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Institute of Information Theory and Automation, Academy of Sciences of the Czech Republic
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Abstract

In this contribution we shall discuss a relation of two
types of multidimensional models introduced within
the framework of probability theory, which appeared
to be in a sense equivalent: Bayesian networks and
compositional models. Based on a simple example
we shall analyse algorithms transforming one type of
the model into the other. In this way we shall demon-
strate a principal difference, which explains why the
compositional models are more efficient for compu-
tations.
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Introduction

In the previous lectures presented in a series of the
Czech-Japan Seminars ([1] - [4]) we showed that all
distributions representable by Bayesian networks can
also be represented by an alternative way: in the
form of compositional models1. These models aban-
don the necessity to describe the dependence struc-
ture of modelled distributions by graphs. In contrast
to this, it describes directly how such a multidimen-
sional distribution is computed – composed – from
a system of low-dimensional distributions. However,
as we shall see from this paper, it is not the only
advantage of compositional models. We shall show
that compositional models (especially those defined
by perfect sequences) are more suitable for compu-
tations.

Notation

In this paper we deal with a system of finite-valued
random variables, whose indices are from a finite
set N . Their probability distributions are denoted
by Greek letters. Thus, π(xN ) will denote an |N |-
dimensional distribution of variables {Xi}i∈N , π(xJ)

1Here we speak only about probabilistic models. Pos-
sibilistic compositional models were introduced by J. Ve-
jnarová; for more references see [10].

(for J ⊂ N) is its marginal distribution for vari-
ables {Xi}i∈J . This marginal distribution will also
be denoted simply π(J). When considering disjoint
subsets L1, L2 ⊂ N , the symbol π(xL1 |xL2) de-
notes the respective conditional distribution of vari-
ables {Xi}i∈L1 given {Xi}i∈L2 (we do not exclude
situations when either L1 or L2 is empty; π(∅) =
1, π(xL1 |∅) = π(xL1)).

By a Bayesian network representing a distribution
π(xN ), we understand a couple consisting of an
acyclic directed graph G = (N,E) and a system of
conditional probability distributions

{νi(xi|xpa(i))}i∈N ,

such that

π(xN ) =
∏
i∈N

νi(xi|xpa(i)).

pa(i) thus denotes the set of all parents of node i in
the considered graph G.

For compositional models, the most important no-
tion is the following one introducing a possibility to
compose two low-dimensional distributions.

Definition 1 For arbitrary two distributions
π(xK) and κ(xL) their composition is given by the
following formula

π(xK) . κ(xL)

=


π(xK)κ(xL)

κ(xK∩L)
if π(xK∩L)� κ(xK∩L),

undefined otherwise,

where π(xM ) � κ(xM ) denotes that π(xM ) is dom-
inated by κ(xM ):

κ(xM ) = 0 =⇒ π(xM ) = 0

for all combinations of values xM .

Compositional models and their basic
properties

The following assertion summarize those properties
of the operator of composition proven in previous
papers, which will be necessary in this text.



Lemma 1 Let for probability distributions π(xK)
and κ(xL)

π(xL∩K)� κ(xL∩K)

(i.e., π . κ is defined). Then

1. π . κ is a probability distribution of variables
{Xi}i∈L∪K and its marginal distribution for
variables {Xi}i∈K equals π:

(π . κ)(xK) = π(xK).

2. If π(xK) and κ(xL) are consistent (i.e.,
π(xK∩L) = κ(xK∩L)) then

π . κ = κ . π.

From this assertion one can immediately see that if
L ⊆ K then

π(xK) . κ(xL) = π(xK).

As said already above, the main significance of the
operator of composition is in the fact that it can
form multidimensional distributions from systems of
low-dimensional ones. First, let us stress that if not
specified otherwise by brackets, operators . are al-
ways applied from left to right. It means that

π1 . π2 . π3 . . . . . πn−1 . πn

= (. . . ((π1 . π2) . π3) . . . . . πn−1) . πn.

Therefore, in order to construct a multidimensional
distribution it is sufficient to determine a sequence
– we will call it a generating sequence – of low-
dimensional distributions π1, π2, . . . , πn. To simplify
all the expressions in the sequel let us make the fol-
lowing convention: whenever we will speak about
a distribution πk in this and the following sections,
if not specified explicitly otherwise, the distribution
πk will always be assumed to be a distribution of
variables {Xi}i∈Kk

, which means it is a distribution
πk(xKk

).

With respect to application of operators of compo-
sition, it is important to realize that the operator
is non-commutative and also non-associative. So,
generally

π1 . π2 . π3 6= π1 . (π2 . π3),
π1 . π2 . π3 6= π1 . π3 . π2.

Nevertheless, under special conditions these proper-
ties hold true. For example, the following assertion
was proven in [5].

Lemma 2 If K1 ⊇ (K2 ∩K3) then

π1 . π2 . π3 = π1 . π3 . π2.

The next assertion expresses a property, which is
very important from the computational point of view
(for proof see also [5]).

Lemma 3 If π1, π2 and π3 are such that
π1 . π2 . π3 is defined then

π1 . π2 . π3 = π1 . (π2 ©.K1
π3),

where

π2 ©.K1
π3 = (π((K1\K2)∩K3)

3 π2) . π3.

Perfect sequence models

Not all generating sequences are equally efficient in
their representations of multidimensional distribu-
tions. Among them, so-called perfect sequences hold
an important position.

Definition 2 A generating sequence of probability
distributions π1, π2, . . . , πn is called perfect if π1.. . ..
πn is defined and for all k = 2, . . . n

(π1 . . . . . πk−1) . πk = πk . (π1 . . . . . πk−1).

From this definition one can hardly see the impor-
tance of perfect sequences. This importance becomes
clearer from the following characterization theorem
(for its proof see [6]).

Theorem 1 A sequence of distributions
π1, π2,. . . ,πn is perfect iff all the distributions
from this sequence are marginals of the distribution
(π1 . π2 . . . . . πn).

In other words, the theorem claims that when con-
sidering that low-dimensional distributions πk are
carriers of local information, the constructed mul-
tidimensional distribution represents global informa-
tion, faithfully reflecting all of the local input2. This
is why we will be so much interested in perfect se-
quence models.

The following assertion (whose proof is in [5]) shows
that we may restrict our attention only to perfect se-
quences, because each generating sequence, for which
π1 . . . . .πn is defined, can easily be transformed into
a perfect one.

Theorem 2 If π1 . . . . . πn is defined then the se-
quence κ1, . . . , κn computed by the following process

κ1 = π1,

κ2 = κ
(K2∩K1)
1 . π2,

κ3 = (κ1 . κ2)(K3∩(K1∪K2)) . π3,

...
κn = (κ1 . . . . . κn−1)(Kn∩(K1∪...Kn−1)) . πn

is perfect and

π1 . . . . . πn = κ1 . . . . . κn.

2For futher comments regarding application of prob-
abilistic models in expert systems see [9].



Marginalization for perfect sequence
models

Unfortunately, we cannot get a marginal distribution
(π1 . π2)(L) (for L ⊆ K1 ∪ K2) as a composition of
some marginal distributions. Namely, it is easy to
show that generally

(π1 . π2)(L) 6= π
(K1∩L)
1 . π

(K2∩L)
2 .

The following assertion (proven in [6]) gives an in-
struction how to compute a marginal distribution,
whose dimensionality is by one smaller than the di-
mensionality of the original distribution. Since we
do not impose any condition on the deleted variable,
by iterative application of this assertion we can (at
least theoretically) compute an arbitrary marginal
distribution.

For the sake of simplicity, we will use the following
simplified notation:

π
[`]
k = πk(xKk\{`}),

(π1 . . . . . πn)[`]

= (π1 . . . . . πn)(x(K1∪...∪Kn)\{`})

for ` ∈ Kk.

Theorem 3 Let π1, π2, . . . , πn be a generating se-
quence and

` ∈ Ki1 ∩Ki2 ∩ . . . ∩Kim

for some

{i1, i2, . . . , im} ⊆ {1, 2, . . . , n}

(assuming (i1 < i2 < . . . < im)) such that ` 6∈ Kj for
all

j ∈ {1, 2, . . . , n} \ {i1, i2, . . . , im}.
Then

(π1 . π2 . . . . . πn)[`] = κ1 . κ2 . . . . . κn,

where
κj = πj for all j ∈ {1, . . . , n} \ {i1, . . . , im},
κi1 = π

[`]
i1

,

κi2 = (πi1 ©.Li2−1
πi2)

[`],

κi3 = (πi1 ©.Li2−1
πi2 ©.Li3−1

πi3)
[`],

...
κim

= (πi1 ©.Li2−1
πi2 ©.Li3−1

. . . ©.Lim−1
πim

)[`],
and Lik−1 = (K1 ∪K2 ∪ . . . ∪Kik−1) \ {`}.

As a special case of this assertion one can imme-
diately conclude that if a variable to be deleted is
contained only in one distribution from a generat-
ing sequence then marginalization of a multidimen-
sional model can simply be done just by marginaliz-
ing the respective low-dimensional distribution. Re-
call that it, in a way, corresponds to the node deletion

step of a Shachter’s procedure for marginalization
of Bayesian networks ([8]), which allows deletion of
childless nodes. We shall, discuss this fact in more
detail later in Example.

Relation of compositional models and
Bayesian networks

The reader certainly noticed that any distribution
κ(xN ) represented by a Bayesian network (consisting
of an acyclic graph G = (N,E) and a system of con-
ditional probability distributions {νi(xi|xpa(i))}i∈N )
can also be represented as a compositional model. In
this case, namely,

κ(xN ) =
∏
i∈N

νi(xi|xpa(i)),

and distributions πi(xfam(i)) (fam(i) = {i} ∪ pa(i))
can easily be found, for which

πi(xi|xpa(i)) = νi(xi|xpa(i)).

To do it, one can take, for example, a uniform dis-
tribution µ(xpa(i)) and set

πi(xfam(i)) = νi(xi|xpa(i))µ(xpa(i)).

Now we immediately see that the distribution κ(xN )
represented by the considered Bayesian network can
be expressed in the form

κ(xN ) = πi1 . πi2 . . . . . πi|N| ,

if the permutation i1, i2, . . . , i|N | is such that all par-
ents of a node are always before it3:

ik ∈ pa(i`) =⇒ k < `.

Therefore, each Bayesian network can be represented
by a generating sequence and, due to Theorem 2, also
by a perfect sequence. In the next paragraph we shall
formalize this procedure in a slightly more efficient
way and show how to find a Bayesian network rep-
resentation for a distribution defined by a perfect
sequence. Thus we will see that the class of distribu-
tions represented by Bayesian networks is equivalent
to the class of distributions represented by perfect
sequences. However, when studying these transfor-
mation processes in detail, we will see the advantage
of perfect sequence representation.

Transformation of a perfect sequence into a
Bayesian network

The following simple procedure transforming an ar-
bitrary perfect sequence π1, . . . , πn into a Bayesian
network consists of a definition of a graph and of a
computation of conditional distributions κ(xi|xpa(i))
defining the constructed Bayesian network.

3An existence of such an ordering is guaranteed by
acyclicity of the considered graph G.



Algorithm PSM −→ BN

(a) Having a perfect sequence π1(xK1), . . . , πn(xKn)
we first order (in an arbitrary way) all the in-
dices of the considered variables, i.e.

{1, 2, 3, . . . , |N |} = K1 ∪ . . . ∪Kn = N.

(b) A graph of the constructed belief network is de-
fined in the following way:

1. the set of nodes is N ;

2. there is an edge (i → j) if there exists a
distribution πk such that all the following
three conditions hold:

(i) i, j ∈ Kk,

(ii) j 6∈ K1 ∪ . . . ∪Kk−1

(iii) either i ∈ K1 ∪ . . . ∪Kk−1 or i is in the
ordering defined in step (a) before j.

(c) For each j the requirement j ∈ Kk, j 6∈ K1 ∪
. . .∪Kk−1 is met exactly for one k ∈ {1, . . . , s}.
It means that all the parents of node Xj must be
in the respective set XKk

and therefore the nec-
essary conditional distribution νj(xj |xpa(j)) can
be easily computed from distribution πk(xKk

).

Regarding this algorithm, it is important to realize
that different orderings of indices defined in the first
step of the algorithm may lead to different graphs.
It corresponds to the fact that usually several acyclic
directed graphs are equivalent in the sense that they
define equivalent Bayesian networks (they have the
same underlying graphs and the same list of immoral-
ities).

Transformation of a Bayesian network into a
perfect sequence

At the beginning of this section we have presented an
idea how to find a perfect sequence model represent-
ing the distribution defined by a Bayesian network.
Let us now formalize it in the way that the length of
the resulting perfect sequence may be smaller than
the number of variables of the considered distribu-
tion.

Algorithm BN −→ PSM

(a) Having a Bayesian network with graph G =
(N,E) and system of conditional distributions
{νi(xi|xpa(i))}i∈N construct an enumeration of
indices from N in the following way:

1. Assign 1 to any source (parentless node) of
G.

2. assign the next number to a node whose all
parents have already been enumerated. If
there are more such nodes choose any with
the greatest number of parents.

(b) Let 1, 2, . . . , |N | be the elements of N ordered
according to the enumeration constructed in
the step (a). Auxiliary sets R1, . . . , Rn and
S1, . . . , Sn are constructed by the following pro-
cess:

1. set r ← 0, n← 1;

2. while r < |N | perform:

(i) find the maximal integer m such that
for all k = 1, . . . ,m

pa(r + k)
= pa(r + 1) ∪ {r + i : 0 < i < k}.

(ii) Rn ← pa(r + 1);
(iii) Sn ← {r + 1, r + 2, . . . , r + m};
(iv) r ← r + m;

(v) n← n + 1;

(c) For each i = 1, 2, . . . , n− 1 compute:
Ki = Ri ∪ Si,
κi = (κ1 . . . . . κi−1)(Ri)

∏
j∈Si

νj(xj |xpa(j)).

Example

Let N = {1, 2, 3, . . . , 8} and assume that the gener-
ating sequence

π1(x1, x2), π2(x2, x3), π3(x2, x4), π4(x3, x5),
π5(x4, x6), π6(x5, x6, x7, x8)

is perfect. Let us have a look how the algorithm
PSM −→ BN proceed when applied to this sequence.

In step (a) consider the (auxiliary) ordering
{1, 2, 3, . . . , 8}. Then, the acyclic directed graph is
defined in step (b). In the following text we shall
show how the sets of parents pa(j) are constructed
for this graph.

From the conditions 2.(i) and 2.(ii) we see that only
those nodes, which are indices of the variables ap-
pearing among the argument of that distribution,
where Xj appears the first time, may be in pa(j).
Let us apply this rule to j = 1. X1 appears first time
among the arguments of π1. The other argument of
this distribution is X2 and therefore only the node
2 should be considered as a potential parent of the
node 1. However, the condition 2.(iii) is not fulfilled
for i = 2 and j = 1 and therefore the node 1 does
not have any parent.

Analogously, for j = 2 we get that there is again
only one potential parent: i = 1. For this couple the
condition 2.(iii) holds true because 1 is (in the con-
sidered ordering j = 1, 2, . . . , 8) before 2. Therefore
pa(2) = {1}.

For j = 3 there is again only one potential parent;
node 2 (both X2 and X3 are among the arguments
of π2 and it is the first appearance of X3). In this



case the condition 3.(iii) is fulfilled because X2 is an
argument of π1. Thus we get pa(3) = {2}.

Continuing in this way for j = 4, 5, 6, 7, 8 we get a
graph, which is in Figure 1.
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Figure 1: Acyclic graph of a Bayesian network

Operation of the algorithm is finished by computa-
tion of the necessary system of conditional distribu-
tions performed in step (c):

ν1(x1) = π1(x1), ν2(x2|x1) = π1(x2|x1),
ν3(x3|x2) = π2(x3|x2), ν4(x4|x2) = π3(x4|x2),
ν5(x5|x3) = π4(x5|x3), ν6(x6|x4) = π5(x6|x4),

ν7(x7|x5, x6) = π6(x7|x5, x6),
ν8(x8|x5, x6, x7) = π6(x8|x5, x6, x7).

What should be stressed at this moment is that
all these computations are local4, they do not re-
quire additional auxiliary memory and their time re-
quirements are liner with the number of probabilities
defining the compositional model

Let us, now, apply the BN −→ PSM algorithm to
the resulting Bayesian network consisting of a di-
rected acyclic graph in Figure 1 and the respective
conditional distributions ν1, . . . , ν8. First, realizing
the step (a) we have to construct an enumeration
(ordering) of nodes of the graph. Notice, that result
of this step is not unique. A possible ordering can be
1, 2, 3, 4, 5, 6, 7, 8 but also 1, 2, 4, 6, 3, 5, 7, 8 (and sev-
eral others). Considering the latter one, step (b) of
the algorithm yields the system of auxiliary sets Ri

and Si as shown in Table 1.

Table 1: Auxiliary sets Ri, Si

i Ri Si

1 ∅ {1, 2}
2 {2} {4}
3 {4} {6}
4 {2} {3}
5 {3} {5}
6 {5, 6} {7, 8}

Afterwards, in the step (c) the following 6 distribu-

4Notice that we understand this notion more restric-
tively in comarison with the understanding used in [7]

tions are computed

κ1(x1, x2) = ν1(x1) · ν2(x2|x1),
κ2(x2, x4) = κ1(x2) · ν4(x4|x2),
κ3(x4, x6) = (κ1 . κ2)(x4) · ν6(x6|x4),
κ4(x2, x3) = (κ1 . κ2 . κ3)(x2) · ν3(x3|x2),
κ5(x3, x5) = (κ1 . κ2 . κ3 . κ4)(x3) · ν5(x5|x3),
κ6(x5, x6, x7, x8) = (κ1 . κ2 . κ3 . κ4 . κ5)(x5, x6)

·ν7(x7|x5, x6) · ν8(x8|x5, x6, x7),

which form a perfect sequence defining the same dis-
tribution as the considered Bayesian network, and
therefore also

π1 . π2 . π3 . π4 . π5 . π6 = κ1 . κ2 . κ3 . κ4 . κ5 . κ6.

Let us, however, have a closer look at the computa-
tion of the distributions κi. Computations of κ1 and
κ2 are obviously local. Also computations of κ3, κ4

and κ5 are local, because the sequence κ1, κ2, . . . , κ6

is perfect and therefore

(κ1 . κ2)(x4) = κ2(x4),
(κ1 . κ2 . κ3)(x2) = κ1(x2),
(κ1 . κ2 . κ3 . κ4)(x3) = κ4(x3).

But no analogous simple rule can be applied to com-
putation of (κ1 . κ2 . κ3 . κ4 . κ5)(x5, x6). For this
we have to apply Theorem 3:

(κ1 . κ2 . κ3 . κ4 . κ5)(x5, x6)
= ((((κ1 . κ2 . κ3 . κ4 . κ5)[1])[2])[3])[4].

Computing (κ1 .κ2 .κ3 .κ4 .κ5)[1] is simple, because
X1 appears only in π1 and therefore (cf. Theorem 3)

(κ1 . κ2 . κ3 . κ4 . κ5)[1] = κ
[1]
1 . κ2 . κ3 . κ4 . κ5,

which equals κ2 . κ3 . κ4 . κ5, because κ1 and κ2 are
consistent and therefore κ1(x2) . κ2 = κ2 . κ1(x2) =
κ2 (see the comment after Lemma 1).

Applying Theorem 3 to eliminate variable x2 we get

(κ2 . κ3 . κ4 . κ5)[2] = κ
[2]
2 . κ3 . (κ2 ©.{4,6}κ4)[2] . κ5.

Let us denote

κ̂(x3, x4) = (κ2 ©.{4,6}κ4)[2]

= (κ4(∅)κ2(x2, x4) . κ4(x2, x3))[2]

= (κ2(x2, x4) . κ4(x2, x3))[2].

Since analogously to the previous case κ
[2]
2 .κ3 = κ3,

deletion of the third variable (X3) is performed as
follows

(κ3 . κ̂ . κ5)[3] = κ3 . κ̂[3] . (κ̂ ©.{4,6}κ5)[3].

Denoting

ˆ̂κ(x4, x5) = (κ̂ ©.{4,6}κ5)[3]

= (κ5(∅)κ̂(x3, x4) . κ5(x3, x5))[3]

= (κ̂(x3, x4) . κ5(x3, x5))[3]



we see that

(κ3 . κ̂ . κ5)[3] = κ3 . κ̂[3] . ˆ̂κ(x4, x5) = κ3 . ˆ̂κ(x4, x5),

where the last modification is allowed because of
Lemma 2 and the comment after Lemma 1. In this
way we eventually received the possibility to com-
pute the distribution κ6 from the required perfect
sequence

κ6 = (κ3. ˆ̂κ(x4, x5))[4]ν7(x7|x5, x6) ·ν8(x8|x5, x6, x7).

However, to get this distribution we had to compute
κ̂, ˆ̂κ and (κ3 . ˆ̂κ(x4, x5))[4], and all these three com-
putations were not local; we had to compute distri-
butions for the groups of variables, which did not
appear in the input Bayesian network (in a sense it
corresponds to inheriting parents in the Shachter’s
procedure - see [8].)

1 Conclusions

Analyzing the PSM −→ BN algorithm we showed
that all the computations are always local – compu-
tation of each of the necessary conditional distribu-
tions can always be done from only one of the dis-
tributions from which the perfect sequence consists
of. On the other hand, on an example we showed
that the opposite algorithm BN −→ PSM is algo-
rithmically more complex; for some (in fact for most
of) Bayesian networks the computation of a corre-
sponding perfect sequence model requires computa-
tion of some marginal distributions, which is gen-
erally known to be a difficult task. From this we
see that, though both the models represent the same
probability distribution, perfect sequence model has
some of the marginal distributions “pre-computed”
and therefore it is not surprising that some computa-
tional procedures are less demanding than the anal-
ogous procedures for Bayesian networks.

Let us conclude the paper by another simple exam-
ple supporting the above presented statement. As
mentioned in the paragraph dealing with marginal-
ization for compositional model we formulated a sim-
ple rule for deletion of variables appearing among
the arguments of only one distribution. It somehow
corresponds to the Shachter’s deletion rule ([8]) con-
cerning childless nodes in Bayesian networks. Con-
sidering the network with acyclic directed graph in
Figure 1 this rule can directly be applied only to node
8, whereas in the equivalent compositional model the
corresponding rule can be applied to three variables:
X1, X7 and X8.

Acknowledgment

The research was supported by Grant Agency of the
Czech Academy of Sciences by grant no. A2075302
and Austrian-Czech grant AKTION KONTAKT
2004/19.

References
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