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Abstract: - The parallel robots seem to be one of the promising ways to improve accuracy and speed. At their
development some new problems appear. This paper deals with design of direct kinematics for real-time path control
of planar redundant parallel robots. The main reason for its using is a fact that the direct kinematics gives possibility
to use Cartesian coordinates as against joint ones and by this considerably simplifies model of the robot and
consecutively computation of high level control based on knowledge of such model. As a subtask of design of the

direct kinematics, the trajectory planning is discussed.
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1 Introduction

The most topical industrial robots and manipulators
do not cope with increasing requirements on speed and
accuracy. Therefore, new approaches of their
construction are being found. Parallel robots, especially
redundantly actuated, seem to be one of the promising
ways to solve these requirements [4]. And, moreover,
they have several advantages over traditional serial
robots.

The main is the following:

* All or almost all drives are located on the
basic frame and truss construction of the robot
leads to higher stiffness than in serial types. It
is advantageous for accurate machining and
positioning.

On the other hand the parallel robots have one
constrain:

* That is given in more possibility of arms
collision. But this can be solved if this
constraint would be taken into account at the
planning of desired trajectory. However, this
disadvantage does not markedly keep down
movement of the robot.

As an example, let us consider one such redundantly
actuated planar parallel robot (Fig.1). It consists of the
basic frame, which at the same time encloses
workspace of the robot, four independent drives,
movable platform and eight arms, which connect the
movable platform with the basic frame. The arms are
parallelly situated.

From the mechanical point of view, this robot has
one drive and one pair of arms redundant, because
generally the number of degrees of freedom of body

in a plane is only three. Accordingly, for control of the
robot and for its mechanical determination, only three
pairs of appropriate arms are necessary. But in this
case, the singular position in the workspace will appear.
Therefore the redundant drive is used in order to
overcome the problem. And, moreover, it improves
stiffness and rotation speed of movable platform and
gives the possibility to comply with the other additional
control requirements.
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Fig. 1. Scheme of planar parallel robot
with the most important geometrical description
(The coordinates of center E of movable platform
and its angle of winding ().

The aim of this paper is investigation of the direct
kinematics for real-time control of redundant parallel
structure of the robot at using of the specially planned
trajectory.
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2 Problem formulation

From the high-level control design point of view,
the principal task is a choice of suitable model of the
robot. On it the design of control depends.

The robot-manipulator is a multibody system, which
can be described by Lagrange’s equations of mixed
type. These equations lead to the differential-algebraic
equations (DAE) in the following form:

Ms-® A =g+Tu
f(s(t)) =0

where M is a mass matrix, § is a vector of physical
coordinates (their number is higher than the number of

degrees of freedom), @ is a Jacobian of the system, A

(1)

are Lagrange’s multipliers, g is a vector of right sides,
matrix T transforms the inputs u (four torques) into
four drives and f(s(t)) =0 represents geometrical

constrains.

In our case the one possibility exists for the
transformation into independent coordinates, which, in
this case, may be chosen as Cartesian coordinates of the
center. Which is very suitable because DAE model is
transformed to ODE model [2]. It means that
Lagrange’s multiplies disappear and moreover we
obtain more transparent relationship between central
working position and inputs-torques to the robot.

Then the resulting model of the robot is following:

R"MRy+R"MRy =R"g+R"Tu )

This model can be generally rewritten in the state
formula in following form:

X(t) =f(X) +g(X)ult)
y(t)=nX(t)

where the input variables are torques of all drives.
The state variables are coordinates of center E (X, y)
of movable platform, its angle of winding ( ¢ ) and
their derivative. The output variables are only
operational coordinates selected from state variables.

The functions f(X), g(X) are highly nonlinear
reflecting the kinematic structure of the parallel robot.
The non-linearity stems from the nonlinear dependence
of the operational coordinates on the joint coordinates.

In order to use model of the robot described by
eq. (2), we must provide the availability of independent
coordinates i.e. coordinates of the center (X,Y, ¢)
of which number is equal to the number of degrees
of freedom. This problem is solved by the direct
kinematics, which recomputes joint-drives coordinate
to Cartesian coordinates of movable platform center.
Before introduction of possible approaches to the direct
kinematics some plan of trajectory must be prepared.

3)

3 Planning of the trajectory

As opposed to classical serial robots the planning
trajectory for parallel robots demands certain
harmonization of their movement. It is caused by

interconnection of arms through the movable platform
vide Fig.2.
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Fig.2. Classical (a) and parallel (b) type of the robot.
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The winding of all drives at the parallel robot gives
simultaneously position and winding of the movable
platform against classical serial robots, where angle
of winding is not strictly dependent on all drives, but it
can be provided by last drive (e.g. Fig.2.(a), Drive 3)
in the chain.

The trajectory is usually given by technological
requirements. And for control, it must be time
parameterized as discrete set of ordered pairs of time
and Cartesian coordinates

[ X=[X Y@ XY P imers

at sampling period Ts. In majority cases the whole
trajectory is composed of simple segments, like
bisectors or arcs segments, which are simply
mathematically described. In remaining cases the group
of points is given and this leads on approximation like
smoothing  problem.  With using parametric
interpolation or approximation curves e.g. like
Ferguson’s cubic, Bezier’s curves or B-spline curves,
this problem is transformed on the former cases.

The general requirement on planning of trajectory is
position of tool and its angle of winding in certain time.
Cartesian coordinates and required velocities give this.
Note that the position and angle is identical with
position and angle of winding of movable platform.

The design of the trajectory is based on simple
kinematic laws. At the first, the distance-length
of segment and angle of winding, which is performed
together, must be counted. Generally it is given by
expressions

s= Ids

S

P =Wena ~ Winia (4 a,b)

where dS is an element of segment of the trajectory.



At using expressions for accelerations in a form:

dv daw
a=—, a=—
dt dt
and their double integration in frame of one segment
we obtain expressions for orientational working times:
2s 2y

t=——— t, =
Vinital +Vfinal W +wﬁna|

(5a,b)

(6 a,b)

inital

From them the higher, labeled as tfina, is chosen
and rounded to the nearest value, which is multiple of
sampling period Ts. That provides sufficient time for
performing of movement.

Now the own parameterization can be made.
For the smooth connecting and the accomplishment
of simultaneous movement and rotation of the movable
platform, the trajectory should have the first derivation
continuous and smooth and at the same time the second
derivation should be continuous and segmentally
smooth curve with zero border values. In order to
perform these requirements it is suitable to prescribe
the equation of acceleration as following:

a=a, +at+a,t’ (7)

consecutively velocity and position in the form:

1 1
V= Vinital +a0t+5alt2 +§azt3 ®)
1 ., 1 5 1 .
s=v._ . t+—at"+—at’+—a,t 9
inital 2 0 6 1 12 2 ()

with conditions of initial and final state (as spoken
above) in the form:

for t=0:V(0) = Vinitar; S(0)=0; a(0) =0,
for t = tfinal : V(tfinar) = Vfinal ;
S(tfinar) = Sfinal ; A(tfina) =0.  (10)
From eq. (7) (8) (9) and conditions (10) the parameters

ay, 41, A» can be obtained.
If we used the similar equations for rotation

a=a,+at+a,t’ (11)

wW=w,

inital

+a0t+%alt2 +%a2t3 (12)

W= 0yt +%0(0t2 +éa1t3 +éazt4 (13)

and conditions in the form:
fort=0: w(0) = Winitar; P(0)=0; a (0)=0.
for t = tfinal : W(tfinal) = Wfinal;
W(tfina) = Y ; O (tfinar) = 0. (14)

then we obtain also the parameters for winding.

Now if we prepare time vector as following
t
T=[0, Ts, 2Ts - - - kTs] for integer k =% (15)
S

and substitute it into eq. (7)-(9) and eq. (11)-(14) we
obtain consequence of positions, velocities and
accelerations, which can be directly decomposed in
directions x,y (Fig.3 and Fig.4). The equations (7)-(9)
and eq. (11)-(14) can be used for computation of the
other geometrical parameterization [1]. Then required
ordered pairs of time and coordinates with their
derivatives are obtained.

This time parameterization of the trajectory can be
already used for control, even for the design and testing
of the direct kinematics, which is discussed in the
following section.
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Fig.3. Example of one trajectory,

composed of bisector and arc segments,
for the control of the parallel robots.
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Fig.4. Kinematic component characterizations
of the trajectory from Fig. 4.
(positions [x, y, Y], velocities and accelerations).



4 Direct kinematics

The coordinates appearing in the branch of robots
and manipulators may be divided into drive
coordinates (;, operational X and other ancillary
coordinates (. All these coordinates are either
independent (their number equals number of degrees of
freedom) or dependent. Between them there is relations
generally expressed by system of nonlinear equations:

f(x,q,,q,)=0 (16)

Direct kinematics solves problem of recomputing
the drives coordinates q; on operational, in our case
(Fig.1), independent coordinates X. In comparison with
the classical robots, where it is not difficult, the direct
kinematics of the parallel robots especially redundantly
actuated is not simple task. Then, we find the function
x = f(q,), which unfortunately is not analytically
solved. We have several possibilities, how to solve this.
Either we can use classical numerical solution or
engineering solution in the form of control task.

4.1 Numerical solution

Now we briefly describe usual numerical solution
with the Newton’s method, which is suitable.

The method is based on the Taylor expansion to the
first order in the neighbourhood of initial value

z0) = [X(O); q(zo)] , which can be equal to desired values.

£(z"q,)=f(z% ,q1)+MAZ(k) =0 (17)

0Z
From this we obtain a system of linear equations for AZ®
of (2,
afzt.a) = @) gz - £(z% q,) (18)

then k +1 iterationis Z**) =7 +azK) (19)
This we can substitute into eq. (18) and repeat
procedure until ‘AZ(k)‘ < €, where € is such difference

given before, which is already not critical for control.
Consecutively the velocities and accelerations are
given by

d
—( flZ =0
dt( ( aql) )
)y AMZaly g - g
q,
(DZ Z+ ch1 ql =0 = Z (20)

%((I)ZZHDqlql =0)

O,2+0,2+d,q,+D,§,=0=27Z (1)

With using the previous results of eq.(19) for
eq (20) and eq. (19) and (20) for eq (21), the eq. (20)
and (21) represent systems of linear algebraic
equations. From them the operational coordinates arise.

4.2 Solution in the form of control task

As has been mentioned, the direct kinematics of the
parallel robots is more complicated and it has not direct
analytical solution as at classical kinematic structures,
where the direct kinematics is simple and conversely
there is a problem with kinematics inversion there.
When we consider the previous numerical solution, we
can see, that after derivation of system equations (16),
we obtain linear relations. This fact we can use. If we
have possibility to extract the relation only between
independent operational coordinates X and drive
coordinates (j :

f(x,q)=0 = q,=fx (22)

and derivate it according to time we obtain system
of linear differential kinematic equations

. :%X
q, dx
q=J,x (23)

where J; is Jacobian. Then eq. (23) makes the basis of
two following approaches.

The first provides the design of the direct kinematics
by feedforward control scheme with using desired
values and later deals with feedback scheme
independent on desired values.

4.2.1 Feedforward direct kinematics

Suppose that desired values X4 of the trajectory are
available and the same may be said about initial
conditions on position and angle of winding.

By considering eq. (23) with regular square matrix
Ji the operational coordinates can be obtained via
simple inversion

x= (3)'q, (24)

In the case, when parallel robot is redundant (our
case Fig.1) the Jacobian has more rows than columns
and it can’t be inverted. We can use left pseudo-inverse.

k= (079, 974, (25)

The Jacobian J; is a function of operational
coordinates X4 and if difference X4-X is below a given
tolerated threshold then the eq. (24) or (23) can be
integrated. For real implementation, it is mostly needful
to rewrite these equations to discrete form. Note the
Jacobian at the certain instant is only static relation,
which is not directly dependent on time.



So we can write:

X(tk ) = X(tk—l ) + X(tk ) [Ts
X(tk) = X(tk—l)+J;T(Xd (tk))gll(tk)zrs (26)

where J IT (x d) is either simple inversion eq.(24) or left

pseudo-inverse eq. (25) of Jacobian according to type
of the robot.

The graphical representation of eq.(26) in
correspondence eq. (25) with discrete time integrator is
in Fig.5.
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Fig. 5 Feedforward direct kinematics.

4.2.2 Feedback direct kinematics

In previous part it was shown how to provide the
direct kinematics by using the differential kinematic
equations with knowledge of desired value. However
in practice the differences X4-X are higher than a given
tolerated threshold or we need to move with the robot
freely without the knowledge of desired trajectory.

Then in numerical implementation of eq. (26),
computation of operational velocities is obtained by
using the inverse of the Jacobian evaluated at the
previous instant of time

X(tk)= X(tk—l)"'JI (X(tk—l )) [q, (tk)ErS (27)

Eq. (27) does not satisfy eq. (24), eq. (25) respectively.
This inconvenience can be overcome by approach to
such scheme, which takes into account the difference
between actual topical measured joint-drive coordinates
and recomputed joint-drive coordinates from computed
(estimated) operational coordinates. Let

€=qm —q, (X) (28)

be the expression of such difference.
Consider the time derivative of eq. (27)

e= qlM - ql (X) (29)

which, according to the differential kinematics eq. (23),
can be rewritten as

e=q,y —J,(x)x (30)
This equation leads to a feedback scheme of the direct
kinematics and relation eq. (30) between operational
velocity X and derivative of difference € gives
a differential equation, which describes difference

evolution over time. Nonetheless, it is necessary to
choose a relation between X and e that ensures
convergence of the difference to zero.

Assume the choice

€=qyy _JI(X) X= _K(qlM _ql(X)) =-Ke (31)
which leads to the equivalent linear system
e+Ke=0 (32)

If K is a positive definite (usually diagonal) matrix,
the system eq.(32) is asymptotically stable. The
difference tends to zero along measured joint-drive
coordinates (,,, with convergence rate that depends on

the eigenvalues of matrix K; the larger the eigenvalues,
the faster the convergence. Since the scheme is
practically implemented as a discrete-time system, it is
reasonable to predict that an upper bound exists on the
eigenvalues; depending on the sampling period, there
will be a limit for the maximum eigenvalue of K under
which asymptotic stability of difference system is
guaranteed.
Then we can rewrite eq. (30) to the form

J, (X) X=qy t K(qlM —-q, (X)) (33)
and consecutively
X= JT (X) (qlM + K(qlM —q, (X))) (34)

where J I(X) has a similar meaning, as in previous

section, either simple inversion or left pseudo-inverse
accordingly to type of the robot.
After this is equal to expression

x(t ) = x{t, )+ 97 (x(t,.,))0
et () + K ) -, (x (6 ) s 35)

The block scheme corresponding to the feedback
direct kinematics algorithm eq. (35) for redundant case
is in Fig. 6.
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Fig. 6 Feedback direct kinematics.



5 [Evaluation of presented approaches

In this section we focus on the last approach to
feedback direct kinematics algorithm. The former
approaches are suitable for simulation and moreover
they need knowledge of the desired trajectory. Mainly
in feedforward direct kinematics, this knowledge is
cardinal and when there is more difference between
desired and measured values this algorithm can’t be
used. The Newton’s method is not bad, but it is slower.
It is caused by its iteration character of algorithm.

For introduction, the simple trajectory, composed of
spiral and arc segment, was chosen Fig.7.
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Fig.7. Desired values of operational coordinates
Cartesian coordinates: x, y, .

The robot (Fig.1.) begins from center of the
workspace and tracking the trajectory with slow
increase of sin trend of angle of winding of movable
platform.
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The Fig.8 and Fig9 show the time history
of differences (errors) between desired values x4 and
computed (estimated) values X. For real time process,
the sampling Ts equaled 0.002s and for simulation

sampling Ts was 0.02s. The positive diagonal matrix
was chosen with diagonal element k;; = 10.

0.35 fmmmbomommd
0.3 ---
0.25 ---f

0.2 f---

0.15 0.2 0.25 0.3 0.35

Fig.10 Real-time comparison of desired (solid) and
computed (dotted) trajectory.

For real time test the simple proportional controller
was used and moreover the robot was not ideally
calibrated. That is why the difference between desired
X4 and computed X operational coordinates is greater
than in simulation case, where the direct kinematic
algorithms were tested directly without control.

6 Conclusion

Presented approaches to the direct kinematics are
suitable for simulation (Newton’s method, feedforward
algorithm) and mainly for real time using (Newton’s
method, feedback algorithm). They were successfully
tested and shown in this paper.
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