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Abstrakt

The basic idea of boosting is to increase the pattern recognition accuracy by
combining classifiers which have been derived from differently weighted versions
of the original training data. It has been verified in practical experiments that the
resulting classification performance can be improved by increasing the weights
of misclassified training samples. However, in statistical pattern recognition, the
weighted data may influence the form of the estimated conditional distributions
and therefore the theoretically achievable classification error could increase. We
prove that in case of maximum-likelihood estimation the weighting of discrete
data vectors is asymptotically equivalent to multiplication of the estimated dis-
crete conditional distributions by a positive bounded function. Consequently, the
Bayesian decision-making is shown to be asymptotically invariant with respect
to arbitrary weighting of data provided that (a) the weighting function is defined
identically for all classes and (b) the prior probabilities are properly modified.

1 Introduction

The performance of pattern recognition methods can be improved by applying some
combining technique to a set of classifiers designed for a given problem. There are
different possibilities to create suitable classifier ensembles [10]. Bagging constructs
the classifiers by sampling the training data set, random subspace method is based on
sampling the feature set and boosting derives the classifiers from differently weighted
versions of the original training set.

The most widely used boosting algorithm is AdaBoost [3]. In AdaBoost the base
classifier is applied iteratively to modify the weights of data vectors in the training set.
At each iteration the weights of the misclassified examples are increased to design a
more successful classifier. In this way AdaBoost constructs increasingly difficult lear-
ning problems and the corresponding classifiers are combined by a weighted vote into
the final decision rule. It has been verified that boosting can convert a weak classifier
to a strong decision function [3, 4, 8, 10, 12]. Generally the effect of boosting increases
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with the number of combined classifiers. However, in case of good classifiers, boosting
may occur unproductive or counterproductive [12].

In the present paper we consider the problem of weighting discrete training data
in connection with the optimization of probabilistic neural networks. We analyze first
some basic theoretical aspects of weighting data in case of maximum-likelihood esti-
mation of discrete probability distributions. In particular we show that the weighting
of discrete data vectors is asymptotically equivalent to the analogous weighting of the
estimated discrete conditional distributions. In view of this fact the Bayesian decision-
making is shown to be asymptotically invariant with respect to arbitrary weighting
provided that (a) the weighting function is defined identically for all classes and (b)
the prior probabilities are properly modified. Consequently, the Bayes classification
error is also asymptotically invariant to arbitrary boosting provided that the combined
classifiers satisfy the above properties.

The proposed modification of boosting has been applied to statistical recognition
of unconstrained hand-written numerals from the database of Concordia University,
Montreal, Canada whereby the class-conditional probability distributions have been
approximated by means of multivariate Bernoulli mixtures. The maximum-likelihood
estimates of the included parameters have been computed by using EM algorithm [1].

2 Probabilistic neural networks

Considering a finite set of mutually exclusive classes Ω = {ω1, . . . , ωK} we assume that
some multivariate binary observations

x = (x1, x2, . . . , xN) ∈ X , X = {0, 1}N (1)

occur with the respective class-conditional probability distributions P (x|ω)p(ω). We
approximate the unknown distributions by finite mixtures of product components:

P (x|ω) =
∑

m∈Mω

F (x|m,ω)f(m|ω), ω ∈ Ω. (2)

Here f(m|ω) ≥ 0 are the conditional probabilistic weights, F (x|m,ω) are the product
distributions

F (x|m,ω) =
∏

n∈N
fn(xn|m,ω), N = {1, 2, . . . , N} (3)

and Mω the index sets. If the probabilistic description is known then any new ob-
servation x ∈ X can be classified by means of the Bayes formula for posterior proba-
bilities

p(ω|x) =
P (x|ω)p(ω)

P (x)
, ω ∈ Ω. (4)

where
P (x) =

∑

ω∈Ω

P (x|ω)p(ω). (5)

To simplify notation we assume a consecutive indexing of components throughout the
classes. In this way the component index m uniquely identifies the class ω ∈ Ω and
therefore the parameter ω can be partly omitted in the following sections.
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The basic idea of PNN is to view the component distributions in Eq. (2) as formal
neurons. As the component distributions F (x|m,ω) must be normed on the input
space X , the corresponding neurons have to be connected with all input nodes. We
avoid this undesirable complete inter-connection property by using structural mixtures
[5, 7]. Introducing binary structural parameters φmn ∈ {0, 1} we define

F (x|m,ω) =
∏

n∈N
fn(xn|m,ω)φmnfn(xn|0)1−φmn (6)

where fn(xn|0) are some univariate background distributions usually defined as (non-
zero) unconditional marginals, i.e. fn(xn|0) = Pn(xn), n ∈ N . We can see that
F (x|m,ω) is always a multivariate Bernoulli distribution. Nevertheless, by setting
φmn = 0, any component-specific distribution fn(xn|m,ω) is actually replaced by the
respective fixed background distribution fn(xn|0). Assuming binary variables xn we
can write

θnm = fn(1|m), n ∈ N , (7)

fn(xn|m,ω) = θxn
nm(1− θnm)1−xn , xn ∈ {0, 1} (8)

and, making substitution (6) and (8), we obtain a modified distribution mixture con-
taining structural parameters:

P (x|ω) =
∑

m∈Mω

F (x|0)G(x|m,φm)f(m|ω). (9)

Here
F (x|0) =

∏

n∈N
fn(xn|0) =

∏

n∈N
θxn

n0(1− θn0)
1−xn (10)

is a nonzero “background” distribution common to all classes ω ∈ Ω and the component
functions G(x|m,φm) may be defined on arbitrary subspaces

G(x|m, φm) =
∏

n∈N

[
θxn

nm(1− θnm)1−xn

θxn
n0(1− θn0)1−xn

]φmn

(11)

according to the structural binary parameters φmn. It can be seen that the background
probability distribution F (x|0) can be canceled in the Bayes formula (4) and therefore
the posterior probability p(ω|x) is proportional to weighted sum of the component
functions G(x|m,φm) which can be defined on different subspaces. Note that (cf. Sec.
3) the optimization of the structural parameters φnm can be included into the EM
algorithm in full generality.

3 Boosting and finite mixtures

Assume that for each class ω ∈ Ω there is a training set

Sω = {x(1), . . . , x(Iω)}, x(i) ∈ X (12)

and in all classes the data vectors are weighted by a positive bounded function λ(x)
uniquely defined on X . Let us note that, in the framework of m.-l. estimation, arbitrary
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weighting of the training data is naturally realized by weighting the corresponding
terms of the likelihood function:

Lω =
1

Λ(Sω)

∑

x∈Sω

λ(x) log P (x|ω), (13)

Λ(Sω) =
∑

x∈Sω

λ(x). (14)

The weighted version of the likelihood function is equivalent to repeated occurrence of
data vectors in the training set Sω and therefore we can easily derive the corresponding
weighted modification of the structural EM algorithm (cf. [5, 6, 7]):

q(m| x) =
G(x|m,φm)f(m|ω)∑
j∈Mω

G(x|j, φj)f(j|ω)
, (15)

f
′
(m|ω) =

1

Λ(Sω)

∑

x∈Sω

λ(x)q(m| x), (16)

θ
′
nm =

1

Λ(Sω)f ′(m|ω)

∑

x∈Sω

xnλ(x)q(m|x), (17)

γ
′
nm = f

′
(m|ω)[θ

′
nm log

θ
′
nm

θn0

+ (1− θ
′
nm) log

(1− θ
′
nm)

(1− θn0)
],

φ
′
nm =

{
1, γ

′
nm ∈ Γ

′
m,

0, γ
′
nm 6∈ Γ

′
m,

, m ∈Mω. (18)

Here Γ
′
m is the set of r highest quantities γ

′
nm for a fixed m ∈ M and f

′
(m|ω), θ

′
nm,

and φ
′
nm are the new values of mixture parameters.

Obviously the weighted EM algorithm (15) - (18) converges monotonically to a
possibly local maximum and retains all its basic properties. We prove now the following
simple Lemma:

Lemma 1. Let Sω be a sample of independent observations identically distributed
according to an unknown discrete distribution P ∗(x|ω) and λ(x) be a positive bounded
function on X . The maximum-likelihood estimation of the unknown distribution based
on the weighted likelihood function Lω (cf. (13)) is asymptotically equivalent to m.-l.
estimation of the distribution

P̃ (x|ω) =
λ(x)

Λ∗ω
P ∗(x|ω), x ∈ X , (19)

Λ∗ω =
∑

x∈X
λ(x)P ∗(x|ω)

obtained by analogous weighting of the original distribution P ∗(x|ω).

Proof. Let us note that for the sample-size |Sω| approaching infinity we can write (cf.
(14))

Λ∗ω = lim
|Sω |→∞

Λ(Sω)

|Sω| =
∑

x∈X
λ(x)P ∗(x|ω) (20)
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and further (cf.(13))

L∗ω = lim
|Sω |→∞

{ 1

Λ(Sω)

∑

x∈Sω

λ(x) log P (x|ω)} =

= lim
|Sω |→∞

{ |Sω|
Λ(Sω)

∑

x∈Sω

ν(x|ω)

|Sω| λ(x) log P (x|ω)} = (21)

=
∑

x∈X
λ(x)

Λ∗ω
P ∗(x|ω) log P (x|ω). (22)

The proof is complete since the last expression is maximized by P (·|ω) = P̃ (·|ω).

From the above Lemma it follows that, for the sample-size approaching infinity, the
Bayesian decision-making is invariant with respect to boosting. More exactly, we prove:

Lemma 2. The posterior probabilities

p∗(ω|x) =
P ∗(x|ω)p∗(ω)

P ∗(x)
, ω ∈ Ω, x ∈ X (23)

are invariant with respect to weighting of the conditional distributions P ∗(x|ω) by a
positive bounded function λ(x) in the sense of the Eq.

p̃(ω|x) =
P̃ (x|ω)p̃(ω)

P̃ (x)
= p∗(ω|x), ω ∈ Ω (24)

which is satisfied for the weighted distributions

P̃ (x|ω) =
λ(x)

Λ∗ω
P ∗(x|ω), p̃(ω) =

p∗(ω)Λ∗ω
Λ∗0

, (25)

P̃ (x) =
λ(x)

Λ∗0
P ∗(x), x ∈ X , (26)

Λ∗0 =
∑

ω∈Ω

Λ∗ωp∗(ω). (27)

Proof. The assertion of the Lemma is easily verified by making substitutions from
(25) - (27) into (24).

Let us recall finally that, in practical experiments, the conditional distributions P̃ (x|ω)
estimated from weighted data have to be used for classification along with the estimates
of the recomputed prior probabilities p̃(ω). In particular we should use the estimates

p̃(ω) ≈ p∗(ω)Λ(Sω)

|Sω|Λ0

, Λ0 =
∑

ω∈Ω

p∗(ω)Λ(Sω)

|Sω| . (28)

in order to avoid an unnecessary increase of the classification error.
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4 Computational experiments

The weighted version of EM algorithm has been applied to recognize totally uncon-
strained hand-written numerals from the database of Concordia University, Montreal
(cf. [6, 7] for methodological details). The class-conditional distributions were approxi-
mated in the original 1024-dimensional space by the structural distribution mixtures
(9). In all experiments the parameters f(m|ω), θmn and φmn were estimated by means
of the EM algorithm of Section 3 for all class-conditional distributions. The iterative
procedure (15)-(18) was started randomly with different number of components M and
component-specific parameters r. For each combination of the parameters M, r first the
non-weighted EM algorithm was applied (i.e. with λ(x) = 1 for all x ∈ X ) and then
the modified EM algorithm weighted with the function λ(x). In general, 25 iterations
of EM algorithm were sufficient to achieve reasonable convergence.

In all experiments the weighting function λ(x) has been defined by means of the
initially estimated parameters as the entropy of the posterior distribution p(ω|x):

λ(x) = C0 +
∑

ω∈Ω

−p(ω|x) log p(ω|x). (29)

Here the entropy has been chosen as a measure of the decision complexity. A positive
constant C0, (C0 = 0.2 − 0.5) has been added because in the high-dimensional input
space (N = 1024) the entropy is frequently zero and a large portion of training data
would be suppressed completely.

Tabulka 1: The effect of data weighting on recognition accuracy in 6 independent com-
putational experiments. Here ε, εw are the (independently tested) classification errors
achieved with the non-weighted- and weighted training sets respectively.

Solution
∑

Mω r ε εw

1 994 70 .3175 .2110
2 500 100 .2455 .2430
3 696 400 .0555 .0585
4 592 500 .0520 .0445
5 400 500 .0500 .0575
6 498 600 .0450 .0455

We estimated the class-conditional probability distributions in 6 randomly initiali-
zed independent computational experiments. Table 1 displays the corresponding total
number of mixture components M (column 2) and the number of independent parame-
ters of components r (column 3). Classification error ε as verified by the independent
test set is given in column 4 and the last column shows the classification error εw ob-
tained by using weighted data vectors. The number of nonzero structural parameters
r =

∑
n φmn was identical in all components. In different experiments it has been set

to different values between r = 70 and r = 600 whereby the number of components of
the conditional mixtures has been chosen between Mω = 40 and Mω = 200.

In accordance with the published experience (cf. [12]) a strong improvement of the
classification error by means of data weighting was observed only in case of the worst
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classifier 1. In all other experiments the effect of weighting was rather moderate (2, 4)
or even counterproductive (3, 5, 6). Nevertheless, as the “weighted” EM algorithm was
always started independently with random initial values, the results may be influenced
by some less favorable locally optimal solutions.

5 Conclusion

In practical situations the method of boosting proved to be a useful heuristical principle
which can essentially improve the recognition performance of weak classifiers. However,
in the more exactly defined context of statistical pattern recognition the underlying
weighting of data becomes questionable as it may influence the form of the estimated
conditional distributions with unhappy consequences for the asymptotic classification
error. We have shown that, in case of m.-l. estimation of discrete class-conditional
distributions, the Bayesian decision-making is invariant to arbitrary data weighting -
provided that the prior probabilities are properly modified (cf. (25), (28)). For this
reason the Bayes classification error is also asymptotically invariant with respect to ar-
bitrary boosting provided that the combined classifiers satisfy the conditions of Lemma
1 and Lemma 2.
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