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Abstract: Information preserving transform based on finite mixture model is suggested to
design multilayer neural networks. The information preserving transform minimizes the entropy
of the output space and therefore simplifies the underlying statistical decision problem. In the
framework of statistical decision-making the problem reduces to repeated m. - l. estimation
of finite distribution mixtures. Formally the method can be interpreted as a theoretically well
based approach to optimize radial basis function (RBF) neural networks in full generality.

1. INTRODUCTION

It appears that Broomhead and Lowe [1988] first suggested the use of radial basis functi-
ons (RBF) for the design of layered feed-forward neural networks. In its basic form the con-
struction of RBF networks involves three different layers: the input layer of real sources x =
(x1, x2, . . . , xN) ∈ X , X = RN , the second “hidden” layer of radial basis functions F (x|m), x ∈
X , m ∈ M, M = {1, 2, . . . , M} and the output layer performing a linear transformation
from the hidden-unit space to the output space. The output units yj are usually expressed as
a weighted sum of RBF

yj(x) =
∑

m∈M
wjmF (x|m), x ∈ X , j ∈ K, K = {1, 2, . . . , K}. (1)

Jacobs and Jordan [1991] associated with the output units a posteriori probabilities defined by
a formula based on normal densities

yj(x) =
wj exp{−1

2
‖x− cj‖2/2σ2

j}∑M
m=1 wm exp{−1

2
‖x− cm‖2/2σ2

m}
, x ∈ RN , j ∈ K, (2)

where wj are nonnegative weights. A similar form of activation functions has been considered
also by other authors (see e.g. Haykin [1994] for extensive references).

In the present paper we show that the heuristic formula (2) has an information-theoretic
justification and can be used for stepwise optimal design of multilayer neural networks. In
particular we introduce a special class of transforms which are information preserving provided
that the underlying RBF define the true probability distribution on the input space X . For this
purpose the RBF may be estimated e.g. by EM algorithm (cf. Grim [1996]).

1Early version of the paper: Grim J., ”Design of multilayer neural networks by information preserving
transforms”. In: Third European Congress on Systems Science. (Pessa E., Penna M. P., Montesanto A. eds.).
Edizioni Kappa, Roma 1996, pp. 977-982.
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1. STATISTICAL DECISION PROBLEM FOR NEURAL NETWORKS

We assume that on the N -dimensional real input space X there is a statistical decision
problem {X , P (.|ω), ω ∈ Ω} defined by a finite set of classes Ω = {ω1, ω2, . . . , ωK} with a
priori probabilities p(ω), by the corresponding set of conditional probability density functions
{P (.|ω), ω ∈ Ω} and by the unconditional density

P (x) =
∑

ω∈Ω

P (x|ω)p(ω), x ∈ X . (3)

Solution of the statistical decision problem is assumed to be given by a posteriori probabilities

p(ω|x) =
P (x|ω)p(ω)

P (x)
, ω ∈ Ω, x ∈ X , (P (x) > 0) (4)

which may be used, if necessary, to optimize more complex decisions. For the sake of simplicity,
we define p(ω|x) = p(ω) for P (x) = 0.

Considering RBF networks we confine ourselves to approximating the unknown conditional
densities P (x|ω) by finite distribution mixtures (cf. Grim [1982,1996])

P (x|ω) =
∑

m∈M
F (x|m)f(m|ω), ω ∈ Ω, x ∈ X . (5)

Here the components F (x|m) corresponding to RBF may be arbitrary probability density
functions on X . Taking in account that

f(m,ω) = f(m|ω)p(ω), f(m) =
∑

ω∈Ω

f(m,ω), p(ω) =
∑

m∈M
f(m,ω), (6)

we can write
P (x) =

∑

m∈M
F (x|m)f(m), x ∈ X . (7)

Let us note that the RBF defined by the mixture model (7) may correspond e.g. to some ele-
mentary properties or features. Thus, at a detailed level of description, the component densities
F (x|m) naturally introduce an intermediate “descriptive” decision problem {X , F (.|m),m ∈
M} with a priori probabilities f(m). The occurrence of elementary properties or features can
be “measured” by the a posteriori probabilities

f(m|x) =
F (x|m)f(m)

P (x)
, m ∈M, x ∈ X , (P (x) > 0). (8)

which also imply the following solution of the primary decision problem:

p(ω|x) =
∑

m∈M
p(ω|m)f(m|x), p(ω|m) =

f(m,ω)

f(m)
. (9)

A specific feature of the above scheme is the fact that the finite mixtures P (x|ω) are defi-
ned over the same set of density functions, i.e. the component densities F (x|m) may be shared
by the conditional distributions P (x|ω). This property corresponds well with the structure of
ascending neural pathways characterized by a rich branching of axons and their convergence on
the neurons of subsequent layers. A simple consequence of shared components is the fact that
the information I(X , Ω) about Ω contained in X is bounded by the descriptive information
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I(X ,M) (cf. Grim [1996]). In view of the above mentioned aspects the information preserving
transforms in the next section will be constructed with respect to the descriptive decision pro-
blem {X , F (.|m), m ∈M}.

3. INFORMATION PRESERVING TRANSFORMS

In a recent paper Linsker [1989] proposed a learning method based on the principle of
maximum information preservation. The fundamental idea of his influential work is to maximize
the average mutual information between the input vector x and an output vector y of the neural
network or, as redefined by Plumbley and Fallside [1988], to minimize possible information
loss. 2 The “infomax” principle of Linsker has been used repeatedly to optimize layered neural
networks (cf. Haykin [1994]) and many similar information-theoretic ideas have been published
earlier.

Considering the framework of statistical decision-making we show that, in certain sense,
the decision information contained in the input space X can be automatically preserved by
a suitably chosen transform. The proof of the following theorem will be restricted to discrete
variables, a generalization to continuous case (cf. Vajda and Grim [1996]) will be subject of a
forthcoming paper.

Thus, in this section, we assume that x = (x1, x2, . . . , xN) ∈ X is a vector of discrete finite
valued variables xn ∈ X n,X = X 1 × X 2 × . . .× XN and both the componets F (x|m) and the
mixture P (x) are discrete probability distributions. We consider a transform

T : X → Y , Y ⊂ RM , T(x) = (T1(x), T2(x), . . . , TM(x)) ∈ Y (10)

defined by the formula

Tm(x) = ϕm(F (m|x)), x ∈ X , m ∈M (11)

where f(m|x), (cf. (8)) define the posterior distribution on M and ϕm are arbitrary one-to-one
mappings of the closed interval < 0, 1 > into the real line R. The transform (11) generates a
partition of the space X

S = {Sy,y ∈ Y}, Sy = {x ∈ X : T(x) = y} (12)

and defines new distributions on Y
G(y|m) =

∑

x∈Sy

F (x|m), Q(y|ω) =
∑

x∈Sy

P (x|ω), (13)

Q(y) =
∑

ω∈Ω

Q(y|ω)p(ω) =
∑

m∈M
G(y|m)f(m) =

∑

x∈Sy

P (x) = P (Sy). (14)

We prove the following assertion:

Theorem 3.1
The transformation (11) preserves the information in the sense that

I(X ,M) = I(Y ,M) (15)

2For the information preserving property and its information theoretic characterization we refer to Pardo
and Vajda [1996] and Vajda [1989].
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and minimizes the output entropy

H(Y) =
∑

y∈Y
−Q(y) log Q(y) (16)

at the class of all transforms T : X → Y satisfying (15).

Proof. In view of definitions (11),(12) we can write for any m ∈M and y ∈ Y :

g(m|y) =
G(y|m)f(m)

Q(y)
=

∑

x∈Sy

P (x)

P (Sy)
f(m|x) = f(m|x), for all x ∈ Sy (17)

Consequently, in the Jensen’s inequality

∑

x∈Sy

P (x)

Q(y)
[−f(m|x) log f(m|x)] ≤ −g(m|y) log g(m|y), m ∈M, y ∈ Y (18)

the equality takes place and, by summing over m ∈M and y ∈ Y , we obtain

H(M|X ) =
∑

x∈X
P (x)Hx(M) =

∑

y∈Y
Q(y)Hy(M) = H(M|Y). (19)

The last equation proves the assertion (15) since we have

I(X ,M)− I(Y ,M) = H(M|Y)−H(M|X ) = 0. (20)

To prove the second part of the theorem we show that any information preserving transform
U generates a partition SU of X which is identical with ST or is a refinement of ST - except for
points x ∈ X of zero probability (P (x) = 0). Note that, in this way, any information preserving
transform would satisfiy the desired inequality

H(Y) =
∑

y∈Y
−P (Sy) log P (Sy) = H(ST) ≤ H(SU). (21)

Assume by contradiction that an information preserving transform U generates a partition
SU which is not a refinement of ST in the sense, that for some set S̃ ∈ SU and two different sets
S, S ′ ∈ ST it holds P (S ∩ S̃) > 0, P (S ′ ∩ S̃) > 0. In view of definitions (11) and (12) there are
at least two points x, x′ ∈ S̃ such that for some m ∈M it holds

x ∈ S ∩ S̃, P (x) > 0, x′ ∈ S ′ ∩ S̃, P (x′) > 0, f(m|x) 6= f(m|x′). (22)

Consequently, in the relation (18) we obtain strict inequality for T ≈ U and Sy ≈ S̃ . Further,
relation analogous to (19) holds with the strict inequality again and therefore Eq. (20) is not
satisfied for the transformation U. This contradiction completes the proof.
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4. CONCLUSION

The information preserving transform minimizes the entropy of the output space Y and
therefore simplifies the underlying statistical decision problem. Roughly speaking, the transform
unifies the points x ∈ X with the identical posterior distribution f(.|x). It is also easily verified
that the transform (11) preserves the decision information I(X , Ω), i.e., in analogy with (15)
we can write I(X , Ω) = I(Y , Ω).

It should be emphasized that, using mixtures, we have a theoretically well based possibility
to optimize the involved RBF. Instead of maximizing complex information criteria we only need
to compute m. - l. estimates of the component distributions F (x|m) by means of EM algorithm
whereby the optimality of the resulting transform is automatically satisfied. The procedure may
be applied repeatedly to design multilayer networks.
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