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Abstract. The problem of incorporating user’s knowledge – possibly uncertain and/or contradictory
– is inspected. Bayesian methodology together with a technique of generating fictitious data are
used for computing appropriate initial conditions of recursive least squares for estimating parameters
of Gaussian ARX model. Resulting algorithms respect different uncertainty of particular pieces of
available information.
From engineer’s view point, the paper presents algorithms which translate “technological” knowledge
of the user into probabilistic language which is usually foreign to him.
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Introduction

Standard self-tuning controllers are based on identi-
fication combined with an appropriate controller syn-
thesis. The synthesis transforms estimates of the
controlled-system parameters into controller param-
eters. Consequently, the control quality depends sub-
stantially on the identification results. This depen-
dence is especially apparent at the beginning of adap-
tation process: the designed controller is immediately
applied and the erroneous estimates may result in wild
changes of the input signal. Such excitation is quite
favorable for identification itself but it is undesirable
both for the technology and users. The remedy is to
incorporate as much available information about the
system as possible into the estimation start-up.

Success of any identification is conditioned by the
amount of the relevant information supplied about the
controlled system. The informational content of data
is case dependent and its variations influence substan-
tially length of the parameter-learning period. Again,
the initiation is important.

To summarize, the quality of closed-loop transients
when using self-tuning controller depends directly on
the identification results and any piece of information
should be incorporated. No source of knowledge (per-
sonal experience, physical analysis, previous experi-
ments, etc.) should be a priori omitted.

The problem of including prior knowledge in the
parameter estimation by (recursive) least-squares
((R)LS) is discussed repeatedly. For instance, in [1]
constrained LS and damped LS are mentioned and
a new functionally constrained LS method proposed.
They represent the methods which imbed available
knowledge into recursive part of the estimator.

A systematic incorporation of user’s knowledge into

the RLS start-up has been almost unsupported. In

this respect, some possibilities are treated in [3], [4],

where the solution is based on a use of “fictitious”

data. This paper continues in this line. A deeper un-

derstanding offers almost cook-book recipes for stan-

dard situations and serves as a source for mastering

of this useful technique.

Theoretical background

Bayesian methodology describes uncertainties – ir-
respectively of their source – in probabilistic terms. In
the treated cases, we can deal with probability den-
sity functions (p.d.f.). With a slight abuse of notation,
p(A|B) will denote the p.d.f. of an uncertain (random)
variable A conditioned on B (the random variable, its
realization and the corresponding p.d.f. argument will
not be distinguished, as usual).

In the adopted framework, the uncertainty about
a (multivariate) unknown parameter Θ is fully de-
scribed by a prior p.d.f. p(Θ|D(0)). The symbol D(0)
is a formal label for the information available. If this
information extends to D(t) – for instance, by mea-
suring data at discrete time moments 1, 2 . . . , t – the
complete information compresses into the posterior
p.d.f. p(Θ|D(t)).

Proposition 1.[Bayes rule] The prior and posterior
p.d.f.s are related by Bayes formula

p(Θ|D(t)) =
p(D(t)|Θ)p(Θ)∫
p(D(t)|Θ)p(Θ) dΘ

∝ p(D(t)|Θ)p(Θ)

(1)
where ∝ denotes equality up to a Θ-independent nor-
malizing factor. The p.d.f. p(D(t)|Θ) which links the
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measured (uncertain) data to the unknown parameter
has to result from the system model.
Proof. Elementary theorem of probability theory 2

We shall use the Bayes rule specialized for the pa-
rameter having two components Θ = (Θ, r), regres-
sion coefficients (Θ) and a noise dispersion (r). The
measured data are formed by the sequence of pairs
D(t) = {(y(1), u(1)), . . . , (y(t), u(t))} where

y(t) is the system output (here, the single-variate case
is treated without loss of generality [6]);
u(t) is an exogenous variable (possibly multivariate)
fed into the identified system (usually, the system in-
put) which is supposed to fulfill so called natural con-
ditions of control [8] (met, loosely speaking, for any
input generator for which Θ is an unknown parame-
ter).

Proposition 2.[Bayes rule and likelihood function]
Under the natural conditions of control, it holds

p(Θ, r|D(t)) ∝ L(Θ, r|D(t))p(Θ, r|D(0))

where the likelihood function L(Θ, r|D(t)) is defined

L(Θ, r|D(t)) =

t∏
i=1

p(y(i)|D(i− 1), u(i), Θ, r)

and understood as a function of the parameters Θ, r.
Proof. See e.g. [8] 2

The conditional p.d.f.s p(y(i)|D(i − 1), u(i), Θ, r)
which link the observed data to unknown parameters
must be defined by the system model [8].

Remarks
1. Notice the recursive nature of Bayes rule: If D(t)
extends to D(t̄), t̄ ≥ t, the posterior p.d.f. p(Θ|D(t))
plays the role of the prior p.d.f. for determining
p(Θ|D(t̄)).
2. The necessity to specify a prior p.d.f. is a frequent
objection against Bayesian formalism. It is, however,
always possible to use a noninformative (i.e. suffi-
ciently flat) prior p.d.f. when there is real lack of prior
information.
3. If some prior information is available Bayesian set-
up opens a gate for its systematic exploitation. The
practical construction of the relevant p.d.f. is, how-
ever, non-trivial especially when diverse sources are
combined. This paper provides the user with a sys-
tematic support for this purpose. It uses the direct
consequence of the remarks 1 and 2:

If the available prior information can be formalized
as a (fictitious) measurement of data on the inspected
system, the prior p.d.f. can be generated according to
Bayes rule applied to them, starting from the nonin-
formative prior p.d.f.

Bayesian estimation of ARX model
We shall present Bayesian view on RLS by applying
Bayesian estimation to ARX model.

The Gaussian ARX model gives p(y(t)|D(t −
1), u(t), Θ, r) = N (y(t)|Θ′ψ(t), r) where

Θ is the iψ-vector of unknown regression coefficients,
′ means transposition;
r > 0 is the unknown conditional dispersion of the

output;
ψ(t) is the regression iψ-vector, i.e. a known function
of D(t− 1), u(t);
N (y|ŷ, r) denotes the Gaussian p.d.f. determined by
the expected (E ) value ŷ of y and by a dispersion r.

For the ARX model, the likelihood takes the form

L(Θ, r|D(t)) ≡ GiW (Θ, r|V (t), ν(t)) ∝

∝ r−0.5ν(t) exp

{
− 1

2r

[
−1
Θ

]′
V (t)

[
−1
Θ

]}

where GiW is Gauss-inverse-Wishart p.d.f. and the
data D(t) are compressed into the sufficient statistics

ν(t) = ν(t− 1) + 1 (2)

V (t) =

[
Vy(t) V ′

ψy(t)
Vψy(t) Vψ(t)

]
= V (t− 1) + Ψ(t)Ψ′(t)

ν(0) = 0, V (0) = 0.

V (t) is an (iψ +1, iψ +1)-symmetric positive semidefi-
nite matrix which becomes positive definite if the data
D(t) have produced at least iψ + 1 linearly indepen-
dent data vectors Ψ′(·) = [y(·); ψ′(·)].
Proof. See e.g. [8]. 2

Proposition 3.[Reproducing prior p.d.f. for the ARX

model] Suppose that the function L(Θ, r|Vo, νo) ∝
GiW (Θ, r|Vo, νo) can be normalized to a p.d.f.,
i.e. the symmetric positive definite (iψ + 1, iψ +
1) matrix Vo and the scalar νo guarantee 0 <∫

GiW (Θ, r|Vo, νo) dΘ dr < ∞. Then, the prior
p.d.f. p(Θ, r|D(0)) ∝ L(Θ, r|Vo, νo) reproduces,
i.e. keeps the fixed functional form p(Θ, r|D(t)) ∝
GiW (Θ, r|V (t), ν(t)) with statistics evolving accord-
ing to the recursions (2) with zero initial conditions
replaced by ν(0) = νo, V (0) = Vo.
Proof. Straightforward consequence of Prop. 2. 2

Remarks
1. The ARX model is usually written in the “equa-
tion” form y(t) − Θ′ψ(t) = e(t) where the e(t) is
white Gaussian noise, i.e. p(e(t)|D(t−1), u(t), Θ, r) =
N (e(t)|0, r). This form stresses time-invariance of the
noise dispersion, loosely speaking, a common uncer-
tainty level is assumed. Only under this assumption,
the data vectors Ψ(t) sum into the statistic V (·) with
a constant weight. Moreover, the noise has to be
sequence of uncorrelated random variables, otherwise
optimality of RLS is lost.
2. Proposition 3 illustrates the conclusion made at
the end of previous paragraph: Vo, νo which shape
prior p.d.f. can be thought as if they were found by
measuring data on ARX system and using them for
modification of a noninformative (pre)prior p.d.f.

Properties of GiW distribution
Let us summarize the facts relevant to the aim of the
paper.

Proposition 4.[LS form of the GiW p.d.f.] The
Gauss-inverse-Wishart p.d.f. of a real iψ-vector Θ and
of a positive dispersion r reads

GiW (Θ, r|Θ̂, P, r̂, κ) ∝ r−(κ+iψ+2)/2

exp
{
− 1

2r
[(Θ− Θ̂)′P−1(Θ− Θ̂) + κr̂]

}

P > 0, r̂ > 0, κ > 0
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where the statistics determining this form of the GiW
p.d.f. are related to the statistics V, ν (2) as follows

P = V −1
ψ , Θ̂ = PVψy (3)

r̂ =
λ

κ
, λ = Vy − V ′

ψyV −1
ψ Vψy,

κ = ν − iψ − 2 > 0.

Proof. By completing squares with respect to Θ and
by using the partitioned form (2) of V . 2

Proposition 5.[Selected properties of the GiW dis-

tribution] For the GiW distribution, it holds

p(Θ) ∝
{
λ + (Θ− Θ̂)′P−1(Θ− Θ̂)

}−(κ+1)/2

E [Θ] = E [Θ|r] = Θ̂ cov[Θ] =
λ

κ
P (4)

E [r] = r̂ =
λ

κ
, cov[r] =

λ2

(κ− 2)(κ− 4)

Proof. See e.g. [9] 2

Remarks
1. The statistics Θ̂, P, r̂ are well known least-squares
quantities.
2. The definitions (3) and the recursions (2), together
with the well known matrix-inversion lemma, lead to
updating formulae for least-squares statistics, to re-
cursive least squares (RLS).

If the time argument is suppressed and the updated
quantities are distinguished by the subscript n, the
evolutions read

Θ̂n = Θ̂ +
Pψ

1 + ζ
ê, ê = y − Θ̂′ψ,

Pn = P − Pψψ′P
1 + ζ

, κn = κ + 1,

ζ = ψ′Pψ, r̂n = r̂ +
1

κn

[
ê2

1 + ζ
− r̂

]
.

3. The prior p.d.f. is defined by all four variables
Θ̂, P, λ, κ. Neglecting this fact leads easily to disap-
pointing results. For instance, a lot of effort is often
spent when selecting the initial point estimate Θ̂ of
the regression coefficients Θ. Looking, however, at
the above updating formula, it is clear that a single
step can spoil even the exact estimates if there is a bit
of noise and the gain (determined by P ) is improperly
chosen.

This possibility is far of being academical as a large
diagonal P is often recommended and used.

Even if the P -level is reasonable, the diagonal choice

damages the carefully selected point estimates. The

Bayesian interpretation of P implies it clearly: unre-

alistic independence of Θ entries is modelled by the

diagonal matrix P .

The problem and its solution

From a formal point of view, a prior p.d.f. should
be constructed that properly reflects the state of our
knowledge. From an algorithmic view point, the suf-
ficient statistics Θ̂, P, λ, κ – i.e. initial conditions for
RLS – reflecting our knowledge are searched for.

We shall restrict ourselves to the quantification of
the information about the regression coefficients. The

initial point estimate r̂ of the noise dispersion r is
assumed to be at disposal. Neither its construction
nor a more detailed specification of uncertainty about
r will be addressed in this paper.

The advocated procedure will be presented by de-
scribing cornerstones of the problem and its solution,
namely,

• typical sources of prior information;
• generating of fictitious data;
• scaling of fictitious data;
• putting fictitious data together before continuing on
real data.

Notation. The subscript f will be used at the
discrete-time label in order to stress difference be-
tween the time of fictitious and real measurements.

Typical sources of prior information.
The assumed controlled system is usually a complex
dynamic object. When identifying it for self-tuning
control we try to estimate the coefficients of the ARX
model of a fixed structure (order). It is not so easy
to guess the values of its parameters, but some partial
information about the system almost always exists. It
could have the form of

• partial knowledge of the transfer function
∗ some time constant (usually the largest),
∗ approximate static gain;

• information about the frequency response
∗ cut-off frequency,
∗ gain (and phase) at a given frequency;

• lower and upper limits of a typical step response;
• a simpler regression model;
• any kind of “simulation” model, even nonlinear.

We call any of these information sources a partial
model. The information contained in the partial mod-
els is of a different origin and/or precision. Some of
them can be based on relatively precise measurements
(frequency response at specific frequency or in a fre-
quency range) others are based on a vague experience
(time constants).

Clearly, the contribution of partial models to overall
picture has to differ according to its precision specifi-
cation: a partial model can be used appropriately only
if its uncertainty (belief in its validity) is supplied.
Data derived from the partial models for generating
initial values of RLS have to reflect this uncertainty.

Idea of fictitious data
At least in some cases, it is easy to map knowledge re-
flected by partial models on the point estimate Θ̂, but
a direct construction of the relevant covariance matrix
P is far to be trivial. This makes quite appealing the
outlined idea of “fictitious” data:

Map a knowledge reflected in partial models
onto such data Ψ′ = [y; ψ′] that you cannot
distinguish whether they were measured on
your system or they are just a “fiction”.

This vague and seemingly unnecessary idea – justified
formally by the recursive nature of Bayesian estima-
tion – helps surprisingly much in facing even quite
complex situations. The strength of fictitious data
stems from

• simplicity of their generating by partial models;
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• ability to correlate the available knowledge to the
signal values really measured;
• need to handle (hyper)planes only which are simpler
objects than (hyper)ellipsoids induced by covariances.

To make the exposition transparent only single input
ARX models linear-in-data are treated, i.e.

Ψ′(t) = [y(t); . . . , y(t− ly), u(t), . . . , u(t− lu)] (5)

with some “orders” ly, lu ≥ 0.

Unscaled fictitious data
By definition, fictitious data express affine relation
among regression coefficients of ARX model. Conse-
quently, scaling of these data is arbitrary until uncer-
tainty level is taken into account. The choice of proper
scaling is postponed to the next paragraph. Arbitrari-
ness is stressed by introducing a scaling factor a 6= 0.

In some cases, the data vector Ψ can be found di-
rectly. An indirect construction is more frequent: Ψ is
created by passing (mentally) appropriate input sig-
nal(s) through a model.

Static gain. The knowledge of the static gain G is
an example when direct approach can be used. The
fictitious data Ψ′ = [aG; aG, ..., aG, a, a, ...a] (for any
a 6= 0) fit to systems with the gain G.

Frequency response. Let the input considered be

u(tf ) = cos(ωtf ), specified by a fixed frequency ω.
Then – in steady state – the output is expected to
be y(tf ) = Y (ω)cos(ωtf + φ(ω)). The inclusion of
all pairs Ψ′(tf ) = [y(tf ); ψ′(tf )] for infinite amount
of tf can be shown to be equivalent to the following
fictitious data vectors [5]

Ψ′c(ω) = a[Y (ω) cos(φ); Y (ω) cos(ω + φ), ..,

Y (ω) cos(lyω + φ), 1, cos(ω), .., cos(luω)]

Ψ′s(ω) = a[Y (ω)sin(φ); Y (ω) sin(ω + φ), ..,

Y (ω) sin(lyω + φ), 0, sin(ω), .., sin(luω)].

The derivation rests on the identity
Ψ(tf ) = cos(ωtf )Ψc − sin(ωtf )Ψs.

Time constant. The information about a time con-
stant T can be represented in various ways. The
knowledge of the frequency response described above
is one possibility. Knowledge of a set of measured
(thought of or designed when constructing the pro-
cess to be controlled) step responses is other possibil-
ity. For it, the corresponding input (unit step) and
output data pairs are natural entries of the fictitious
data vectors.

If there is a true dominating time-constant, then it
is reasonable (for the given purpose) to approximate
the system by the first order model which responds by
y(tf ) = 1 − exp{−tf/T} on the unit-step input (unit
gain G is assumed for simplicity). These data have to
be appropriately paired into data vectors (5).

Simulation model. Experiments with simulation
models are natural sources of input-output data, i.e. of
the fictitious data. Typically, quite complex and/or
non-linear models are at disposal. Simulation runs are
preferable to the often applied numerical/analytical
model reductions/approximations as they preserve (in
the generated data) the information about the dis-
crepancies of the simulated and ARX models. The

approximation takes place at the moment when the
data are used in RLS. Note that the discrepancy will
increase the uncertainty of this partial model.

Scaling of fictitious data
We have shown how to generate – up to scaling – the
data representing the prior knowledge. The scaling
ambiguity will be removed here and appropriate ex-
amples will be given.

Essentially, scaling factors of respective fictitious
data vectors are used for balancing the respective un-
certainties attributed to them. We rely on:

Proposition 6.[Scaling of fictitious data with un-

certainty in fictitious noise] Let us assign to ficti-
tious data vectors Ψ(tf ) the fictitious noise e(tf ) =
−[−1, Θ′]Ψ(tf ) with uncertainty given by the disper-
sions γ2(tf ), γ(tf ) 6= 0. Then, the scaled data

Ψ̃(tf ) = γΨ(tf )/γ(tf ), with a tf -invariant γ 6= 0

have to be used in RLS.
For notational simplicity, we select γ = 1.

Proof. As recalled above, (fictitious) data vectors may
enter into LS with a common weight only if the noise
has a constant dispersion, say γ2. Elementary prop-
erties of moments imply that ẽ(tf ) = γe(tf )/γ(tf )
have the required dispersion γ2. This scaling and
the definition of the fictitious noise implies the
rest ẽ(tf ) = γe(tf )/γ(tf )= −γ[−1, Θ′]Ψ(tf )/γ(tf )=
−[−1, Θ′]Ψ̃(tf ).

2

Remarks
1. The requirement to know (time-variant) fictitious
noise dispersions seems to be demanding. Often, how-
ever, the intervals [y0(tf ) − γ(tf ), y0(tf ) + γ(tf )] are
available in which we expect (with high confidence)
values of y(tf ) for given ψ(tf ). For Gaussian dis-
tribution, which is implicitly attributed to the ficti-
tious noise, the standard deviation is proportional to
the interval length. Thus, the data [ỹ(tf ); ψ̃(tf )] =
[y(tf ); ψ′(tf )]/γ(tf ) lead to the fictitious noise with
a common dispersion. Specific value of this disper-
sion depends on the numerical meaning of “high con-
fidence”. As stated in Proposition 6, this ambiguity
makes no harm. The meaning itself, however, should
not vary within the fictitious data set.
2. If our uncertainty is related to other variables then
to the fictitious noise the uncertainty have to be re-
calculated, usually with a help of the partial model
itself. A typical exploitation of “extreme” realizations
to this purpose can be seen on the following example:

Let a dominant time constant T be expected in the
range [T , T̄ ]. For unit step on input, we get (for G = 1)
probable ranges of the outputs

y(tf ) ∈
[
1− exp{−tf/T̄}, 1− exp{−tf/T}

]
.

These intervals can be expressed in terms of the mean
trajectory y0(t) = 1 −

(
exp{−t/T̄}+ exp{−t/T}

)
/2

and of the corresponding (time-variant) half-width
(proportional to the standard deviation of the noise)
γ(tf ) =

(
exp{−tf/T̄} − exp{−tf/T}

)
/2, i.e. in the

style discussed in the remark 1. It leads directly to
the scaled fictitious data vectors

[ỹ(tf ); . . . , ỹ(tf − ly), ũ(tf ), . . . , ũ(tf − lu)] =

= [y0(tf ); . . . , y0(tf − ly), 1, . . . , 1]/γ(tf ).
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3. There are partial models for which the above reduc-
tion of uncertainty to the noise part is hardly possible.
Nonlinear stochastic simulation models are typical ex-
amples of this type. For these cases, no constructive
cook-book exists, just a general guideline: try to keep
the noise level as constant as possible by a suitable
data re-normalization.

Putting fictitious data together
Before applying RLS to the fictitious data for cor-
recting a vague prior information by the information
contained in partial models we should check the re-
maining RLS applicability condition, i.e. whiteness of
the fictitious noise.

As the particular pieces of information are usually
quantified independently (for instance, by several ex-
perts) the whiteness violation is more the rule than
an exception. The problem is faced by the two-stage
procedure:

• application of RLS irrespectively of the whiteness
violation gaining the RLS statistics Θ̃, P̃ , λ̃, κ̃;
• modification of the statistics Θ̃, P̃ , λ̃, κ̃ to the initial
conditions of RLS Θ̂(0), P (0), λ(0), κ(0).

Loosely speaking, the modification is based on an op-
timal approximation of the statistics Θ̃, P̃ , λ̃, κ̃ by an-
other set which could result from a correctly applied
RLS. A precise formulation can be found in [5]. It
leads to the following solution

Θ̂(0) = Θ̃, κ(0) = min(κ̃, dim(Θ))

λ(0) = the best estimate of noise level, cf. Prop. 5.,

P (0) =
λ̃

λ(0)
P̃ . (6)

Instead of describing technical details of the approxi-
mation we give:

Explanatory remarks
1. The equality Θ̂(0) = Θ̃ is intuitively appealing and
no other alternative can be expected.
2. The need to choose λ(0) is enforced by our assump-
tion that the exploited partial models bring no infor-
mation about it.
3. The LS remainder λ̃ is the most important by-
product gained in the first stage of putting the fic-
titious data together.

At interpretation level, non-whiteness means that
the mixture of the following cases occur:

∗ the fictitious data are repetitive: the remainder stops
to grow after repetition, however, κ̃ increases irrespec-
tively of it;
∗ the fictitious data are contradictory: equation errors
are greater than expected as the partial pieces of in-
formation are insufficiently mutually compatible.

To summarize, the more fictitious noise differs from
the ideal non-repetitive and non-contradictory case
the more the estimate of the fictitious-noise disper-
sion differ from unity.
4. The clipping the κ-value at dim(Θ) (resulting
from the approximation) is intuitively appealing. The
statistic κ can be interpreted as the counter of the fic-
titious data vectors used in RLS (the number of equa-
tions). If the number of these equations is smaller
than the number of estimated parameters then the

fictitious noise (equation errors) can always be taken
as white.
5. The important re-normalization of the covariance
matrix (implied by the referred approximation, too)
can be interpreted as invariance of the coefficient co-
variance (cf. (4)) when passing from the fictitious noise
level to the real noise level.

cov(Θ) =
λ̃

κ(0)
P̃ =

λ(0)

κ(0)
P (0) ⇒ P (0) =

λ̃

λ(0)
P̃ .

6. The re-normalization of the matrix P̃ (0) can be
understood also as an additional normalization of the
whole set of the fictitious data: the more contradictory
the data set is, the smaller weight it gets.

Algorithmic Summary

1. Start with non-informative initial conditions:

P = 1/εI, ε > 0 very small, λ = 1, Θ̂ = 0, κ = 0.

2. Create pairs Ψ(tf ) = [y(tf ); ψ′(tf )] and scale them

by the standard deviation γ(tf ) covering the expected

variations of the output y(tf ) to Ψ̃(tf ) = Ψ(tf )/γ(tf ).

3. Process all data Ψ(·) by RLS algorithm without

forgetting.

4. Transform the gained statistics Θ̃, P̃ , λ̃, κ̃ into the

RLS initial conditions Θ̂(0), P (0), λ(0), κ(0) according

to the formulae (6).

Simulation examples

Second order system with the transfer function F (s) =
1/(s+1)2 is the controlled system used in all examples.
A colored noise – gained by passing white noise of
unit intensity through the same transfer function –
is added to the system output. The sampling period
ts = 0.026sec with zero order hold gives rise to the
regression model

y(t) =

2∑
i=1

aiy(t− i) +

2∑
i=0

biu(t− i) + e(t)

with the coefficients Θ′ = [a1, a2, b0, b1, b2] =
[1.9487,−.9493, .0003322, .0003265, 0].

The self-tuning controller approximately minimizes
stationary quadratic criterion with the unit output
penalty and the weight on u2 equal to 1e-4. It uses a
certainty-equivalence version of a strategy called iter-
ations spread in time [2].

The influence of the incorporated information is
judged according to the behavior of the input signal
on the time interval corresponding to 50 sampling in-
stants. The loss

∑50

i=1
u2

i is evaluated. This loss re-
flects overall differences in the tuning quality as the
changes in the output behavior are negligible for the
system assumed. The loss values presented in tables
should be compared to the ideal loss 52 (reached under
complete knowledge) and to the loss 10 900 accumu-
lated when a non-informative prior p.d.f. is used.

The tables contain also the gained initial estimates
Θ̂(0). The initial values of P (0) are not presented
as they cannot be grasped by human beings. They
are, however, even “optically” far from the textbook
standard 1/εI.
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Thus, a tf -th row of tables contains the es-
timate gained after including the fictitious data
Ψ(1), . . . , Ψ(tf ) and the loss reached when starting
from the corresponding RLS initial conditions.

Example 1. It illustrates the influence of a succes-
sive inclusion of non-contradictory data representing
correct information about the gain and phase at fre-
quencies ω = {0.1, 5}sec−1. Uncertainties assigned to
these values are constant, given by γ = 0.1.

According to the presented theory, the above in-
formation converts into four vectors of fictitious data
Ψc(ω = 0.1), Ψs(ω = 0.1), Ψc(ω = 5), Ψs(ω = 5)
which are fed in RLS as Ψ(tf ), tf = 1, 2, 3, 4.

tf â1 â2 b̂0 b̂1 b̂2 Loss

1 0.195 .195 .197 .197 .197 130
2 0.499 .499 –.004 –.001 .006 128
3 1.554 –.558 .414 –.753 .343 118
4 1.555 –.560 .371 –.753 .386 175

Example 2. It illustrates a positive influence even

(reasonably) biased prior information. It presents re-
sults gained when two different regression models (dif-
fering from the true one) were used as the information
sources. They correspond to the systems

Fa = 1./(s + .7)2 and Fb = 1/(s + 1.3)2

sampled with the period 0.02sec. Three points taken
from different part of the step response (at time mo-
ments {t1, t2, t3} = {0.2, 2, 5}sec) are used for both
models. Again, the common uncertainty γ = 0.3
is assigned to all data. RLS modify the noninfor-
mative priors by the data {Ψ(tf ), tf = 1, . . . , 6} =
Ψa(t1), Ψa(t2),Ψa(t3), Ψb(t1), Ψb(t2), Ψb(t3) (the sub-
script a(b) corresponds to the underlying system).
When looking at the table we should recall that fic-
titious input are constant in this case, thus, the ob-
served equality of b̂s is natural.

tf â1 â2 b̂0 b̂1 b̂2 Loss

1 0.097 0.098 7.21e-3 7.21e-3 7.21e-3 411
2 0.499 0.500 1.98e-3 1.98e-3 1.98e-3 149
3 1.949 –0.949 1.65e-4 1.65e-4 1.65e-4 143
4 2.003 –1.003 6.20e-5 6.20e-5 6.20e-5 129
5 1.991 –.9916 6.61e-5 6.61e-5 6.61e-5 133
6 1.989 –.9903 6.72e-5 6.72e-5 6.72e-5 135

Example 3. Results with two partial models of
different uncertainty are presented. The first data
Ψ(1), Ψ(2) comprise the information about the re-
sponse of the true model F (s) on the frequency ω =
0.1sec−1. The assigned uncertainty is γ1 = 0.01. The
data Ψ(3), Ψ(4) reflect step response of the above sys-
tem Fb at two extreme points 0.2, 5 sec. The uncer-
tainty assigned to Ψ(3), Ψ(4) has the common value
γ2 = 1.0.

tf â1 â2 b̂0 b̂1 b̂2 Loss

1 0.195 .195 .197 .197 .197 130
2 0.490 .495 9.5e-5 0.502 .010 134
3 0.579 –.418 .329 .003 –.324 120
4 1.761 –.764 .002 .007 –.007 167

Conclusions

The paper describes and motivates a way of incor-
porating user’s knowledge of a different origin and na-
ture into the initial conditions of RLS. The described
algorithm is quite general with respect to information
sources (theory, experience, simulation models) and
their mutual relations (contradictions, repetitions and
uncertainties in data are allowed). Plausible conse-
quences of including such an information into a start-
up of self-tuners are illustrated on simulated examples.

The presented theory has Bayesian motivation, but
we have tried to keep in touch with RLS framework
as much as possible in order to:

∗ demonstrate that Bayesian view-point substantiates
subtle but important algorithmic steps which can be
found sensible even without the Bayesian framework
but which are difficult to invent ad hoc;
∗ provide a methodology-independent cook-book for a
satisfactory start up of RLS.

It could be objected that it has little sense to care
much about initial conditions of RLS as they are
mostly applied with a sort of (e.g. exponential) for-
getting and their influence is gradually lost. The im-
provements of the transients of closed loops with self-
tuners make this objection a bit weaker but the direct
possibility to use the constructed p.d.f. permanently
as the reference for restricted forgetting [7] refutes the
objection, hopefully, completely.
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