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ABSTRACT Complexity has many facets as does any general concept. The
relationship between “infinitely” complex reality and restricted complexity
of the artificial world of models is addressed. Particularly, the paper tries
to clarify the meaning of Bayesian identification under mismodelling by
answering the question, “What is the outcome of the Bayesian identification
without supposing the model set considered contains the “true” system
model?”

The answer relates known asympotic results to the “natural” finite-time
domain of Bayesian paradigm. Tt serves as an interpretation “smoother” of
those Bayesian identification results that quietly ignore the mismodelling
present.
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approximation.

10.1 Introduction

Systemn identification can be understood as the set of procedures which
model an investigated part of reality (called object, process, plant or sys-
tem) using data measured on it [8]. Modelling of the reality, often informal,
is a necessary prerequisite to any prediction and/or control.

The theoretically ideal situation is that we are able to describe the objest
g0 that the necessary simplifications have negligible influence on the quality
of the decisions made. Such an ideal description is later referred to as a frue
model.

The Bayesian approach to system identification — shortly, Bayesian iden-
tification [4] — is a plausible and internally consistent paradigm. Its ability
to provide consistent statements after any finite information processing
is its main advantage. Seemingly, this advantage is paid by the unreal-
istic assumption that the unknown true model belongs to the set of the
candidates considered. Under this assumption, the probability distribution
constructed on this set is deductively modified by measured data. It concen-
trates asymptotically on the true model if the data are informative enough.
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But, what is the relevance of this approach when the true model is beyond
the set of its candidates?

There are defintte asymptotic answers as to how the Bayesian identifica-
tion behaves under some mismodelling situations, e.g. [2]. A conceptually
clean understanding of its finite-time meaning is, however, lacking. This
paper tries to fill this interpretation gap which is important for “beauty”
of the Bayesian paradigm. The eligible answer is also of a practical signif-
icance. For instance, estimation of the control period [1] relies heavily on
appropriate understanding of the problem.

To sum up, the paper answers the question:
What is the cutcome of the Bayesian identification without supposing the true
system model belongs into the set of considered model candidates?

It may seem that there is no connection of the paper to the notion of
dimensionality. Of course there is. It is only the indirect connection but the
fundamental one. In case of an affirmative answer to the question above
computations with models of reduced complextty, compared to the complenily
of real systems, do have well defined sense.

10.2 From decision-making to probability

This section explains the term “true system description” from a perspective
of a wide set of decision tasks. It allows us also to introduce basic notions.

Assume we make decisions d € d* using the knowledge & € £* so that
a real-valued non-negative loss function L of d and of an uncertain entity
w € w* 1s “small”. The notion “uncertain” means that the true value of the
entity cannot be used for the considered decision making. Thus, a decision
rule B k* — d*, R € R*, is searched for to “mintmize” the loss function
L(R(k),w) = L(d,w) € [0, c0]. Note that:

o linguistic distinction of the terms uncertain and unknown is left out
of our considerations, which cover them equally at operational level

¢ the available knowledge & is fixed and known at the decision time and
s0 it is further suppressed in the notation

e z* denotes generically a set of values of x.

The presence of the uncertain entity w implies that the losses L{R, w)
cannot be completely ordered for different rules R. Their point-wise com-
parison provides a partial ordering:

Definition 10.2.1 Let L {w) = L(R;,w), w € w™, be the losses assigned
to a pair of competitive rules I;, i = 1,2. The loss Ly, is said to be
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preferable {o the Lg,, formelly Lr, = Lg, iff
Lg,(w) € Le,(w), Vw ew”. {10.1)

The loss Lg, is said to be strictly preferable to Lg, if (10.1) holds and «a
“rich” set 0 C w* exists on which the inequality (10.1) is strict.
The rule Ry ts said to be preferable {o the Ry, Ry < Ko, iff Lr, X Lg,.
Ry is said lo be strictly preferable o the Ro, Ry < Rs, iff Lr, < Lg,.
The rule R € R* is said to be admissible if there is no rule in I* thal is
strictly preferable to it. Otherwise, il is said o be inadmissible.

The term “rich” can be made more precise after describing the struciure
of the involved elements in detail. We leave it vague for the time being.

Undoubtedly, inadmissible strategies should be avoided. Their perfor-
mance, judged according to L, is always worse than that of admissible
ones. The partial preference ordering of strategies has to be completed in
order to choose a good admissible strategy R in a systematic way. The
following property helps us in the completion.

Definition 10.2.2 A complete ordering < on the space R*, admitting both
strict inequality and inequalily types of ordering, is said to be strictly iso-
tonic with the partial ordering < iff R X Ko = Ry QA R and By < Ry =
Ry < Ry

Proposition 10.2.1 Let the set (R*, <) have a smallest element Ry and
< is strictly isotonic with respect to <. Then, Ry is admissible.

Proof: By contradiction, let B € R* be strictly preferable to Ro. Thus,
Lg(w) < Lp,(w) onw* and this inequality becomes strict on a rich o C w”.
This inequality, strict isotonicity of <l and definition of the smallest element
imply the contradictory inequality R <1 By < R. |

The partial ordering < of decision rules is defined using ordering of the
associated loss functions. Under general topologic conditions [5], the com-
plete strictly isotonic ordering < exists. It can be interpreted as the ordering
induced by “expected” losses

E{LRl} _<_ E{LRZ} = R1 _<_] Rg.

The “expectation” functional E{Lg} € [0,00] “removes” the uncertain
factor w, i.e. the value E{Lg} depends on R only. This complete ordering
on R* will be denoted <l in order to stress its connection to the functional
E.

The smallest element Ry with respect to <g will be found (a posteriori)
the better, the more the “expectation” F grasps the objective properties
of the uncertain factor w. Such “objective expectation” should not depend
on the set of strategies B* in which the optimum is searched for.
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Proposition 10.2.2 If £ defining <g 1s not stricily isolonic on R* then
there is a restriction B* C BB* on which an inadmissible minimizer exisis.

Proof: E can be recognized as not being strictly isotonic if there are Ity,
Ry € R* such that Lg, < Lg, and F{Lg,} > E{Lg,}. Thus, R, is an
inadmissible minimizer (not necessarily unique) on R* = { Ry, Ry} G

Propositions 10.2.1, 10.2.2 explain why an E with the strict isotonicity
property is considered further on.

The “expectation” E introduced up to now depends on the loss L.1t can
be called objective if it completes partial preference orderings < defined by
a rich set of loss functions L*. The following “test” set L* is considered:
w* be a compact set and, for a fixed R € R*, the functions in

L*={L=Lg:v" —[0,)}
are continuous. L* is normed space with supreme norm || - ||.

Proposition 10.2.3 Let Ly, Lo, ..., Ly be in L* and let E{-} be:

(i) Sequentially continuous & the sequence of eapected values B{L.} be
Cauchy for any point-wise convergenl sequence {L,}

(ii) Additive on loss functions with disjunct supports < E{L1 + Ly} =
E{Ll} =+ E{Lz} ’n!leLz =0

(iti) Boundedly uniformly continuous < V(g,7) > (0,0) b ) >
such that if || L1]] < v, ||L2l] < and ||Ly — La|| < b¢e ) then
|E{L1} — E{Lg}l < E.

Then F{-} is representable as an integral

o

E{L} = / U(Lw),w) pldw). (10.2)

4 is a finite reqular Borel measure onw*. The function U satisfies U{0,w)
0, is continuous in L almost everywhere (a.e.) on w*, bounded a.e. on w

for each L € L*. Moreover, sequence U(Ly, )} is Cauchy in the space of
p-integrable funclions.

Proof: See [6], Theorem 5, Chapter 9.3, p. 479. ]

*

This technical proposition specifies conditions under which the “expect-
ed” loss becomes the ordinary expectation of the utility funciion U. U
is able to express decision-maker’s attitude (he is risk aware or prone or
indifferent). The measure p is universal with respect to a rich class of
decision tasks facing the same uncertainty.

The assumptions (i), (iii) are technical and widely acceptable (loosely
speaking, a small change in the loss should not lead to a substantial change
of its expected value). The additivity on loss functions with disjunct sup-
ports is the most questionable restriction. This assumption which is much
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weaker than the general additivity or even linearity is, however, intuitively
acceptable if the the functions Ly, L are interpreted as a single loss decom-
posed to its restrictions on a subset of w* and its complement, respectively.

In the risk-indifferent case, U(L{w),w) = L{w), the expectation (10.2) is
isotonic if the measure p is non-negative. To achieve strict isotonicity, p has
to be positive on w* almost everywhere if the rich set o in Definition 10.2.1
is specified as a set of non-zero Lebesgue measure. Then the expectation
reduces to the standard one if the preservation of constant Ls is demanded,
fe plw*)=1.

For simplicity, the involved measure p is supposed to have a Radon-
Nikodym derivative f(w) with respect to Lebesgue measure. Thus, the
complete strictly isotonous ordering is induced by expected utility

./:;' U(L{w),w) f(w) dw.

The derivative f(w) has all properties of o probability density function (pdf)
and the operational equivalence uwncertain = random becomes relevant.

Note that f(w) has been constructed with a strategy fixed. Thus, it
generally depends on it, i.e. f(w) = fr(w). Particularly, this dependence
distinguishes control as a special decision task.

To summarize, quite general conditions have been found under which de-
cision tasks involving uncertainty require description of the involved uncer-
tainties w in probabilistic terms. Practically, the symbol w may represent
both random elements (e.g. measurement noise) and unknown constants
(e.g. system gain). Here, both types of uncertainty are unified and treated
as random variables. This treatment of constants {(their randomization)
forms basis of the Bayesian statistics. There are alternative and better jus-
tifications of the Bayesian paradigm, e.g. [4, 5]. We have, however, arrived
at a pdf which corresponds to a rich class of decision problems and as such
it can be called an objective (true) pdf.

10.3 Bayesian identification

In the complex problems met in automatic contrel and signal processing,
the pdf describing uncertain quansities is constructed from simpler elements
by standard procedures called estimation, filtering and prediction. Let us
recall them here. They serve us as a starting point in presenting our main
result.

Let w = (u(t) = (u1, ..., w),y(t) = (1, ..., ) be formed by input and
output sequences fed into and observed an a controlled system up to some
horizon t. Their relationship is uncertain (incompletely known/random)
and as such it is described by the pdf fr(w) = fr(u(t), y(f)) Let us consider
the usual case that P, = [u(r — 1), y{r — 1}, prior knowledge] is used when
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choosing u.,. Thus, the strategy (sequence of decision rules) or control law
becomes R = R(t) = {R, : Pi —u}}r<s.
The chain rule for pdfs implies

faw) = [ falur|Pu) falye lur, Pu,)-

T=1

The conditional pdf fr(u.|P,.) determines probability of generating u-
when the past P, has been observed. These pdfs describe (randomized)
control low i.e.

R(t) = {fR(”rfPu,)}rgt-

They reflect (possibly random) rules of input selection. They are the main
outcome of the supported optimization.

The conditional pdf [fr{y:|us, F%,), describes probability of cbserving
1y, when wu, is applied and the past P, observed. These pdfs describe the
(random) response of the controlled system. They represent the system
model

S(t) = {fﬂ(yT |u‘r; Pu,—)}TSt

needed for the optimal control design that minimizes expected loss. Often,
S(t) depends on R(t) through the applied inputs only.

The considered learning systems construct models of reality indirecily
by identifying a so called parameirized system model given by pdfs

'fR(yTlu‘i‘:Pur!@)'

The additional variable ©® € &* “points” to alternative models. It is in-
terpreted as an unknown (multivariate) parameter-and has a very gen-
eral structure [7]. The term unknown means that © is not a part of the
knowledge available to control strategy, i.e. so called natural conditions
of control [4] are fulfilled fr(ur|Pyu,, @)} = fr(us|Fy, ). These pdfs speafy
parametrized description of the interconnection controller-system

fR(u(t)! y(t)|@) = H fR(UTfPu,)fR(yTEUT, Pu,., 9)

=1

through the chain rule.

Traditionally, it is supposed that a “true” parameter OF exists in the
considered set ©* of possible © values, i.e. the “objective” pdf fr(w) dis-
cussed in previous section coincides with fr(u(t), y(t)|©7). Then, a subjec-
tive prior pdf f(©) > 0 is selected on ©*. It distributes (subjective) belief
that particular values of © coincide with ©7 . This prior pdf is corrected
by the observed data. The resulting pdf is used for prediction or for con-
struction of the system model needed for control design. The probabilistic
rules employed are summarized in
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Proposition 10.3.1 The Bayesian parameter estimale {(in ¢ wide sense),
i.e. the posterior pdf of the unknown ©, evolves aecording to the formula

f(eiput+l.) & fR(yfluh P‘uwe)f(elput) (103)

with f(O1P,,) = f(©). The symbol o< means propertionelity up to a fac-
tor independent of ©. The Bayesian prediction (in o wide sense}, i.e. the
predictive pdf (system model with the excluded parameter) is given by the
formula '

fuulon Pu) = [ Sa(ulue Pu,,©)(O1P) dO.

These formulae are valid under natural conditions of control [4].

Proof: In fact, the unknown parameter completes the colection of uncertain
quantities to w = (u(t), y(t),0). The corresponding joint pdf is a product
of “ohjective” and subjective factors:

Fr(u(t), (), ©) = Fr(ul(t), y(t)|O)f(©).

Both the estimation and prediction just evaluate marginal/ conditional pdfs
and insert measured data. For details, see [4]. o

The formula (10.3) implies that zero prior belief keeps the posterior one
at zero, irrespectively of data. Thus, we cannot flearn of © not assumed a
priori as a possible “true” parameter.

At the same time we know that, at least due to the complexity of the
Nature, the “rue” parameter is out of any tractable set ©*. Thus, the
natural question addressed in the paper arises: what are we doing when we
apply Bayesian paradigm and at the same time face this situation?

10.4 Bayesian paradigm revised

Recall: a set of decision tasks is considered and parametrized models speci-
fying fr(u(t), ¥(t)|©), © € ©* are selected. The triple (u(t),y(t), ©) can be
complemented by all relevant (unmodelled) influences, say g(t), to the full
quadruple wy, = (u(t), y(t), ®, (1)) of uncertain entities in the problem.
The completness means that an objective probabilistic measure p(dwg)
characterized in Proposition 10.2.3 exists. For simplicity, the factor g(t)
representing mismodelling is assumed not to prevent us from characteriz-
ing g by the pdf f7 (wy)-

Obviously, the inspected losses do not depend on the unmodelled factor
g(t) (we do not know how to quantify it so that we cannot include it into

our loss function). For the same reason, it cannot influence attitude to
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the uncertainty risk: U(L(wg),wy) = U(L(w),w), w = (u(t),y(t), ©). This
fact together with the formula for expected utility imply that the marginal
true pdf fT(w) = fF(u(t),y(t),0) = fs"(t) fT (w, g(t)) dg(t) is supposed to
exist.

The parameter © is “man-made”, it characterizes models. Its marginal
(prior) distribution coincides with prior belief f(©) attached to the possible
values @ € ©*. Thus, the true pdf can be factorized

Fw) = T (ult), y(1)10)£(8)

The artificial nature of @ implies that f7 (x(t), y(t)|©) = f7 (u(t), y(t)), so,
it does not depend on ©. The true pdf of the data, f7 (u{t), y(t)) is unknown
and need not coincide with any considered model. As a pdf, the chain rule
is valid for it. Moreover, the same randomized decision rule f{u:|Py. ) is
imposed both on the true and the model system.

Facing mismodelling, the understanding of Bayesian identification as the
data correction of the prior pdf f(©), interpreted as a belief of the state-
ment © = OT = true parameter, as described in Proposition 10.3.1, lacks
meaning. Instead, the key shift in the paradigm, proposed here, consists of
interpreting the Bayesian identification as redistribution of the prior pdf
f(©) as the belief of the statement © = O%¢t = the pointer to the best
approzimant f(u(t), y(t)|0*?) to the unknown pdf f¥(u(t),y(?)). In other
words, the answer to the key question of the paper is suggested as follows:

We want to learn the reality (the true system model) but what we really get,
using Bayesian identification, is information on the best projection of the true
model to the considered set of models candidates.

Obviously, under mismodelling we work with a sort of projection but the
two questions arise: ‘

» What type of projection we are dealing with?
¢ Why is the best one learnt? '

These questions are answered in the next section. Some remarks should
be made beforehand. Note that:

o The inpenetrable barrier between reality and artificial world of maodels
has remained: the projection error is out of control whenever the set
of considered models is fixed. It is bad news as no perpetuum mobile
was proposed, but it is good news as the importance of modelling is
again underlined.

o The proposed answer is really a generalization of the case eT c e+,
In this situation, the best projection coincides with the true data pdf
and “classical” Bayesian interpretation remains to be valid.

e The result supports the Bayesian identification as a tool for con-
structing the system model as predictor generated by a parametrized
model. Use of parametrized models offers the chance to select a rel-
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atively rich set of models to which the true one projected. It opens
the possibility of making their distance small.

10.5 What projection?

This section singles out the adequate ©*¢°* € ©*. The result is motivated by
Shannon-McMillan-Breiman theorem [3]. The adopted version minimizes
assumptions on the true pdfs and restricts the class of parametrized models
to those with finite-dimensional observable state

Fyslue, Pu,, ©) = m (8;). (10.4)

Here, m? is a known (generally, time-varying) functicn of a finite-dimen-
sional data vector ¥, = (y,¥:). The “regression” vector ¥ is a known
function of ¥;_; and the observed data u;,%_1. The initial condition g is
assumed to be known, too. The functions m? are positive on their domains
¥; for all fixed @ € ©* and t = 1,2,.

The estimated parameter is supposed to be time-invariant. Thus, all es-
timators based on u(f), y(t), ¢ = 1,2,... have the common aim, to estimate
the same quantity. It implies that the parameter estimates found fort — oo
are the only relevant ones.

Let us fix a possible value of the parameter © € ©*. For the model {10.4),

the Bayesian estimate (10.3) can be given the form

v,
x (©) exp[ Eln (?ﬂﬁ)ﬁu_)
= f(0)exp[tHy ]~ e

The following auxiliary proposition helps us in formulating the main
result of this section.

Proposition 10.5.1 Let m® (W;) be positive on (u* (1), y*(t)) = support of
T (u(t),y(t)). Then, almost surely,

limsup HY = HE <0

t—oo

Proof: A straightforward computation shows that

[H fT(yT|uT,Pu,)] -
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where the expectation is done over the data set. The Markov inequality for
positive random variables implies that, for arbitrary ¢ > 0,

1 i m@(¥,)
Pr{=In ||—T—-T— > ¢} < exp(—te).
{t [n—_1 T (yrlur, Py,) | — b S exp(—te)
This inequality and Borel-Cantelli lemma give the conclusion. ]

It is obvious that H2° = 0 if m®® coincides asymptotically with the true

pdf. Thus, mismodelling can be expressed by the assumption
H® <—h<0 (10.6)
for some constant A > ( and all © € ©*.

Proposition 10.5.2 Let mP(¥,) be positive on (u*(t}, y*(t)) = support of
FT(u(t), y(t)). Let us define

*0O — (] *
e = {Argéréaé)g H21Nno .

If (10.6) holds then the Bayesian estimate concentrates on @ if 1l is
non-empty.

Proof: Using formula (10.5), we can see that f(©|P,,) behaves asymptoti-
cally as exp[t{ HE —supgcg+ HE}]- It is non-zero for maximizing arguments
only. O

Note that:

e various conditions (a continuity type in © for m and compactness
of ©*) can be impossed to guarantee ©* # 0.

e if there is information on the dependence structure of F7 its strongly
consistent estimators can be constructed and substituted instead of
fT. A version of the large deviation theorem is obtained that pro-
vides a constructive guideline for approximate estimation with sub-
sufficient statistics [2].

¢ The quantity HS is tightly connected with the entropy rate notion.
For instance, symbolically, 1/t Ef,:l - F holds under ergodicity-
type assumptions [3].

10.6 Example

One of the practical examples based on the idea of the existence of mis-
modelling concerns the problem of the estimation of control period [1}.
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‘The control period is defined as an integer multiplier of the sampling
period. The estimation of control period thus looks for the choice of an
integer n (the sampling period is formally assigned the length 1). The choice
of n implies by definition that during the system control, inputs are kept
constant within » consequent control steps and only a single representant of
the n-tuple of ouiputs measured within these steps is used in the feedback.

The idea of the estimation of n follows. Facing the mismodelling and
trying to build an approximation of the true pdf fT . the combination of
direct two-, three- or more-steps ahead predictors can result in a better
approximation of f7 than the combination of one-step ahead predictors
(which seems to be the best case having no mismodelling at all, t.e. when
the true model coincides with any from the set of model candidates}. For
details, see [1, 7.

So, together with standard model structure and parameter estimation
also the number n representing the chosen n-steps ahead predictor is esti-
mated. Such estimate 7 is then interpreted as the searched control period.

Using the just developed interpretation machinery, the simultaneous es-
timation of n, model structure and parameters themselves is just an effort
to find out the best projection of the true pdf into the set of pdfs gener-
ated by used (‘generalized’ ARX) models [1]. We can use such estimation
procedure anyway but now the result is easy to interpret and well justified.

10.7 Conclusions

The paper answers the question: _
What is the outcorne of the Bayesian identification without supposing that the
true model belongs into the considered set of model candidates.

The answer summarizes in the statement:

We try to identify the reality (the true system model) but what we really get,
using Bayesian identification, is an information on the best projection of the
true model to such considered set of model candidates.

The novelty of this statement lies in its validity for any (even finite)
information which is processed.

The contribution of the paper to modelling is indirect only. The state-
ment just underlines the well known rule of thumb: use of known facts
(physical laws, ability to approximate a rich set of mappings, expert’s
knowledge etc.) for making a set of candidates to model the reality. Such
set will decide on quality of the projection, on mismodelling error.

Similarly, the answer has in fact no computational consequences, but
unifies and serves as an interpretation of various previously obtained results
in the Bayesian identification field.

In the paper, a mathematical treatment of this idea is presented with
two particular results of interest:
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e the meaning of the “true” probabilistic description is clarified and
related to a set of decision tasks,

+ asymptotic behaviour of Bayesian estimator is characterized.

To sum up, the paper is of a methodological nature. It tries to connect the
model to reality more precisely than just saying ‘model is an approximation
of the real object’. It tries to model ‘mismodelling’. In other words, it
specifies the difference between what we actually get using the once chosen
model and what we would get using the true model. The goal of the paper
is not to say absolutely that a particular model is good or bad, but, from
the set of models given in advance (which, e.g., differ by a value of one
parameter of the generic model), tries to find the relatively best (with
respect to this set) model to form the best projection of the true pdf to the
corresponding set of model-generated pdfs. Thus, only the models specified
beforehand are used for comparison.

In this way the Bayesian identification procedures used are better justi-
fied and, hopefully, a space is open for new constructions.
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