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Abstract: One of the trends in robotics is a study of parallel structures and their control, 
lending, in some situation, to control of systems with more inputs than outputs 
(over-actuated, drive-redundant systems). The simples control approach considered 
means taking the robots as a set of single input-output systems (setSISO); decentralized 
control design. As an auspicious alternative is model-based approach i.e. centralized 
control for instance Generalized Predictive Control (GPC). It pursues global design 
of control actions corresponding with actual requirement to robot movement. 
In the paper, the square-root form of GPC in both absolute and incremental algorithm is 
presented and compared with decentralized approach. 
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1 INTRODUCTION 

Development of new robot constructions closely relates 
with the design of new approaches to their control. 
One of the topical trends in robotics is a study of certain 
promising parallel structures of the robots – manipulators 
and consecutively the design of their control, leading, 
in certain situation, to control of systems with more 
inputs than outputs (over-actuated or drive-redundant 
systems). Their concept is shown in Fig. 1. 
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Fig. 1. Concept of the redundant parallel robots. 

Parallel robots (structures) can be simply understood 
as movable truss constructions or as a movable platform, 
generally representing the place of gripper for fixing 
or gripping, supported by more beams. They are 
characterized by close loops, interconnected through 

the platform. This configuration affords significant 
improvement in stiffness, dynamics and accuracy 
of the robots. These properties, among others, 
predetermine the robots to the use within more 
powerful industrial applications performing accurate 
machining and positioning. Fundamental task of such 
parallel robot constructions, especially redundantly 
actuated, is how to provide effective and safe control 
of all drives - actuators. 

The simples control approach (Sciavicco et al. 1996) 
considered means taking the robots (serial and parallel) 
as a set of single input-output systems (setSISO) –  
 –  decentralized design. Mutual interaction among 
“independent” inputs is considered as disturbances 
entering each system of setSISO of the structure. 

As an auspicious alternative, model-based approach 
so-called centralized control comes forward. It pursues 
global design of control actions corresponding with actual 
requirement to robot movement - optimizes energy 
consumption. The approach provides cooperation of all 
drives in parallel structure even in redundant case. 
In the paper, as an illustration, the Generalized 
Predictive Control (GPC) is used (Ordys et al. 1993). 
It is presented in square-root form of both absolute 
and incremental algorithm. 

The paper compares the mentioned approaches 
(decentralized and centralized) and shows results 
achieved on one laboratory robot prototype. 



2 MODEL COMPOSITION 

The important issue is a choice and arrangement 
of suitable model of the robot for given control method, 
used either for simulative control tests or for real control 
design. Since the robot is a mechanical body, the classical 
equations of motion and their suitable modification 
can be used. 
The mathematical model can be composed on the base 
of Lagrange’s equations, in general, of mixed type. 
These equations lead to the differential - algebraic 
equations (DAE) in the following form: 
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where M (m×m) is a mass matrix, s (m×1) is a vector 
of physical coordinates (their number m is higher than 
the number of degrees of freedom n), sΦ  ((m-n)×m) 
is an overall Jacobian of the system, λ  ((m-n)×1) are 
Lagrange’s multipliers, g (m×1) is a vector of right sides, 
T (m×r) is an unitary matrix adjusting the dimension 
of inputs u (r×1), and f(s(t)) = 0 ((m-n)×1) represents 
geometrical constrains. For redundant case the number 
of inputs r is higher than the number of degrees 
of freedom n (r > n). 

The physical coordinates s consist of the independent 
coordinates x ( Cartesian coordinates of the cutting 
tool or gripper ), coordinates of drives (inputs) q1  
and other auxiliary geometrical coordinates q2. 

For control design, we search for the most compact 
notation in our case in independent coordinates. 
Let us consider the possibility of such transformation 
(Stejskal et al. 1996). As follows, the DAE robot 
model is transformed to the ordinary differential 
model (ODE). It means that the Lagrange’s 
multipliers disappear and design of the robot control 
becomes considerably simpler. The resulting model 
of the robot system is the following: 

 TuRgRxRMRxMRR TTTT +=+ &&&&  (2) 

That transformation is based on the Jacobian sΦ , 
described by matrix R fulfiling 

 0ΦRRΦ ss == TT  (3) 
and 

 xRxRsxRs &&&&&&&& +== →   (4) 
wherefrom matrix R is obtained: 
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As there are more control actions u (r×1) in redundant 
case, it is possible to introduce the independent force 
equivalent h (n×1) in such way that 

 hTuR =T  (6) 
that is not uniquely solvable for u (r×1), h (n×1) and 
r > n. The model form (2) with modification (6) 
represents the suitable base not only for simulative 
tests but mainly for the following control design. 

3 DECENTRALIZED CONTROL 

The simplest control approach considered means 
taking the robots and manipulators, powered by group 
of independent drives /actuators/, separately controlled, 
as a set of single input - single output systems (setSISO) 
(Sciavicco et al. 1996). Mutual interactions among all 
drives, caused by different positions during the robot 
movement, are included as disturbances entering 
each “single” system constituting the robot. 

In that view, the classical PID/PSD feedback control 
scheme can be used. If the scheme is applied, serious 
problem of mutual conflict of drives may occur 
(Valášek et al. 2002). It is indicated by unpredictable 
increase of integral/sum (I/S) channels in controller. 
Undesirable unproductive part of I/S channels is 
caused by the fact, that kinematic description is never 
perfect, i.e. it does not represent exactly the real 
kinematics of redundant parallel structure, given 
by production and partly by topical technological 
conditions. 

Due to drive redundancy there exist no unique 
transformation between coordinates of drives q1 and 
independent coordinates x here. There exists only 
inverse relation q1=f(x). It means that q1 coordinates 
are dependent. This relation is never fully matched 
in view of inaccurate dimensions of the robot. 
The PID/PSD controllers try to achieve zero errors 
for all dependent drive coordinates q1, but it is not 
possible. This fact causes the increase of I/S channels 
in controllers to saturation, i.e. undesirable increase 
of expected values in drives. Adding a new block 
into control circuit can solve this issue and reduce 
this undesirable property. 

Idea of the solution is the following: local decentralized 
controllers compute magnitudes of actuators u 
for drives and then some operation as a certain 
projection is applied to these magnitudes. The 
projection transforms the actuators to independent 
space (i.e. it computes so-called general force 
effects), where the undesirable effects are eliminated, 
and consecutively the inverse projection recomputes 
them (free of unproductive components) back to required 
magnitudes of actuators in drives. 

From mathematical viewpoint we solve the following 
task: 
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where A (n×r) is RTT, generally horizontal rectangular 
matrix (input matrix in robot model), u (r×1) is a vector 
of actuators – inputs in robot system (e.g. magnitudes 
of requisite torques on shafts of drives /motors/), 
and b (n×1) is a vector of general forces h. 

The following lines show derivation of the reductive 
projection (solution of the task (6) or (7) respectively) 
in view of u. 

The quadratic criterion can be used and by its 
optimization, the projection is obtained. 



The form of the criterion is the following: 
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and its optimization: 

 λAu0λAu0
u

TTJ
−=⇒=+→=

∂
∂  (9) 

 0bAu0
λ

=−→=
∂
∂J  (10) 

by insertion (9) to (10) we obtain the parameter λ: 

 bAAλ 1)( −−= T  (11) 

Then the back substitution of (11) into (9) with 
consideration of initial equation (7) gives the final 
result in the following form: 
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The proof of the result (12) for (7) is as follows. 
Let us use SVD decomposition of matrix A: A=USVT 
(where S is diagonal and U and VT are orthogonal 
matrixes). SVD decomposition helps us to simplify and 
to evaluate the product in (12). 
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If we analyze the product T,†VVS  thus V is orthogonal 
matrix and product †S  (r×r) is diagonal and moreover 
unitary deficient rank matrix /note: S is (n×r)/ i.e.: 

 TTT diag VVAAAA ])1110([)( 1 =−  (14) 

On the base of (14) we can compare the norm of u 
and ured from (12): 

 1])1110([)( 1 ==− TTT diag VVAAAA  (15) 
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The following figure (Fig. 2) shows the situation of one 
I/S channel without and with projection. 
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Fig. 2. Comparison of trends of one control action 

channel in appropriate drive during stop sequence 
(example of compensation by reductive projection). 

In ideal case c) I/S channel is leveled off on certain 
magnitude, which was being integrated during whole 
control process. In case d) the unproductive part is 
reduced to zero level. The real cases a), b) are caused 
by integration (sum) of steady control error, arising 
from geometrical inaccuracies in redundant parallel 
structure. 

Since the undesirable unproductive part is generated 
only in I/S channels of the controllers, then the separate 
compensation of these channels is sufficient. It means 
that the compensative block is added directly 
to controller (Fig. 4). If the block was situated behind 
whole controller, in such a case the saturation of I/S 
channels (→ ∞) would appear and real channel would 
be out of its range without any impact of reduction 
projection. Resultant controller can be composed as 
an independent parallel configuration of separate 
PID/PSD controllers with certain internal modification. 
Corresponding scheme is in Fig. 3. 
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Fig. 3. Scheme of simple decentralized control. 

Block of the projection determines unproductive part, 
which is subtracted from the input of I/S channel. 
It provides smooth compensation. Application 
of compensation I/S channel as well as the whole 
internal configuration of one individual controller 
(drive (1)) is shown in Fig. 13. 
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Fig. 4. Internal structure of PID/PSD controller with 
compensative (projective) block. 

4 CENTRALIZED CONTROL 

The described decentralized control in the previous 
section takes into account interactions and 
connection effects among all parts of the robot 
construction as disturbances influencing in each 
single drive system. 
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However, as shown by the dynamic model equation 
(2), the robot-manipulator is not a set of independent 
systems, but it is one multibody system with r inputs 
(drives - actuators) and n outputs (the independent 
Cartesian coordinates; n is equal to the number 
of degrees of freedom) interacting among them 
by means of the nonlinear kinematic and dynamic 
relations. Since these relations are known, there 
is a possibility to use them directly for the design 
of control. 

As an example of such approach are high level 
techniques using knowledge of the dynamic model 
of the system (2) and which globally optimize whole 
control process. One of them is Generalized 
Predictive Control (GPC). 

The Generalized Predictive Control (Ordys et al. 1993) 
is a multi-step control based on local optimization 
of the quadratic criterion, where the linearized 
equation or state formula is used (i.e. only the nearest 
future control signal is evaluated). This approach 
admits combination of feedback~feedforward parts 
and, by its multi-step character, offers influence 
of generated control actions. 

The first subsection 4.1 will show preparation 
of prediction model for both absolute and incremental 
algorithm. 

And the second subsection 4.2 will explain square-root 
predictive algorithm (Generalized Predictive Control 
(GPC)) for the mentioned prediction models derived 
for redundant parallel robot constructions. 

4.1 Model for prediction 

As mentioned previously, for derivation of GPC 
the nonlinear model (2) with modification (6) 

 hgRxRMRxMRR +=+ TTT &&&&  (17) 

and following simplification 

 hxgxxfx )(),( += &&&  (18) 

suitably transformed to state-space formulation using 
state vector T],[ xxX && = description 
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must be linearized (Valášek et al. 1999) and converted 
from continuous to discrete domain (note: to preserve 
the traditional control notation in next part of this 
section, the symbol u is used instead of h) 
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The base of the predictive approach is an expression 
of new unknown output values x from actual topical 
state X for a considered horizon of prediction N. 
The following lines imply the expression firstly 
for absolute and consecutively for incremental GPC 
algorithms. 
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then the prediction of x is the following 

 Gufx +=)  (21) 

with meaning 
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For incremental algorithm we must firstly modify 
equation (20) with u(k)=u(k –1) + ∆u(k) 
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then the prediction of x is the following 

 uGuffx ∆+−+= rr k )1()  (26) 

with meaning 
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Now we can proceed to next section, dealing 
with the real derivation of predictive algorithms. 



4.2 Predictive control algorithm (derivation of GPC) 

The derivation of control law with the model 
configuration (19) or (20) respectively, which, in real 
computation, needs matrixes with smaller dimensions 
and moreover, if the penalization λ is nonzero value, 
it keeps redundant properties (if it exists). It also can 
be used for accomplishment of additional control 
requirements. 

Furthermore, the advantages of root form of the quadratic 
criterion are used in this part. They are marked out by 
compact notation and good preparation for operations 
with huge matrixes. 

To start derivate Predictive Control in the root form, 
let us unify predictive models (21) and (26) arisen 
from previous section as 

 uGfx +=)  (31) 

The equation (31) expressed generally the both models 
saving their meaning. Then the derivation can be 
provided for the both simultaneously. 

For predictive control we use quadratic criterion 

 ( ) ( ) }{  uλλuwxwx TTT
kJ +−−= ))ε  (32) 

which we rewrite in square root form 
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Now we can work only with the square root 
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J is a column vector with its Euclidean norm being 
the cost value of the root of the scalar criterion (32). 

Firstly, the expression for prediction is substituted 
in the root (34) and it is adjusted to the form, where 
control actions u are in a separate term 
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Consecutively, we look for such u, which minimizes 
the Euclidean norm. This is fulfilled, if the J is 
annulled 
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which is an overdetermined system of equations 
(more rows tan columns) for the optimal control u: 

 0buA =−  (37) 

For solution, the orthogonal triangular decomposition 
(Lawson et al. 1974) is used. It reduces excess rows 
of matrix A [(2·N·n)×(N·n)] and elements of vector b 

[2·N·n] (N is an horizon, n is a number of DOF) 
to upper triangular matrix R and vector c as follows: 
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Vector cz is a residuum vector, whose Euclidean 
norm |cz| is equal to the square root value of the 
criterion (33). 

For the solution, we need only upper part of the system 
(39), which can be simply solved for unknown u 
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Since the matrix R1 has a form of upper triangle, 
we can use back-run procedure. By such computation 
we obtain only fictitious general force effects u  = h 
or its increments u =∆h, from which only the first 
subvector (kth step) is used respectively. Thus, 
for incremental algorithm the force effects from previous 
time step must be added 
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Then, it order to obtain the real actuators u, 
the equation (6) must be solved based on h for u. 
As mentioned, its solution is not unique. It generally 
represents deficient rank system, where we can use 
pseudo-inverse operation (Lawson et al. 1974). 

A graphical representation of Predictive Control 
is shown in Fig. 5. 
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Fig. 5. Scheme of control circuit with Generalized 
Predictive Control (GPC) and robot. 

Scheme generally represents the both square root 
algorithms. The recomputation (6) is hidden in the block 
”DEMUX”. 

 

 

 

 



5 SIMULATIONS AND CONTROL IN REALITY 

For simulations and also for real control was 
considered the parallel structure shown in Fig. 6. 
  

 
Fig. 6. Laboratory model of planar redundant parallel 

robot. 

For laboratory tests the standard hardware and 
software tools (Real Time Workshop, MATLAB, 
SIMULINK, dSPACE, DSP, DC motors). 

The following figures show results for trajectory 
in Fig. 7. It was planned according to classical 
kinematic laws and it provides smooth and continuous 
trends of velocities and continuous and segmentally 
smooth trends of accelerations. 
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Fig. 7. Trajectory used for the tests. 

Fig. 8 and Fig. 9 show trends of actuators (vertical 
axes) in following order corresponding with 
geometrical locations of the drives: 
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The time horizontal axes are considered in seconds. 
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Fig. 8. Increase of undesirable part in I/S channels 

(0 ÷ 15.8 s) and compensation (15.8 s →) during 
control (or staying) on final position ([x = 0.25 m; 
y = 0.25 m; ψ - 90 °]) 

Fig. 8 corresponds with theory and its explanatory 
figure (Fig. 2) in section 3. The conflicts of drives 
occur in the most cases after certain delay, when, 
by influence of kinematic description inaccuracy 
(discrepancies of laboratory model with kinematic 
description), the effect of inaccuracy is accumulated 
in sum channel of PSD controller. Due to 
compensation according to eq. (12) the decrease and 
consecutively stabilization of actuator values appear. 
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Fig. 9. Comparison of time histories of torques with 

Predictive Control and PSD control. (Time 
histories in the same color mark decentralized 
PSD control). 



Predictive control algorithm achieves comparable 
results with PSD control and furthermore it reaches 
the lowest load of the motors (property of multi-step 
strategy, Fig. 9). The same level of qualitative results 
is caused by hardware constraints (accuracy of 
sensors tracking the motion of the robot. However, 
during the real tests the question of steady control 
error appears. It can be caused by absence of integral 
element. Thus the incremental approach is derived. 
At present, it is successfully simulated and it gives 
identical results as are discussed above. 

6 CONCLUSION 

The redundant parallel structures represent promising 
solutions of industrial robots or machine tool 
applications. Their control is not a simple and fully 
investigated problem. The paper describes utilization 
of classical PID/PSD modified by compensative 
block decreasing the influences in setSISO concept 
and advanced high-level model-based design presented 
by General Predictive Control, which solves directly 
drive cooperation (removes possible drive fighting) 
in redundant parallel structures and which is able to 
match additional control requirements. 
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