c=||'F (12)
—¢T c, |ym—k
R, R,]K=[Wd (=AK =[W0]) (13)
Wy, =¢, =y (14)
x=PK{y1}EPKy (15)
Vs
¥, is arbitrary
and ||b-Ax|=|c, -R,y,| (16)

Note that expression (if y, = 0) = || 6‘2" .

The algorithm uses the orthogonal matrix Q and
the permutation matrix P so that R is upper triangular
and R;; is nonsingular. It was the first step
to the solution of the backlashes. Now the sequence
of suitable choice of an arbitrary vector y, follows.

The solution (15) can be divided for once
redundantly determined system

-1x1
X = [PKsubl PKsubZ |:yl :| } "
nxn—-1 nxl
X= PKsubl g/l + PKsubZ @2

19)
u—ul(—x|y2 _O)+ u, g’z
the minimal arbitrary part
solution of the solution

For defined safety bounds around the zero on
torque axis, which can be represented by vector

rl=[rl, rh, rls, rl]" (20)
with meaning arising from Fig.2. ,

upper torque bound - ub

the area of the torques with positive signs

}"l i
torque @ — 0 torque
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rl i

the area of the torques with negative signs

Fig. 2. The definition of backlashes and bounds.

lower torque bound - Ib

the following sequence is accomplished.

Stepl. find u, (i) [& rl,ub > for req. positive signs

u, ())& Ib,rl, > for req. negative signs

Step2. for such u,(7) compute y,(7) = M
(eq.(19) with substitution rl(i) for u).
Step3. for these y,(i) compute U(i) U(@)=u,+u,y,(i)

Step4. choice U"(i) which satisfies || rl =U() || =min

Step5. check U’(i) with considering to bounds (Fig.2)
and provide hard restrictions.

Then final u equals U(i). Such result does not
markedly change the properties of the robot control
process, however, it changes the magnitude of all
torques.

The minimal solution requires the minimum
supply of the drive energy against result (Step5.)
satisfying the antibacklash condition, where
the required drive energy increases severalfoldly.
The comparison will be shown in section 4.

Note that the sequence is valid for rank(A) = k<m<n.

However, for rank(K) = m<n it is possible to use
only shortened sequence from eq.(13) to eq. (15)
without permutation P.



3 QUADRATIC PROGRAMMING SOLUTION

This section generally deals with adequately
actuated systems, which must perform the condition
of antibacklashes. It concerns only the simple
example of the utilization of the quadratic
programming (QP).

Firstly, the Generalized Predictive Control (GPC)
is introduced, in which the antibacklash condition is
implemented by QP algorithm.

3.1 Generalized predictive control

The Generalized predictive control (Ordys 1993)
is a multi-step control based on local optimization
of the quadratic criterion. This approach combines
feedback-feedforward  relation. For  quadratic
criterion, the linearized discrete state formula must
be prepared (linearization, Valasek 1999) e.g.
in this classical form:

X(k+1)= A X(k)+Bu(k)

_ 2
ylk) =CX(k)

The base of predictive control is the expression
of new unknown output values y from actual topical
state X. Now we consider the N step prediction
of'y as follows

y=Gu+f (22)
C B0 CA
where G = and f= X(k)(23)
CA""'B---CB CA"

and further the quadratic criterion

Jo= E{5-w) (F-w)+un} =

= 8{(Gll+f—W)T(Gll+f—W)+ u'l u} o

at certain instant &, with using N step prediction y .

Eis operator of mean value and A is a penalization
of actuator u.

On condition J, ké min, we obtain the control law:
u=(G’G+1)'G" (w~-f) (25)

which can be already used.

It must be noted that only the first element u; from
vector u is used. If penalization A is greater than
zero, the matrix G'- G is regular and the problem
with redundant action disappears.

The following subsection will take into account this
case and it will show the utilization of the Quadratic
programming for the specific category (as in the previous
section) of the constraints — antibacklash condition.

3.2 Solution of backlashes by quadratic programming

There is only short introduction of the Quadratic
programming here, because it has been already
introduced in detail e.g. in the paper (Gill 1977).
The main concern is how to form the constraining
antibacklash inequalities.

Standard task of the Quadratic programming

minimizes the quadratic purposive function
with some linear constraints.
e {F(x) = %XTHX +fo} (26)
subjectto A[X<b 27)

where H is an nxn, f an n vector, A is an mx n
matrix and b is an m vector. The function F(x) is
obtained from quadratic criterion eq. (24) as follows

F(u)=%uT(GTG+X)u+(f—w)TGu (28)
Lo

Let us consider pair of torques:

_|u(i)& ri@),ub >
u_[u(j)@ b, Fi( j) >} (29)

then the structure of the inequalities eq. (27) is
such as this

1 0 ub

0 1 u(i) - () (30)
10 Ju()| | -rl()

0 -1 -1b

A 0Owu £ b

After satisfying of all assumptions, the Quadratic
programming gives always some solution, which is
not optimal but the found solution of the full rank
problem has the smallest aberration that can be
attainable.

4 SIMULATION EXAMPLE AND CONCLUSION

For the simulation of the robot, some plan
of the trajectory must be prepared and must be
realizable for the robot. For example in our
simulation, the trajectory composed of bisector
segments and arc segments was chosen.
The trajectory was time-parameterized with constant
period. That is the matter of choice.

During the trajectory planning, the kinematic laws
have been considered i.e. as a relationship between
acceleration, velocity and position.



One example of the desired trajectory and its
kinematic characterizations are shown in Fig. 3.
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Fig.3. The desired trajectory with the kinematic
characteristics.

As a test example, we consider one type of the
redundantly actuated planar parallel robot (Fig.4).
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Fig. 4. Scheme of planar parallel robot with the most
important geometrical description
(The coordinates of center E of movable platform
and its angle of winding ).

This configuration partly solves the question
of moving masses, because all or almost all drives
are located on the basic frame (i.e. the drives do not
move with the robot). Moreover truss (parallel)
construction of the robot leads to higher stiffness
than in serial types. It is advantageous for accurate
machining and positioning.

For the described trajectory above, the time
histories of four torques are shown in Fig.5., firstly
for unconstrained case and consecutively with
satisfying of antibacklash condition for rl=[-1,1,-1,1].
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Fig.5. Unconstrained and constrained control
(the time histories of four robot torques).

Therefore, the difference between the severable
introduced approaches is not appreciable, the time
histories of the aberrations are only compared.

Fig.8. Antibacklash condition within GPC.

From figures it is appreciable that the former
approach - solution of the deficient rank problem
gives better result than the latter approach - quadratic
programming. It is caused by fact that the first gives
the optimal exact solution while the second gives
only a suboptimal solution without utilization
of the redundant property of the robot construction.
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