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SUMMARY

The presented procedure computes approximate probabilistic models of complex dynamic phenomena
recursively with tespect to an increasing amount of observed evidence. Measured, fictitious as well as
simulated data can be used in combination for obtaining a reasonably conservative approximate model.
Thus information from a number of sources can be systematically merged using a refinement of the
recently proposed method of Bayesian pooling of imprecise opinions from a variety of experts. It can be
applied recursively as the number of treated items grows.

The procedure provides (i) a new tool needed for grey as well as black box modelling, (ii) a novel
adaptation of probabilistic models and (jii) an approximation of a given model by a simpler one.

The general procedure is applied to the autoregressive model with exogenous variables (ARX). This
example illustrates the adopted approach and contributes to the solution of the following tasks: (i)
estimation of an appropriate model structure; (i) incorporation of prior knowledge into the initial
conditions of recursive least squares; (iii) construction of a reference for an advanced forgetting
technique; (iv) approximation of a complex analytic /simulation model by an ARX model.

The behaviour of the procedure is illustrated on typical examples.
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1. INTRODUCTION

Modelling of complex dynamic phenomena is a well-developed art. The use of complete (white
box) models may be unfeasible owing to their complexity and/or the excessive cost of
obtaining relevant quantitative information. This has led to the extensive use of universal (black
box) descriptions such as ARX models or neural nets and to advocating free-of-prior-
information approaches. Gradually, grey box models have been found to be an adequate
compromise: simplified models suitable for decision making, prediction or control are used
while additional effort is spent in exploiting available information sources. The success of this
compromise depends heavily on a solution of the following complex problem: can partially
incompatible, uncertain pieces of information of a different nature be merged into the
approximate model?

In this paper a widely applicable solution to this problem is advocated. The basic idea of
identifying a simplified model using all informational sources is not new. This technique is,
however, rarely used as there is a serious danger of ‘overfitting’. The model produced by this
technique may be excellent on a subspace of particular system behaviours but poor outside of it.
This inconsistency is caused by incorrectly extracting information from a variety of
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heterogenous sources. Our solution is based on information pooling, suitable for repetitive and /
or not fully compatible pieces of information. '

The addressed problem, estimation with an approximate model, has no widely accepted
solution. The approach presented here is related to an approximation of a joint distribution using
its low-dimensional marginals.>* This methodology, however, does not admit errors
(incompatibilities) in the given marginals. Moreover, it deals mostly with discrete-valued data.

Another approach which is well-elaborated for recursive estimation is presented in Reference
5. It searches for models from a class of restricted complexity, when available information is
compressed into a recursively feasible non-sufficient statistic. By more deeply analysing the
problem and employing the theory of large deviations,® an adequate model may be viewed as a
minimizer of the Kullback—Leibler distance of the empirical data distribution and that provided
by the model. The necessity to know the type of data dependence is the price paid for the gained
depth. Moreover, the justification of the approach is of an asymptotic nature. This is not fully in
accord with the Bayesian methodology that is desired because of its compatibility with decision
making under uncertainty.

At this discussion level, the presented approach can be understood as an attempt to find a
hypermodel which relates the ideal likelihood function to the uncertain local models. Then a
Bayesian estimate of this likelihood is found. The non-reliance on independence assumptions is
compensated by the heuristic nature of the model and by the less definite theoretical support. In
that sense the presented theory is still in its experimental phase of searching for promising
candidates. In this sense the presented work falls in the range of attempts represented by
Reference 7.

The theory is elaborated for ARX models, which are known to describe a wide range of
dynamic systems. It provides a novel method for:

(i) the improved estimation of the model structure

(ii) the incorporation of expert knowledge into initial conditions of recursive least squares
(iii) the construction of a reference for an advanced forgetting technique®
(iv) the approximation of a complex analytic/simulation model by an ARX model.

OVERVIEW OF PAPER

The standard learning problem, i.e. collecting information about an unknown quantity ©
contained in the observed data sequence D(¢), t€ ¢ ={1,2,...},T is considered. As opposed to
standard estimation tasks, data can be gained from a variety of sources. They may differ in
precision and reliability and may be partially incompatible and/or repeat the same piece of
information. Even the basic parametrized model is allowed to be an approximation of the
dynamic system to be described. Under such conditions, the suitable learning procedure has to
be conservative: the obtained estimate has to be equipped with an adequate description of
uncertainty.
The formalization and solution proceed as follows:

1. The probabilistic model go,,, relating the unknown quantity © €™ to the data D(7),
t€7 ={1,...,t} tE{, is introduced. Then a widely applicable probabilistic model of
mismodelling is introduced in Section 3. By the model of mismodelling a probabilistic
relationship of models g, to an ideal likelihood /4 (¢) is understood. If the models are

+ A™ denotes always the set of possible A-values.
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correct, then the Bayes rule provides such a relationship. The model of mismodelling is
needed when conditions on the Bayes rule applicability are violated, i.e. when models ge.,
are imprecise. The violation of independence type assumptions is a typical example of
such an imprecision.

2. The mismodelling model is parameterized by an unknown correct likelihood function
Io(2). Also additional nuisance (hyper)parameters w and R are introduced which enhance
the flexibility of the model. The multivariate (hyper)parameter ([, w,R) is assigned a flat
(hyper)prior p;obability density function (PDF) and a standard Bayesian estimation is
applied at the ‘upper’ (hyper)likelihood level. The maximum a posterior -probability
(MAP) point estimate I(1) of the correct lg(t) is then found in Section 4.

3. The sequence of the estimates Io(2) is inspected in Section 5. Models g, from a subset
of the exponential family are considered. For them the approximate estimation is
recursively implementable. The theory is applied to an ARX model by inserting specific
functions for the general symbols and by performing the necessary analytic computations,
see Section 6. The resulting algorithm is summarized in Section 7 and typical illustrative
examples are in Section 8.

3. MODELLING AND MISMODELLING

3.1. Model of uncertain dynamic systems

Here, a system model is described and the notation fixed.

The input—output behav1our of a dynamic system is inspected. The sequence of its inputs
U= (u;,...,u,), t€ ", consists of the mampulated data. The remaining measured data from
D () form the output sequence Y (¢) = (y;, ..., ), i.e. D(#) = (U(?), Y(t))

The parametrized model of the input—output relationship (Y*(z-1), U*(r))—y" is the
sequence of probability density functions (PDFs) of y,conditioned on D(z — 1), u, and on an
unknown ig-dimensional parameter © € @™:

goe=f(y,|D(zr-1), u,,©), 7€ T

In order to avoid the difficult area of stochastic processes a finite set @ = {©!!], ..., 01},
m> oo, is considered. The obtained results are extended to the continuous case of real-valued ©
by takmg a formal limit m—>ee.

In the Bayesian approach adopted, the set ©™ of possible ®-values is equipped with a
(pre)prior probability. It is described by the probability function (PF) P(©"!) which distributes
a degree of belief to various © € ©™. In the continuous-space case this probability is spemﬁed
by the (pre)prior PDF p(®) through the formula P(@) =[q1+ 1p(©) dO. The sets ©'* 1 C O™
are neighbourhoods of the representative points @,

The symbol is reserved for the (pre)prior PDF p(-), otherwise the letter f(-) is used for PDFs
and PFs. The expectation given by p is denoted € ,.

3.2. Model of mismodelling

This subsection models the approximate nature of the system description. In order to stress
the specific nature of the addressed problem, we call it the model of mismodelling. As in any
modelling, the selection of the adequate descnptlon contains a substantial amount of heuristics.

Let us suppose that at any time instant 7€ 7~ only an approx1mate description g, of the
system is available, ie. go.~ g6 The approximation is assumed to be good locally but
insufficient for modelling global relationships within the possible data sequences D(#).
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The global (‘true’) likelihood, i.e., f™(D(¢)|®) is taken as a function of © and contains
complete uncertain-data-based information on the unknown parameter ©. The Bayesian set-up
combines it with non-data-based information quantified by the (pre)prior PF P(®) into the
entire-information-compressing posterior PF

f@|D(1)e< f™*(D (1) | ©)P (@) < Io(1)P(©).

Here, ‘o<’ means equality up to a ®-independent factor and /5(#) denotes the likelihood, i.e. the
PDF f™¢(D(t) | ©) possibly with a factor independent of © omitted. Under broadly met natural
conditions of control® the likelihood is the product of (true) partial 11ke11hoods 8%

t

lo()=1| | gor (1)

=1

The severity of the non-equality

t
lo® # [ ] 80:
=1
that we wish to respect depends on the degree of non-equality of ge,, and ggs for 7€ T,

Let us assume that the ratios pe,,= g% /8o, are well-defined and positive on a common
support included in the support of the (pre)prior distribution. Then, by (i) taking the logarithm
of (1) and normalizing the result by the number of samples ¢, (ii) using the definition of the
ratio p, (iii) adding the term In(ge,,) to both sides of the transformed identity, (iv) leaving only
In(ge,,) on the left-hand side and (v) adding and subtracting the term (w,(¢) - 1/9In(lx(®)),
with some scalar w_(¢) to and from the resultant right-hand side, we obtain

1 I < I =
In(ge;c)= — In(lo()) + [ln(g@;,) - > ln(g@;,-)] + [7 > m(p@;,-)]
a b

i=1 i=1

= w,(Dln(le(?)) + eo,.(2)

where

1 < 1 < 1
eo,(t) = [ln(ge;r) - 7 Z ln(g@;i)] + [7 Z ln(Pe;i)] - (Wr(t) - 7)111(1@(1‘))
a i=1 b

i=1

The introduced noise eq ,(¢) is the sum of the following: [-],, the deviation of In(ge,,) from
the sample mean of all gg; i€7"; [-],, the sample mean of the modelling errors;
(w, ()= 1/OIn(lo()), a function proportional to the logarithm of the ideal likelihood. The
derived relatlonshlp is obtained by deduction from the correct expression for the log 11ke11hood
of interest. Now it is extended by an inductive step. When doing this, an arbltrary te t is fixed
and suppressed in notation until Section 5. ©, and © denote arbitrary fixed points in ©*.

The induction is based on interpreting the introduced noise eq = [eg,, ..., €, ]" (superscript
T denotes transposition) as a normal multivariate variable with zero mean and with the specific
correlation structure

A(©, O)R
P(©)

where A is Kronecker symbol. R =0 (positive semidefinite) is an arbitrary (¢, ¢) covariance matrix.

@)

covleges|l, R] =
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Let us comment on this choice.

1. Zero mean can be achieved by subtracting a suitable portion of In(lg) from [-1,+ [-1p, by
removing a systematic bias in the noise. In other words, the ideal log likelihood In[/] is
assumed to be the only common factor (in terms of factor analysis) in the matrix of
logarithmic local ‘models In(ge,), €7, ®EO™. This matrix plays the role of
observable data. Note that the smaller the bias-correcting term (w,(¢) — 1/9)In(lg(£)) =0
is, the closer the model g, is to g&'5. Thus for good models

w,=1/t 3

2. Covariance structure postulates a lack of mutual correlations of eg and eg for © + O.1t
reflects the presumption that mutual relationships of ge., and gg,; are fully respected
by the selected first moment. The inverse dependence of dispersions on the (pre)prior
PF P(®) respects the fact that any reasonable modelling is more careful nearby a
priori expected values of © and admits larger errors for less expected possibilities.
In other words, the columns of the (¢,m) matrix G of the weighted (hyper)data with
entries

G, =p"*(@"Mn(ggin,), TETY, i=1,..,m 4)

are assumed to have a common @-invariant covariance R. The unrestricted form of the
mutual correlations in the ‘time-direction’ makes the model flexible. All types of
dependences between various time instants are admitted which conform with the addressed
problem.

3. Normality could be justified by the maximum entropy principle: the most uncertain model
with finite covariance is normal. It is, however, fair to say that the analytical feasibility is
the decisive reason for selecting this model. It is known to be a good approximation of all
distributions with a practically limited support. It fails in describing heavy-tail situations
with possible outliers. From this viewpoint the assumption that all ge,, are good (local)
approximations of the corresponding gg; is merely reconfirmed.

In summary, the adopted assumptions specify a (hyper)parametrized model postulating
that the (hyper)data G in (4) conditioned on the (hyper)parameter consisting of
w=[wy, oo, w,1%, L=[P®3(@"HIn(lgn), ..., P**(O@"NIn(lgm)] and R=0 are described by
the normal PDF

f(G|L, W,R)E.N'G(WLT,IGDR), &)

where N (X, %) denotes the normal PDF of X given by the expected value X and covariance %.
I is a unit matrix of appropriate dimension and ® denotes the Kronecker product, which
expresses formally the covariance structure of type (2).

3.3. Prior distribution of (hyper )parameter

As outlined in Section 2, the posterior PDF of the (hyper)parameter (L, R, w) conditioned on
the (hyper)data G is sought. For this the (hyper)parametrized model proposed in the previous
subsection has to be complemented by a (hyper)prior PDF on (L, R, w).

The (hyper)parametrized model reflects the commonly accepted prior knowledge. Thus it is
relevant to choose a priori independent L, and R with a very flat (hyper)prior PDF.
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The key quantity L is simply assigned the (improper) uniform prior distribution. The
covariance matrix R is also given the improper uniform prior distribution on R=0. It is
obtained, however, as a limit (for y— 0*) of the flat inverse Wishart distribution

f(R)e<exp[—-0-5y tr(R™ 1)1, y>0, tr = matrix trace

The use of the regularizing parameter y >0, which gives a slight preference to independence of
(hyper)noise entries, simplifies the necessary algebra. The asymptotic case with y—0* has to be
taken, however, as the generic one. It includes cases with a singular R which corresponds to the
exact modelling and covers repetitions of information pieces.

The choice of the prior PDF for w is the most peculiar one. It serves as a method of
dealing with the non-uniqueness of the adopted parametrization; namely, the expected value
determining factor analysis model (5) is not unique. To demonstrate this, let L denote L
normalized to a unit norm, || L||?=L"L =1, and a be any nonzero scalar. Then,

wL = [w/allal™] = [w/a]l[p®*(@"HIn(I&m), ..., p*3 (@™ )In (I &im)]

The required estimate f(®| G), obtained from the ideally separated factor [a In(Jg)], has the
form

[4P(®)
2 laP®©)

eeo*

fole)= (6)

which is very different for different as. At the same time the proportionality /o< f**(D(¢) | ©)
cannot be exploited due to the lack of knowledge of this function on the whole D™ (¢). This
function is evaluated (and estimated) for the ‘measured’ data sample D (¢) only.

The incorporation of prior information is the only possible remedy for this problem. We
claim that the available information is well quantified by the PDF

R
f(WIL’ R) = NW(WO’ _2)

ea

where w, = 1/rank(R), 1 is a t-vector of units, £>0 is a small scalar and a*= || L||*=L"L.
This choice has the following justification.

1. The normal form is chosen in order to preserve the necessary degree of numerical
feasibility. Owing to the considered flatness (¢ is small) the assumption is not restrictive.

2. The expected value w,=1/rank(R) respects that the restricted applicability or the
‘neighbourhood’ of formula (1) for the ‘true’ likelihood is modelled. According to (3),
w is expected to be close to 1/t. For any regular R, rank(R)=¢ and the discussed
expected value can be equivalently expressed as 1/rank(R). For the generic singular
case (‘visible’ when y—0%), the alternative expression becomes key method for
dealing with the data repetition. It respects the fact that coincidence of the noise in
several evidence pieces can be caused by repetitions only. It is sufficient to recognize
that the (hyper)data are always continuous-valued random variables. Such data should
be counted only once in the conservatism requiring situation with which we are
dealing. ‘

3. The chosen covariance structure says essentially that the stringency of the requirement
(3) increases with increasing precision of local models and with increasing confidence in
L (increasing a in (6)).
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34. Summary of model of mismodelling

The introduced (hyper)parametrized model and the chosen prior distribution on the
(hyper)parameter define, through the Bayes rule, the posterior distribution

f(L,a,w,R|G) o= Ng(awL", I®R)Nw(wo, —Iiz—)exp[—O-Sy tr(R™)] 0

ga
where L,=P%° (G)[’])ln(l@m), i=1,...,m. P(®) denotes (pre)prior PDF of the unknown
parameter @ €0©” = {OV}2, l@m is the key unknown quantity, namely the likelihood
corresponding to the true (unknown) description of the modelled dynamic system. It is
normalized so that || L]| 2= 1. e is an unknown scalar determining the norm of the unknown ‘true’
log likelihood L (corresponding to the true description of the modelled dynamic system), i.e.
L= aL. wis an unknown ¢-dimensional vector. It is a nuisance parameter defining the structure of
the problem I is a unit matrix and ® denotes the Kronecker product. R is a positive semidefinite
(¢, £) covariance matrix. It is nuisance parameter as well. G, ;= [P(©")*’In(ge11..)], e *i-1,...
is the matrix containing (hyper)data available for estimating the unknown likelihood. It cons1sts
of weighted logarithms of local models. They are interpreted as an approximation of the ‘true’
description of the system with inputs # and outputs y: ge.~f™ (y,/D(z-1), u,0©),
D)= (31, Uys vvs Y ). Wo(t)=1/rank(R), where a 1 is a t-vector of unmits. y>0 is
regularizing scalar which will be sent to zero. £>0 is a sufficiently small auxiliary scalar.

4. MAP ESTIMATE OF UNKNOWN LIKELIHOOD

The posterior PDF (7) compresses all available information on the (hyper)parameter
(L, @, w,R). Ideally the marginal (posterior) distribution on L= al should be computed
and some pomt or interval estimate found. For computational reasons, only the maximizer
L — the maximum a postertort probability (MAP) estimate — is constructed here. This point
estimate at (hyper)level is asymptotically (m—eo) a function at the basic probabilistic level.
Thus the MAP estimate of the entire likelihood and consequently of the posterior PDF on © is
found. In this way, the problem of combining the assumed ‘nasty’ information sources is
solved.
The MAP estimate is derived using the singular value decomposition'® of the (¢, m) matrix G:

G=S8[2,01VT, S§ST=S"S=I, VVT=V'V=I, I=unitmatrix
S=[SM,...,s™M],  V=[v!, .., V] (8)
@ =diag[®,, ..., 9,0, ...,0], B,=2D,---2D,;>0, &=rank(G)<min(t,m)

Proposition 1 (MAP estimate of L)

For sufficiently small & and y—0* the MAP estimate L of L is L=G"v, where
v=av=aS", |7| =1, called the mixing vector, is the eigenvector corresponding to the
maximum eigenvalue of the mixing matrix Q'™ = GG™.

The length o of the mixing vector is a = 6/ (»"1).

Proof. First the maximization over R is performed. For the regular R considered now, the
vector wy(R) =1/tr(R)=1/t, i.e. it does not influence this optimization part. Its role becomes
significant for y—0*.
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Writing explicitly normal PDFs in (7), rotating the argument of the trace in the exponential
and denoting

C=yI+(G-wLTY(G-wL") + e(w-1/H)(w-1/t)TL"L>0

we get f(R,L,w|G)e |R|™%"*D ex [-0-5tr(R~'C)]. This function is maximized by
R =C/(m+ 1), which gives the value f(R,L,w|G)e< | C| ~**""*V, where

C=yI+ (G-wLTY(G-wLT)" + e(w—wy) (w=wy)"q"¢>0, W= 1/rank(C).

Notice the implicit form of this estimate.

The maximization over w and L reduces to the minimization of the determinant | C|. Using
the singular value decomposition (8) and completion of squares, the minimized determinant can
be written in the form

|C|=|7I + (D, 0] - vx")([D, 0] — vx")" + £(v — vo)(¥ — 1) x|
(D, 0]£%"[D, 01" R

=Jlar = (&*vyvg — o2 [D, 01" = [D, 01 xv)
14& l+e
- 2 _ ) 7
+(+8)av- [, 0]ax + ea"vy "y (@, O]ax+eza U
(1+¢)a® (1+¢)a

where x = VL = af, v=S"w and v,= §"W,.
The determinant is minimized by v=[®,01%/a + v,/ (1 + ) and the corresponding value
has the form

£ (awo - [9,015) (v, — [B,017)

|C|=|y1+9°-[9,0]%%"[9,0]" + -

+é&

Denoting z = (yI + %) 5[, 0]% and u = (yI + D*)~*3v,, the minimized function becomes

|C e

I-zz"+ —l-i—e- (op - z)(ou - z)'

3

=1-z"z+ [(1- sz)(au - z)T(a,u —-z)+ (azT,u - sz)2]

l1+¢

This quadratic function of a is minimized by

u'z
o=
w'u(l-2'2) + (2'u)?
giving
ol L2221 “a
oc £
l1+e¢ wu(l - z"2) + (z"n)

It remains to find z minimizing this expression. This determines the direction L. The discussion
is restricted to the generic case of simple positive singular values @, >%,>--- >% ;> 0.

Let z!" correspond to x'1=vector having unity in the ith position as the only non-zero
entry. Such z!! cormrespond to the unit-length vectors L1= V! for i=1,...,d. For them
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lim,,o+(1 - (z")"z/)=0 and this limit is positive for any other possible z. Thus the
minimizer valid for y—0* lies within the finite set of z'! only. For sufficiently small &,
different singular values and any >0 a direct inspection shows that z"! gives the smallest
value.

In order to obtain the final results for y?O“, it remains to notice that, for the chosen v, a, %
and y—0, rank(C) = rank(G), to express L = aV"1= a/®,G"S"! and to include 1/®, in a. O

The chosen form of the resultant estimate allows a simple formal transition to the continuous
counterpart of Proposition 1.

Proposition 2 (MAP estimate of f(©|D(¢)))

Let ge,, be positive on a common support O™, sufficiently smooth in © € e~ where ©*isan
ig-dimensional real space. Let also €,[In’(g.,;)] = [ 1n*(ge,.)p(©) dO < forall TET™.
Then the MAP estimate f(© | D(¢)) of f(© | D(2)) is

! v,
) M £6::2(©)
A®|D() = —=
| l'I1 80:p(©) d©
where v=[v,,...,7,]" is the eigenvector corresponding to the maximum eigenvalue of the
symmetric positive semidefinite (¢, #) matrix Q, with entries ‘
Qu=%,llng, . Ing..l, 7,7€T ©)

The length a of v= a7, || 7| =1, is given by the formula

rank(Q)
= 10
i 7] , (10)

Proof. This is a direct consequence of Proposition 1 for m—>e and max P(©"1)—0, as
under the adopted integrability conditions Q"'— © in (9). Then the formula for the discrete
version of the MAP estimate of L, definitions of the involved quantities and invariance of the
MAP estimate to regular transformations (here the Bayes rule) are used. O

5. RECURSIVE IMPLEMENTATION

Recursive learning, estimation, etc. deal with a sequence of problems by exploiting the previous
results to obtain a ‘cheap’ solution of the current task. '

Here the sequence of MAP estimates f(© | D(¢)) of the posterior PDFs f(© | D(¢)), t€ ¢, is
linked. In a generic case the entire (¢,¢) matrix Q(¢) in (9) is needed for this purpose. This
means that the dimension of the sufficient statistic grows with ¢ Thus, an approximation based
on a reduced (not sufficient) statistic is needed. The choice of a suitable recursively feasible
approximation is obvious here: the data In(ge,.), TE 7", have to be projected onto a fixed-finite
dimensional subspace embedded into the space of possible estimates f@©|D()). A general
description of this approach, closely related to Reference 11, can be found in Reference 2. For
the treated exponential subfamily no such projection is needed.
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5.1. Recursive exponential family
The models g, are said to belong to the recursive exponential family if

(i) a known transformation, say T, exists mapping the data vector @, = [y,, ¢.] and the
parameter © on a data-dependent i,-vector ¢, and an i,-vector function © of ©,
respectively, so that

In(go.,) = ~0-5%70 1y

(i) the models are determined by the regression vector, a known i ,-dimensional function
¢, of D(tr—1), u, which can be recursively updated, i.e. ¢,,, is a known function of
¢ T and Yo Urs

(iii) the elements of the mixing matrix are finite.

An explicit construction leading to the canonical form (11) is given in Section 6 for the ARX
model. The recursive feasibility is the key advantage of this model class, which is rich enough
to approximate a wide class of realistic systems. Its known feasibility applies also to the
inspected approximation problem, as is demonstrated in the subsequent text.

5.2. Mixing matrix and vector

With the vectors ¢, 7€ 7™, taken as data-dependent rows of the (¢,i,) matrix ¥ (2),

P = (Y1 s ¥ _ (12)
the mixing (¢, ¢) matrix Q(¢) in (9) becomes
o) ="F(OL¥ (1) v (13)
The fixed (i, i,)) matrix s{ is defined by
A =%,[660"

Note that the omitted factor of 0-25 leaves the eigenstructure unaffected.
The MAP estimate of the likelihood takes the form

In(lg(2)) = —0-5v" () ¥ (1)O 14
where v(¢) is the mixing #-vector, i.e.
pv ()= Q)v(r) ="F ()P (1)v () (15)

and p is the largest eigenvalue of the mixing (¢, t) matrix Q(¢) in (13).

5.3. The recursive form of 1o(t)

The likelihood estimate g (¢) can be evaluated recursively within a limited memory as shown
below.

Let T (¢) be an orthogonal data-dependent (¢, £)-matrix such that
T()¥(t) = [973(()’)] (16)
where B (¢) is a full-rank (ig ), iy)-matrix. Such a transformation exists'® and

ig(y<min(z, iy) amn
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The Equation (14), orthogonality of T'(¢) and the identity (16) imply

—2n(l5(1) = v (DO = v (T (T (1)® = vT(t)TT(t)[%(()t)](:)

The equation determining the #-vector T'(£)v(t) is obtained by multiplying (15) by 7'(¢) and
using (16):

oT(Ww (1) = T()Q(EWw(t) = TOPOLF (DT (T (1w (t) = [%é’)]w[%T(t), 0IT()w(2)

This implies that
T(tw(t) = [Zg)]

where the dimension of the non-zero part z(¢) does not exceed the bounded value ig(, in (17);
z(¢) is the eigenvector corresponding to the largest eigenvalue of the non-zero matrix W(z),

W(t) = B()AB(¢) (18)
It provides the estimate of the likelihood in the form
In(ls(H)) = -0-52T()B(1)O (19)

For achlevmg the overall recursivity of the needed evaluations within a bounded memory
space, it is important that ®B(¢+ 1) can be constructed directly from %(#) and w7, .. The
evaluation is based on the simple observation (see (12) and (13), that

B(t)
[T(t) 0]\;’(: iD= [T(t) 0][\1'(1)] - 20)
0 1 0 1 Wi \IIT

t+1

Thus, as the product of orthogonal matrices is orthogonal it is sufﬁment (for constructing
T(¢t+ 1)) to find the orthogonal transformation ‘zeroing’ the new row yT,, with respect to B(¢).
Boundedness of the (¢ + 1) dimensions is guaranteed by (17).

It remains to evaluate the length (10) of the mixing vector. It is determined by:

(i) rank(Q(¢)) which coincides with is when assuming the generic case of regular A.

(if) The product 7T(£)1 = 27 (¢)b(t), where b(¢) consists of iy leading entries of the t—vector
1 rotated in the same way as ¥ (¢); thus, the transformation zeroing the new row ¥7,,
when transforming B(f) —>®(z+ 1) has to be applied to [b7(¢),1]" in order to get
[b7(t+1), @1 where ‘@’ stands for a scalar.

Let us summarize.

Proposition 3 (recursive MAP estimate of f@(t))

For the recursive exponential family, the MAP estimate Io(#) of the unknown likelihood
Io(#) has the form (19), where z(¢) is the eigenvector corresponding to the largest eigenvalue of
the symmetric positive semidefinite (i, ig) matrix W(¢) in (18) with the bounded dimension
(17). The matrix B(¢) determining W(f) can be evaluated recursively by the orthogonal
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transformation J (¢ + 1) for which

- ®(n)] _[B¢+1)
J(t+1)l:w;r+l]_‘[ 0 ]

The length of the vector z(¢) is
i%(r)
(1) = —20__
ZT(Hb()
The transformation J (¢ + 1) defines recursion for the vector b(¢):

(¢ + 1)[1)?)] _ [b(t+ 1)]

where ‘@’ marks an unimportant scalar.

Proof. This is implied by Proposition 2 and the above algebra. O

Notice that the (pre)prior PDF p(-) and the form of v and © are the case-specific options
which determine the case-specific evaluation of the matrix (.

6. APPLICATION TO ARX MODEL

The main practical contribution contained in this section results from a straightforward
application of the previous theory. The results are directly and widely applicable and serve as an
illustration of the general approach.

6.1. ARX model

Without loss of generality '* the single-output case is considered. The Gaussian ARX model is
specified by the PDF

g[e,r];r = Ny,(0T¢ (1] r) = (2.71.'") 03 eXP[_O'S"_I([—l, OT](I)t)z] (21)

where 0 is the i ,-vector of unknown real regression coefficients; ¢, is the regressor, a known
function of D(r-1), u,; ®,=[y,, ¢,]" is the corresponding data vector with dimension
ig=1,4+1; ris an unknown dispersion; and © = [0, r] is the unknown parameter defining the
input—output model of the considered dynamic uncertain system.

This popular model is positive on a data-independent support and its logarithm is spanned
over a finite fixed number of functions of ©. For a wide set of (pre)prior PDFs it belongs to the
recursive exponential family.

6.2. Canonical form of ARX model

Proposition 3 is formulated in terms of the canonical form. The ARX model is transformed
here to it for a specific choice of the (pre)prior PDF p(©).

The (pre)prior PDF p(©) is expected to be flat and its analytical form should not influence
the results significantly. For computational reasons a self-reproducing Gauss—inverse—Wishart
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(GiW) PDF* is selected

(22)

~0:5(u+iy+ -1, TTeor—1. 91"
(6, 7) = GiW, (272, v) o 100" ex P(_[ 0]52253[ 6]
,

The normalizing constant in (22) is finite, i.e. the PDF p(8,r) is well-defined, if the (ie, io)
matrix £ is regular and the scalar v positive. The matrix £ can always be and will be selected as
lower triangular with a positive diagonal (Cholesky factorization):

£, 0
= LL’;;, ‘§£¢]
&, is a positive scalar in this decomposition.
The unknown quantity X is transformed to the canonical form
E[‘p, T]E[- 0-5 N -OSOT].SZT

i.e. p is a positive scalar and x is an i, vector. For this variable

v-1 2 T

P(X)= F"—’?’Z_FM exp(— %)(2,,)—"¢/2 exp(_ x—;) = 91,,(- %) N0, 1) ©3)

The function 2,(v/2), denoting the factor depending on p>0, could be converted into the
gamma PDF w1th v/2>0 degrees of freedom by the additional substitution 0-5 p’=p.
The ARX model (21) parametrized by the transformed variables X, becomes

gx:c=p exp[-0-5([p, x"1®,)*] = exp{ ~0-5[~2 In(p) + ([p, x"1®.)’]}

where
£ =—%5" [y, + (£7'2,4)70.), $.= (2o,
The canonical form is finally obtained by mapping ®" = [£, $"] to the i -vector
pT=01,8, ..., 8%, 0,6", 6.6 ... ;1. ..., $i, 191, ] (24)

with i,=1+0-5ip(ip+1).
Similarly, an i ,-vector © is assigned to the transformed unknown parameter X T=(p, x™):

0" =[-2 In(p), p*, ¥, ... ,¢,2px 2 21 (%20 ces X3, 5 - 25 15, ] 25)
With this notation, the logarithm of the local model (21) takes the form (11).

6.3. Evaluation of mixing quantities

The matrix s is the second moment of the vector © in (25) with respect to the (pre)prior
PDF (23). It can be expressed in terms of logarithmic derivatives ¥(a) =0 In[I'(a)] /aa of the
Euler gamma function I'(a), a>0. Its approximate value can be based on the formula'

0 In(T'(a)) 1 1 1
54 = — =] —_— - —
(@) da n(a) 2¢ 124° ¥ 120a*




538 M. KARNY, A. HALOUSKOVA AND P. NEDOMA

It holds that
TP TS & 0 0
s me w0 0
d=|pul ud pgd+11" 0 0
0 © 0 dusl 0
|0 0 0 0 41|

where 1 is now and i dimensional vector of units. The unit matrices at u, and u; are of the ig-
type and the unit matrix with the coefficient ‘4’ completes the dimension of  to the square i,
type. The scalars involved are defined by

py = =28 [In(p)] = -In(2) - F(0-5v)

= 4% [In® = 24 99(05v)
M2 ()] =py + 3(0-50)

Hs = =2%,[p” In(p)] = —(v + 2)(In(2) + P(O-5v + 1))
=80 1= (+4)(v+2)

ts=%,[p"1=v+2

us=[" KN, 1)dh-1=2

The structure of o leads to the following lower triangular square root A of s =AA" needed in
the implementation:

M
A=|0 2/(us)I (26)
0 0 21

where the (i, i ,) matrix M is a triangular Choleski square root of the top-left submatrix of {:

Low ps 1
My M2 U My
Hs H3 Mg ﬂslT
1wl pusl pgd+117

MM™ = 27

This square root can be precomputed and the matrix W(¢) in (18) expressed as
W()=B(t)B™(t), with B(t)=®RB()A

A standard QR algorithm' can be used for updating the matrix % (¢). As the vectors 3, have
the first entry equal to unity, the vector b(#) needed in evaluating the length @ of the mixing
vector in (10) coincides with the first column of & (¢).

There are many efficient procedures for determining the maximum eigenvector of a positive
semidefinite (mixing) matrix. Iterative versions starting from the mixing vector obtained in the
previous time step seem to be preferable.

It is worth noticing that the mixing matrix often has positive entries (this is always true when
the data D(¢) are discrete). Then the Perron theory'* implies that the mixing vector has non-
negative entries.
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6.4. Final form of estimate f(©| D (t))

With the mixing vector z(¢) and the matrix % (¢), the data-dependent vector in the exponent
of the likelihood estimate (19) is just the product

HY () =zT(@)B() = [B(1), H\y (1) v es Higigs Higs -, Hyjo (£), et s, ripkE) ]

The names given to the particular entries help us to write the estimate in a final compact form.
_ Defining the (iy,i,) matrix %(f) with entries %,;=9%;=H;(#) for i<j, the estimate
f(X| D(1)) of the posterior PDF f(X | D(¢)) becomes

FX| D(8)) o< X21+PD exp[-0-5(XTVy()X)]  with V() =%() + (28)

By reverting back from X = [p, xT17 to the original variables (@, r), the final estimate of the
posterior PDF is found to have the GiW form :

fir, 0/ D)) = GiW, ,(LTVy ()2, v+ B(2)) (29)

7. ALGORITHMIC SUMMARY

Off-line phase

1. Select (pre)prior statistics £,v, respecting moments of (22), F=¢,[r]=2 y/ v,
cov(8) =72, (£,")" (see Section 8).

2. Compute the matrix A according to (26) and (27).

3. Set the initial condition B(0)=0, t=01n (16) and fill ¢ (0) in (21).

On-line phase

4. Sett=t+1.

5. Measure new data u,, y, and construct the vector ¥, in (24).

6. Update the matrix ® (7 — 1) to B(z) by the ‘orthogonal’® zeroing of u;” (20).

7. Compute the mixing vector v(¢) of the matrix B(1)AAT®B(¢), including its length
0 = ig /(" (£)b(2)) where b(t) is the first column of B(2).

Evaluate the statistic H(f) determining the constructed estimate, i.e. the scalar S(¢) and
the matrix Vj in (28). :

9. Evaluate desired characteristics of the approximate PDF (29) and go to step 4.

%

8. ILLUSTRATIVE EXAMPLES |

The original incentive for this research was provided by attempts to ensure the automatic
commission of adaptive controllers. Effective use of prior information proved to be very useful
in this respect. Even such simple and often available information as the approximate static gain
and/or the supposed (not precise) form of the step response can improve the start of the
adaptive control.

This section illustrates the application of the proposed procedure as well as its contribution to
the key tasks met in adaptive prediction [control design.

8.1. Coding of prior information

Variety of information sources induces variety of forms in which the information is provided
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(opinions, pictures, analytic expressions, data file, simulation model). For efficient processing a
unified coding is almost a necessity. The use of so-called “fictitious data’ proved to be a suitable
tool for handling the problem. This technique is an integral part of the identification area
folklore and fits in with the presented algorithm. Essentially the information source is asked to
provide the information in the form of fictitious data. The reply should have the following
form.

If the system is stimulated with the input sequence Us(t;) the output sequence is
expected in the range [Y(¢,), Y/(¢,)] with a high probability.

The scaled data sequence

Ve, + 2 *
1=£M, u.r:i(t.i.-—%_, TETf-—':{l,...,tf}
v yfr_zﬁ. v ),

can then be interpreted as the data sequence measured on the inspected linear ARX model. The
“fictitious noise’ dispersion is equal to the expected value 7 of the model noise dispersion r. Use
of such information reduces to the estimation with these data. The estimation has to be
conservative as the fictitious noise is not white.

The required form of the fictitious data is believed to be ‘natural’ for process experts and
sometimes may result from analytic/simulation sources too.

If just a single input—output trajectory is available, then scaling of inputs and outputs is the
only possibility for expressing its precision. The guessed range of the innovations in the scaled
fictitious data has to be close to the output dispersion predicted by the (pre)prior PDF, namely to
F(1+ || ¢ /27" ||*). This rough rule is mostly sufficient, especially for the usual case of diagonal
(pre)prior (1) &£.

8.2. Tasks supported by theory

In the computer-aided preliminary design of demanding adaptive systems, any piece of prior
information available should be used for possible performance improvement. The decisive first
design step, the system structure estimation,'® gives more adequate results when prior
information is respected. ‘

The quality of the initial learning period of the adaptive predictor/controller is substantially
influenced by its initial state — in the case of the ARX model by the recursive least squares
(RLS) initialization. The appropriate values are just statistics of the GiW PDF (29) obtained
after merging all information pieces.

Objects which have to be modelled with varying parameters (because of the system nature or
because of the approximate modelling) represent the main application area of adaptive systems.
They can rarely work without excitation-robust forgetting. A very general solution which fits our
probabilistic language is proposed in Reference 8. It needs an alternative PDF of the unknown
parameter © describing a priori possible parameter uncertainty. This is directly provided by the
advocated algorithm.

8.3. Experimental conditions

The influence of priof information in the listed tasks is illustrated on simple simulation
examples. A single-output/single-input continuous system with the transfer function 1 /(1 +5%)
sampled with a period of 0-1s is considered. The corresponding discrete-time simulation
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system is
'y,=1-81y,_,—0-8187y,_,+0-00468u, + 0.00438u ,_, + oe, 30)

The sequence e is white normal zero-mean noise with unit dispersion. In open loop experiments
the same type of independent noise serves as input. The noise standard deviation o varies in
particular cases.

Notice the small values of coefficients at input. It is non-trivial to recognize their significance
from noisy data.

In the on-line phase when the adaptive system. (predictor or controller) is in action, a
simplified system model of the first order ARX model is estimated as

ga, b1, by, k. riT = Ny,(ayr—l + bOur + blur-—l + k; r) (31)

with the unknown parameter © = [67,r]=1la, by, by, k, r].
The following types of prior information pieces are used:

(i) An approximate static gain~1 expressed by input—output data equal to a constant S,
processed as a single  (note that in accordance with the developed theory an arbitrary
repetition leads to identical results).

(ii) An approximate step response expressed by the fictitious data (u¢, yr).

yf,., = 0'957}7‘-‘,,_1 + 0'023uf’, + 0'024uf',_]
uf,r=yf,t=0 for 7<0, uf’,=1 forz=1

which are amplified by a factor S.
(iii) A short data sample (of length 20) generated by the ‘true’ system.

The statistics determining the (pre)prior PDF are £=0-1/, v=1. It means that the
magnitudes of the highly expected regression coefficients are of zero order. The amplitude of
the white noise is of the order —1. The used scalings of data S=10 or §=1 imply that the
precision assigned to information sources is of the order —2 or —1, respectively.

The information is processed by the proposed algorithm (Section 7), recorded in files and
used in the experiments.

The particular experiments vary significantly with realizations of the system noise. To
suppress this influence, the experiments are repeated 50 times with different noise realizations
and results are appropriately summarized. ’

8.4. Prior information in structure estimation

Given the ‘true’ data sample, the maximum a posteriori probability estimate'® of the best
model structure is found in a sufficiently broad space of possible models.

All the highly probable structures contained the second order autoregression
¢.=[Y,-1» Yioz» --.]. The results of 100 runs with different extents of prior information
(very vague, static gain, step response, real data sample) and with different system noise levels
o are recorded in Table I. Whenever an input is recognized as significant, the result is counted as
successful. The scaling factor is § = 10.

In order to show that the proposed algorithm processes data appropriately, prior information
is also generated from the data sample by the standard RLS algorithm.

The results are almost self-explanatory. The true model structure is easy to find when the
system noise level (o) is below 0-02 (Table I, row 1). When the standard deviation of the
system noise exceeds 0-06, it is almost impossible to find the true structure. Within this range
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Table I. Number of successes in structure estimation

Prior information

Noiseo  Vague  Gain Step Data RLS

0-02 97 98 99 96 96
0-03 66 79 88 69 57
0-04 30 48 66 36 24
0-06 6 8 31 10 4

the use of prior information has substantial positive influence. The best results are obtained for
the step response information, then the gain information and the data sample. The RLS
processing has only a minor influence.

8.5. Initialization of adaptive predictors/controllers

This subsection demonstrates the positive influence of incorporating prior information in the
initial phase of recursive estimation and control.

The system (30) with the dispersion o =0-03, the model (31) and the scaling factor § =/ are
considered.

The open loop results are quantified by the (average) absolute prediction error in Figure 1.
The influence of the gair information is quite similar to that of the step response information,
so only the former case (broken curve) is presented. The full curve corresponds to the vague
prior information and the chain curve to the data sample.

The better identification gives chance for an improved start of an adaptive controller based on
it. To demonstrate this, the open loop is closed by a standard receding horizon adaptive
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0.07p

0.065f

0.061

0.055-

0.05f

0.045

Figure 1. Prediction error
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linear—quadratic—Gaussian (LQG) controller based on the model (31). The average absolute
control error, evaluated for a step change in setpoint, is depicted in Figure 2 (the notation of the
curves is the same as in the open loop case). The non-linear nature of the controller makes the
influence of the prior information on the control quality non-monotonic. After a few steps,
however, the positive influence of the prior information is clearly demonstrated.

8.6. Prior information in stabilized forgetting

Forgetting prevents the influence of obsolete information and thus makes adaptation possible.
In connection with recursive least squares, exponential forgetting is the simplest and very
widespread (RLS-EF), but it suffers from the well-known lack of robustness with respect to
data informativity. This danger can be removed by combining the current PDF f(®) with a
prespecified alternative £,(©)."” For ARX models (GiW distributions) this technique reduces to
linear additive stabilization of the information matrix as proposed by Kraus and analysed in
Reference 18. It is called the stabilized recursive least squares with invariant alternative (RLS-
SI). In this method, mixing of the information matrix with some alternative takes place; as no
closer specification of the alternative is given, a diagonal matrix is usually supposed. The
mathematical analysis presented is valid for the full matrix alternative too, but hints are missing
for its appropriate choice. The tested algorithm provides such an alternative. As shown in the
experiments, the proper choice of an adequate matrix alternative covariance (using the available
prior knowledge) can bring performance improvement.

The following experiment gives an example of the use of prior information (step response
knowledge) in RLS-SI identification algorithms with the full matrix alternative (full curves).
The results are compared with the usual exponential forgetting (RLS-EF, broken curves) and
also with the RLS-SI with the simple diagonal alternative covariance constant / (dotted curves).
The used constant predicts time variations in the range of percentages of the prior uncertainty
range.

Figure 2. Output reference
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The system (30) with o =0-06 is identified as the first order ARX model (31). The influence
of undermodelling is amplified by using white noise input with standard deviation equal to three
up to time 50. Then input changes are switched off in order to test the behaviour of the
estimation under strong non-informativity conditions.

Figure 3 shows the average results of repeated experiments. The prediction of RLS-EF is
almost identical with that of RLS-SI with the full matrix alternative and both are visibly better
than that provided by RLS-SI with the diagonal alternative.
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Figure 3. Prediction error
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These results should be compared with the covariance behaviour displayed in Figure 4. For
RLS-EF the covariance wind-up is visible, RLS-SI has the expected stabilizing effect. The
overdamping by the selected diagonal is paid for by the deterioration of the prediction.

9. CONCLUSIONS

An automatic recursive procedure has been proposed for creating an approximate description of
a stochastic dynamic system that uses uncertain, not fully compatible and repetitive pieces of
information originating from (i) expert knowledge, (ii) preliminary data and (iii) a complex
analytic/simulation model. The procedure can merge an increasing amount of evidence and
provides a reasonably conservative probabilistic quantification of the system description. It has
been designed and tested for widely applicable ARX models. In this way the typical
representation method of black box models comes closer to the more desirable grey box models
while preserving simple applicability in control/prediction tasks.

At the practical level the algorithm allows the incorporation of prior knowledge into structure
estimation as well as into the initial conditions of recursive least squares. It serves for
construction of a reference for an advanced forgetting technique. These applications have been
demonstrated in the paper but the procedure may serve in other areas as well. It may be used as
an alternative forgetting technique if increased evaluation complexity is allowed. When treating
data from a complex source, the algorithm generates the approximant of the system as a
byproduct. It serves as a construction tool for merging simple adaptive systems into a more
complex one. It offers a lot but (as yet?) lacks deeper analysis.
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