TOOLS FOR COMPUTER AIDED DESIGN OF ADAPTIVE CONTROLLERS

Prior information in structure estimation

M. Karny, P. Nedoma, N. Khaylova and L. Pavelkova

Abstract: The problem of a joint quantification of prior knowledge and structure estimation is
solved within the dynamic exponential family of models. The result is elaborated for normal
controlled autoregressive models and illustrated on a simulated example. The problem arose as a
substantial ingredient of the automatic commission of adaptive controllers, described in a
companion paper. From this perspective, work also serves as an illustration of technology used

within this broader context.

Principal symbols

Symbol Meaning

= equality by definition

x* set of x-values

X number of elements in vector or
sequence x

§(dD) conditional probability (density) func-
tions (P(D)F)

d(1) sequence (d,,...,d,)

S, K model structure and knowledge item,
respectively

t discrete time, always the last subscript
after ;

i subscript of ith entry d;,, of data item d,

I tr,’ unit matrix, trace and transposition,
respectively

YL nonnumerical index ¢ of variable L

V,v statistics describing conjugate PDF to

exponential family

- bar distinguishing (flat) preprior PDF

A mark of increments of statistics obtained
from data only

&, var, cov expectation, variance and covariance,
respectively
Tic discrete time of fictitious data expressing

knowledge KC

1 Introduction

Adaptive LQG controllers that minimise approximately
quadratic criteria using recursively estimated linear gaus-
sian models have become a standard in the academic
environment [1-3]. The version with controlled autore-
gressive models (ARX) is among the most successful ones
as confirmed by their full-scale applications [4—6]. At the
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same time, their potential is far from being adequately
exploited. One of the main reasons for this is the
requirement for expensive manpower-intensive commis-
sioning of such controllers in many practical contexts. This
fact, that also applies to other adaptive controllers like GPC,
MUSMAR etc. [3, 7], stimulated an extensive project
[8—10]. It aims at creating a complete computer support of
the commission. At present, a full solution for single-input
single-output systems is implemented in the software
system Designer. It covers

(i) data preprocessing

(i) quantification of prior information [11]

(iii) selection of the model structure [12]

(iv) offline estimation [13] that serves for initialisation of
the online estimation as well as an alternative model needed
for parameter tracking [14] by the stabilised forgetting

(v) estimation of the forgetting factor

(vi) tuning of kernels in the optimised quadratic loss so that
user’s aims and restrictions are met; this also provides
offline prediction of closed-loop behaviour [15]

This paper proposes a correct combination of steps (ii) and
(iii). The summary of steps (ii)—(iv) also serves the
companion paper [16], which provides a solution of the
most difficult step (vi). Thus, in addition to particular
improvements, these two papers report on the technology
used within Designer.

The paper is relatively self-containing. Readers less
familiar with the bayesian treatment adopted are referred
to [13].

2 Problem formulation and solution

The essence of the addressed problem and its conceptual
solution are described after technical preliminaries. The
ARX model used belongs to the exponential family. Its
handling is very simple when its member-specific details are
left aside; this explains why the basic ideas are presented in
terms of this family.

2.1 Basic notation and operations

The following notation is used throughout the text.
PDFs are distinguished by the identifiers in their
arguments. No formal distinction is made between a random
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variable, its realisation and argument of PDFs. The correct
meaning follows from the context.

The following elementary operations of PDFs are
used [13]:

normalisation /f(a) da = / fla)da=1 (1)

chainrule f(a, blc) :f((laTb7 c)f(ble)
marginalisation f(a|c) = / fla, blc)db

f(bla, c)f(alc)
Jf(bla,c)f(alc)da
o f(bla, c)f(alc)

The bayesian paradigm that we exploit operates on the joint
PDF of all uncertain variables encountered. It composes this
PDF from its elements and derives its particular marginal or
conditional versions using (1). It inserts in them the measured
realisation of any variable that is at its disposal,

Here, the sequence of multivariate data d(f) = (dy, ...,
d;), unknown, finite-dimensional parameters ®g and
unknown structures S of an appropriate model are
considered. The joint PDF is composed as follows:

Bayes' rule f(a|b, c) =

joint PDF

f(d(;)v ®Sa S)

prior PDF|S  prior on S

—— ~ =
=f(©s]8) x [f(S)

parameterised model

d
Hf zt|dt+lta" ddt’d(

i=1

X 1),0;s)

(@s,...,0 ) (2)

Ew

t

2.2 Estimation and prediction in exponential
family

The parameterised model in (2) of a fixed structure S is the
central modelling element. Within the control context, when
the amount of observed data is permanently increasing, the
following models are predominantly used.

Agreement 2.1 (exponential family): The ith parameterised
model belongs to the (dynamic) exponential family IFF it
can be written in the form

f(di‘z‘diqtl;n-- ’dd 7d(

) ®i8) :f(di;t | dli&n ®i8)
= A(O;s) exp[(B(Wisy), C(Ois))]
(3)

where ‘PZ 50 = [digs 8;;] is the data vector, given by a finite-

dimensional regression vector s, depending on

diiiyy...,d- and on d(r — 1); it is assumed that the values
> o

9 it

of all data \tfiectors Yis._1, i=1,...,d, can be recursively
updated using the newest data item d, only, A(-) is a
nonnegative scalar function defined on @®jg () is a
functional that is linear in the first argument and B(-), C(-)
are either vector or matrix functions of compatible, finite

dimensions. They are defined on W5, and ®js, respectively.

The practical significance of the exponential family
becomes obvious when summarising the corresponding
estimation and prediction [13], as follows.

Proposition 2.1 (Estimation and prediction in exponential
family): Let the parameterised model have the form (3) and

the parameters @5 = ®(§ ) be a priori independent, i.e.
f(©g) =14 ,f(®;s). Moreover, let the conjugate prior
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PDFs f(®,s) [17] be used
f(©;s) oc A"5°(@;5) exp[(Vis.0, C(O@;5))]XOis(®;s)

—g®5( iS;0» 18;0) (4)

The conjugate PDFs have the parameterised-model-induced
functional form G. They are given by the prior finite-
dimensional statistic V;g.o, by the prior sample counter v;s.9,
and indicator xe: _(®;s) of the set ©js. Then the parameters
0,5 are 1ndependent a posterzorz and the respective
posterior PDFs f(©;s|d(t)) preserve the functional form
of the prior PDFs

A5 (©;5) expl(Viss, C(Oss))]xop, (Ois)
I(ViS;lv iS;t)

g@,s( iS;ts lS;l)
I(st,n iS;t)

f(®isld(1)) =

T(Vissviss) = [ 4%(©) expl(Visy, C(0,9)
X Xor,(®is) d®;s (5)
The involved statistics V;s.;, Vs, can be updated recursively
Visi = Visa-1 + B(Wisy),
Visy = Visy—1 + 1 with Vs, V5,0 chosen a priori. (6)

The predictive PDF, modelling evolution of the ith data
entry (ith channel), is given by the formula

f(di;t |di+1;t7 .. ddr7d< ) 8)

_ I(ViS;tfl + B(‘Pis;t)a Visi—1 + 1)
A (Vis;r—l y ViS;i—1 )

The overall predictive PDF, given by the structure S, is
product of PDFs (7) over i. The joint PDF of data
conditioned by the structure S is

(7)

Hc ) with £;(d(7), S)
o I(Vis;?’ iS;?)
- I(ViS;Oa ViS;O) (8)

called the partial likelihood. £;(d(7),S) expresses the
descriptive abilities of the model having the structure S
judged with respect to ith channel.

Thus, the estimation and prediction can be performed
channel-wise. Focus attention on a fixed channel and drop
the index i, remembering that a scalar variable is predicted.
The estimation and prediction reduce to algebraic oper-
ations with the finite-dimensional statistic Vs, and of the
sample counter vg,. Moreover, a single type of integral
Z(Vs,vs) has to be evaluated.

The need to get the complete recursion explains the
requirement of being able to update data vector ¥g,
recursively. Note that this requirement excludes use of
models with unknown moving-average noise.

The influence of particular knowledge items K € K=
{1,.. IC} on descriptive abilities of the adopted model is
inspected The notation £(d(7), S, K) stresses the use of the

prior PDF f(@|K). Similarly, £(d(7 ),S,IC(IC)) denotes
the joint predictive PDF obtained when using the prior PDF

f(Og] IC(IOC)) that includes all knowledge items available.
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The following proposition is needed (the fixed index S is
dropped).

Proposition 2.2 (Weighted geometric mean of conjugate
PDFs): Let f(©), * f(©) be a pair of PDFs conjugated to the
parameterised model in the exponential family, i.e. f(®) o
g@(v7 V) and af(®) x g@(dv7a V)'

Then, their geometric mean fy o f* %', weighted by
the factor A € [0, 1] is the conjugate PDF f}(®) x Gg(V,,
vy) whose statistics are

V)\:>\V+(1*>\)av, V)\:)\V‘i’(l*)\)al/ (9)
This proposition serves for tracking of slow parameter
changes using stabilised forgetting [14]. There, f(®) =
f(©]d(z)) is the posterior PDF of ® based on data d(r)
measured up to the moment ¢ when forgetting is applied.
The externally supplied alternative PDF “f(®) describes
possible changes of estimated parameters before measuring
next data. The weight A, called the forgetting factor, is
interpreted as the probability that the parameters do not
change. The usual exponential forgetting is obtained by
taking the completely flat alternative “f(®) o 1. Use of the
preprior PDF f(®) o< Go(V,7) as the alternative PDF
“f(®) is wiser. Even a flat PDF f(©) respects finite ©
values. It conservatively guarantees that the support of the
forgotten posterior PDF does not move on the area
containing infinite values of ©.

The geometric mean of PDFs serves also for finding a

representative f(®|d(;),lC(loC)) of several PDFs f(©)]
d(1),K), K € K*, each including a piece of prior knowl-
edge K about ©. For the measured data d(7) and no
prejudice, the degree of belief ascribed to each of them
coincides with the posterior probability f(lC|d( ))

L(d(7), K). The representative f(©|d(%), (IC)), called
the merger and motivated in [11], is chosen as the weighted

geometric mean

HOlde) O(ﬁ[ @lde) }md(f))

K=1

K
V)C;?’ Zf(lc | d(;))VIC t
K=1

K
— G| S r(K1a®)
K=1

2.3 Structure estimation in nested
exponential family

For a fixed functional form of the exponential family, the
model structure S is determined by the entries allowed in
the regression vector. By collecting the potential entries into
the richest regression vector v, the estimation of the
model structure can be formulated as a selection of indices
in it. They mark those entries that should be used in the

proper regression vector g.,. There are 2Y® choices. This
number is usually excessive and precludes straightforward
bayesian structure estimation via comparlson of posterlor
probabilities of competing structures f(S|d(7)) o £(d(1),
S)f(S). These posterior probabilities qualify ‘a posteriori’
the discrete pointers S that have the prior PF f(S).

The accumulation of Vs;? constitutes the main compu-
tational burden related to structure estimation. The current
implementation in the system Designer [18] relies on
nesting of competitive structures S within the richest one R.
The model, given by the data vectors W,, is said to be
nested in the richest one Wy, if there is a linear nesting
mapping N such that, cf. (3),
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B(Ys,) = Ns[B(¥r)] (11)

This notion and proposition 2.1 imply the following
statement.

Proposition 2.3 (Nesting in exponential family): Let the
parameterised model with the richest structure belong to
the exponential family (3) f(d,|Yry,, Or) =A(Og) X
exp[(B(Pr.;), C(Ogr))]. Consider another model f(d; |
sy Og) = A(O) exp|(B(¥s,), C(Og))]. Let N be a
time invariant, linear nesting mapping such that
B(¥s;) = Ns[B(¥r,)]- Assume that

Vs.o = Ns[Vrzy] (12)

Then the V-statistics of the posterior PDFs of both models
are nested, i.e. they are related by the nesting mapping V..

= Ns[Vy.;] and the posterior probability on the structure S
is given by the formula

Z(Ns[Vryl, vsy)
I(Ns[Vrols vso)

Thus, for the nested models and nested prior statistics, it is
sufficient to collect the V-statistic for the richest structure.
This helps but only partially. Full evaluation of the PF

values (13) on the complete set of 2¥® competing structures
is still prohibitive. Thus, the maximum a posteriori
probability (MAP) estimate of S has to be searched for.
The nonnormalised values of the PF (13) evaluated during
the search provides useful partial information on highly
probable structures. The following conceptual search
algorithm is used [12].

F(S|d(1)) x f(S)Vier (13)

Algorithm 2.1 (Structure estimation with nested priors):
Initial phase

e Collect the real-data-dependent increment V., R of the

V-statistic corresponding to the richest structure of the data
vector Vg,

=3 B¥n) (14

e Select the prior statistic V. so that Vg, are nested in it
VS e S8 (12).

e Specify prior PF f(S) of competitive structures, typically
uniform.

Search phase
This is run until the prespecified number of restarts (needed
for global maximisation) is reached.

1. Initialise the current guess of the structure.
Empty, richest and user-specified structures of regression
vectors are used. These options are complemented by
guesses selected randomly among a priori possible ones.
2. Do while the value of the posterior partial likelihood
increases.
(a) Make full search for the best structure within a
neighbourhood of the current guess of the structure,
i.e. maximise within it the posterior partial likelihood

) T(N<|AV o+ Vg, it ;
L(d(1),S)f(S) = (8[1(12[%; (:/]R-o) RO)

f(S),

The neighbourhood consists of all structures gained
by

e adding a single entry to the current guess of the
structure
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e removing a single entry from the current guess of
the structure

e considering structures nested in those defined in
the last two categories.

(b) Take the maximiser as a new current guess of the
structure.

end of Do

2.4 Quantification of prior knowledge

The quality of parameter and structure estimation is
sensitive to the amount of information actually available
in the learning data. Thus, any available prior knowledge
must be used. In the bayesian set-up, it is fed through the
prior PDF. Here, how the latter can be constructed is
outlined. The following circumstances are specific to
technological applications:

@ Groups of widely accessible knowledge types exist.

@ Experimental data d(7) measured on the modelled

system are available.

@ Prior PDFs are restricted to being conjugate as so the

prior knowledge is to be translated into values of the prior

statistics V, v.

© The person feeding the prior knowledge does not care

about the probabilistic tool-set used.

© No supervisor for knowledge elicitation and judgement

of expert competence is available.

© Knowledge items processed are expected to be

repetitive, not fully consistent and differing in precision

and nature. Mutual dependence between knowledge

items is undefined.

The following quantification algorithm respects these
conditions [11].

Algorithm 2.2 (Quantification of prior knowledge):
Initialisation phase
e Select functional form of the ith parameterised model
(2) of a fixed structure S in the exponential family under
consideration.
e Collect the real-data-dependent increment AV ; of the
V-statistics according to (14) for R = S.
e Split the existing knowledge into internally consistent
knowledge items (see Section 3.1).
e Select the preprior PDF f(0;) x Gg (Vs,7s) on
unknown parameters ®g that expresses the common
(preprior) knowledge available.
e Initialise the normalisation factor s = 0.

Quantification phase runs for internally consistent knowl-
edge items K € K.
e Translate the knowledge item /C into the fictitious-data

o . A A
d(Tx) dependent increments Vs Vss,

prior statistics Vs, s so that Vg = AVS,;K + Vs and

of the pre-

Usico = A Vs.2xc T Vs describe the considered knowledge

item, i.e. f(Og ) X Gog(Vsk:0s Vsko)-
e Evaluate the descriptive abilities gained by exploiting
this knowledge on real data d(7) and update the normal-
isation factor s
A

Vi Vsros TV SIC:O)

Z(Vsk0, Vsko)

s=s+ L(d(1),S,K). (15)

: 7(
L(d(1),8,K) =

)

Merging phase combines particular knowledge items into
the merger (10)
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F(©5d(D), K(K)) x f(d(D)|Os)
% ﬁ [£( Kld(1).S) (16)
K=1
(d(1), S, K)

f(K|d(1),8) =
it gives

F(®4]d(?),K(K))xGe,

K
X <AVS;?+. E I(qu(l‘) VS}C()Z‘-F E / ]C|d VSICO
K=1

V. o
SK(K);0

v o
SK(K):0

V o
SK(K):? Vi)

(17)

It remains to specify the meaning of internally consistent
knowledge item and to show how to construct the
increments of statistics on fictitious data. These aspects
are covered in Section 3.

2.5 Addressed problem and its conceptual
solution

The addressed problem stems from the fact that usually the
prior statistic Vg0 expressing the piece of knowledge
within the structure S is not nested in the statistics
corresponding to that with the richest data vector. In other
words, the efficient algorithm 2.1 cannot be directly used if
prior knowledge is to be exploited. This fact was overlooked
in the former implementations [19] and caused worse
estimation results than we hoped for. Recognising the
problem, the remedy is straightforward. The following
conceptual algorithm is used.

Algorithm 2.3 (Structure estimation with prior knowledge):
Initial phase
e Select the parameterised model in the exponential
family and the richest structure of the underlying data
vector W B
e Select the preprior PDF f(@g) x Gg,(Vgz,7z) on
unknown parameters @ that expresses the common
knowledge available while requiring that the same
knowledge be expressed for all nested structures of
interest.

Structure estimation with the nested prior statistics
e Apply algorithm 2.1 to get a preselected number S of

structures S € §* = {1,2,...,:)5‘} having the highest
posterior probabilities when using the restricted prior
knowledge described by the PDF f(®x).

Inclusion of prior knowledge for promising structures
Seds”
1. Apply algorithm 2.2 for the fixed structure S to get the
statistics of the best merger V TE
{0, (D)}, of. (17).
2. Evaluate descriptive abilities of the best merger,
within the given structure S, cf. (16),

() Vsk(R)ir?

IEE Proc.-Control Theory Appl., Vol. 150, No. 6, November 2003



I\V_ eV, o o
ﬁ(d(;),S) — ( SK(K):t S’C(’C)J)

z (Vs;qi’o;o’ ”szc</°6>;0)

3. Provide S € Arg maxg £(d(7),S)f(S) as the struc-

ture estimate and its statistics V SK(R) v Sk as initial
conditions for the subsequent online estimation and as the
alternative PDF needed in stabilised forgetting.

3 Fictitious data

Here, the construction of the common information basis, i.e.
fictitious data, is recalled and refined [11]. It allows one to
cope with knowledge items of a different nature in a unified
way.

3.1 Internally consistent fictitious data blocks

Some information sources porovide knowledge pieces K the
in form of data blocks d(7x). They include obsolete or

interpolated data measured on the system in question or data
measured on a similar system, data from identification
experiments violating usual working conditions, e.g.
measurement of step response, and data gained from a
realistic simulation.

The data block d(7y) expressing the knowledge piece
K is called internally consistent IFF f(®s|K) is equal
to a flattened version of the posterior PDF
f(@g|d(Tx)) x QQS(VS;;K_, VS;;;K). The handling of such a
knowledge item is described in detail.

The posterior PDF is obtained by Bayer’s rule applied to
the preprior PDF f(®g) x G (Vs,7s) with stabilised
forgetting. Forgetting is used to counteract mismodelling.
The preprior PDF is used as the alternative PDF. Thus, only
an appropriate forgetting factor A needs to be chosen.
A comparison of partial likelihoods obtained for various
forgetting factors serves this purpose. This is done anyway
during merging of individual knowledge pieces. Thus, it

suffices to take PDFs f(@g|d(Tx)),\) Gos (V2,0
I/S)\_;K) gained for different As (forming a representative

grid defined on A-domain) as different knowledge pieces.
This is done from now on and reference to A is suppressed.

The nature of the fictitious data blocks implies that the
PDFs

f(Os|d(Tx)) = Gos(Vsz rVsz )

EQ®S<AV o

ST

+ ‘75, A VS;7°'K~, + 175) (18)

reflect system properties approximately. Consequently,
these PDFs have to be flattened adequately before merging
such a piece of knowledge. This is of great importance
since, for instance, simulators may provide a huge amount
of data that may over-fit the posterior PDFs at wrong
positions. The geometric mean could serve for flattening
these PDFs. Its use is, however, unnecessary since an
appropriate weighting is applied during merging of all
knowledge items anyway.

3.2 Construction of fictitious data

Here, the focus is on those prior knowledge items that do not
have directly the form of data blocks but can be interpreted
as the expected system response on a prespecified stimulus.
Static gain, a point on the frequency response and time-
constants all serve as prominent examples. Such a knowl-
edge item /C is always uncertain to some degree. It can be
interpreted as a collection of partial chracterisations of

IEE Proc.-Control Theory Appl., Vol. 150, No. 6, November 2003

several predictors. Each of them is expressed in terms of its
prior PDF f(®g|7¢)

fdy |Vsn) = /f(dr,C | V57, @) f(Os]T¢) dOs  (19)

for respective regression vectors ¥g.., T € {1,.. S Tich
Mostly, the 7i-th part of the knowledge piece K can be
expressed as initial moments of the PDF (19). Formally,

h(wS;Tx) = /H(d‘r,ca ZZ)S;T,C )f(d’r,L |¢S;‘r,c) dd‘rk (20)

h(vs..) and H(Ws., ) = H(d,_,¥s.;.) are known vector
functions of the indicated arguments. When there is no PDF
f(®g]| k) fulfilling (19) and (20), this information source is
inconsistent and has to be split into several, internally
consistent, knowledge sources. Then the restrictions (19)
and (20) do not determine fully the constructed PDF
f(®g| 7). Pragmatic reasons encourage one to search
within the class of conjugate PDFs. Moreover, it is
reasonable to construct such a PDF f(®g|7x) that reflects
just the knowledge item expressed by (19) and (20). Thus it
makes sense to choose such a PDF f(®g|7x) that is the
nearest one to the flat preprior PDF f(®g). The choice is

made among those meeting (19) and (20). The Kullback—
Leibler distance [20] D(f|f) = [f(®s|7x) In[f(Os|7k)/

f(®g)] dOg is used as an adequate proximity measure.
Both f(®g|7c), built in this way, and preprior PDF
f(®g) belong to the same conjugate class. Thus, their ratio
can be interpreted as a product of the parameterised model at
some fictitious data vectors, leading to the statistics incre-
ments AVS;TK, A Vs.r.- The knowledge item K is supposed to
be internally consistent. Consequently, fictitious data vectors
obtained for various 7y should be processed by using Bayes’s

rule. Thus, f(®s|K) is determined by statistics

T T

A o A A . A

Vs, =2 Ve “vss =D “wse (2D
=1 Te=1

The values AVS;TK, A Vs.r. are chosen so that the PDFs

Go, (AVS;TK + Vs sy + 175)

minimise the Kullback-Leibler distance to Ge (Vs,7s)
under restrictions (19) and (20).

The optimisation is elaborated for the ARX model in the
following Section.

4 Application to normal ARX model

The normal ARX model and its variants are predominantly
used in practice. This determined that the system Designer is
oriented to it and encourages one to specialise the general
solution to this case.

4.1 Estimation and prediction with normal
ARX model

The normal ARX model belongs to the exponential family
with the following correspondence to its general form (3):

f(d]|9,0) = Ny(0¢,r)
= A(©)exp[(B(V), C(0))] with (22)

® = [0, r] = [regression coefficients, noise variance], A(®)
= (27r)"*3(B,C) = r[B'C], B(¥) = PV, C(®) = (2r)"!
[-1,0] [-1,0]. This correspondence determines the
conjugate prior (4) in the form known as the Gauss-
inverse-Wishart (GiW) PDF [21]
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Go(V,v) = r 030404 exp{%tr(vmo’]’ [1,0’]>},
(23)

The (¥, ¥)-dimensional extended information matrix V can
be chosen symmetric and must be positive definite as the
function Gg(V,v) is to be normalised to a PDF. Conse-
quently, there is the numerically advantageous L'DL
decomposition of this matrix [22]

V =L'DL, L = lower triangular with unit diagonal,

1 0
D = diagonal, L= {de ""L} ,

D =diag[D,¥ D], D = scalar (24)

Proposition 4.1 (Basic properties and moments of GiW
PDF): The conjugate GiW PDF has the following
alternative expression

05(v ) +2)

Go(L,D,v) :m

where 6= "/’Lf'd"/’L = least-squares (LS) estimate of 6,
C="L"'"YD'("L')"" = LS covariance factor, and ‘D =
LS remainder. The normalisation integral is

Z(L,D,v) =T(0.5v) ‘D~ ][ *D; "2 (2)*" with
j=1

(26)

[(x) = / 7 lexp(—z)dz < 0o forx >0
0

The gamma function is finite IFF v > 0 and V is positive

definite & D;; >0, j=1,... ,‘i’ . Under this condition, the
normalisation integral L is finite.
The GiW PDF has the following moments

d ~2
D 2

Elr|L,D,v] = —— =, varlr|L,D,v] = ’4
vV — vV —

EO|L,D,v) =" L' "L =9

d
D, ..
cov[0|L,D,v] = —2”[1 'pTLy T = (27)

Proposition 2.1 specialises to the following normal variant.

Proposition 4.2 (Estimation and prediction with ARX
model): Let the normal ARX model (22) be considered,
together with the conjugate GiW prior PDF Gg (L, Dy, /)
(25) and the alternative PDF Gg(“L,“ D,“ v) in stabilised
forgetting with forgetting factor A € [0, 1].

Then, the posterior PDF is the GiW PDF Gg(L,, D;, v;)
and its sufficient statistics evolve according to the recursions
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!

L AD; L4
LD,L = | V¥, | diag A v
a (1-X)“D af,
S —— N—
L D L

v =AMy + 1)+ (1 =X, Ly, Dy, vy given a priori.

(28)

The rectangular matrix L is mappoed on [L;, 0] by the regular
matrix 7 that diagonalises the (W, ¥)-left upper corner in
T ~'diag[D, 1)(T") .

The predictive PDF is known as the Student PDF. For any
data vector ¥ = [d, /]', its values can be found numerically
as the ratio (7).

4.2 Internally consistent fictitious data blocks

Processing of internally consistent data blocks coincides
with bayesian estimation of the ARX normal model. The
one-to-one mapping of the extended information matrix V to
the LS quantities, proposition 4.1, implies that its updating
is equivalent to recursive least squares [13]. It is equipped
with tracking ability through stabilised forgetting. Numeri-
cally, its L'DL decomposition is evaluated by using an
efficient, rank-one updating [22] that creates the mapping 7°
(see proposition 4.2).

4.3 Construction of fictitious data

Here, processing of the most common case of prior
knowledge is presented. Specifically, initial moments of
the predictive PDFs f(d.,_| 1), ) are assumed to be given, for
a fixed regression vector 1, (index of the fixed structure S
is suppressed), by

dATK? = /d‘ﬁcf(d‘r/c |w7’)c> ddﬂc
= [ o, = P ) ddr,9)

It corresponds to the knowledge h(y, )= [d, ., “r, ],
H(d, ) = [d,.(d, —d,)"] in (20). For the ARX
model, the restriction on the constructed prior PDF (29)

becomes (proposition 4.1)

. ., )
dTKj = efr;(j’(rbr;ca r‘r;(j = rT,c(l + CT;()?
G =0, Cothy (30)

where HA’T)N .., C;. are LS equivalents of the statistics V,_
resulting from the minimisation of the KL distance to the
preprior PDF.

Typically, the expert provides the range [d, _,d, ] of the
response d, on the stimulus coded in s, . Then,
neglecting a small asymmetry of the Student PDF, we
choose d;, = 0.5(d,, +d, ) and ”lrﬂC =[0.5(d,, — c_lTK_)]z.

The preprior PDF used in the minimisation is assumed to
be of the form

F(©) = Go (I diag[*z,c[1,.... 1]],7) (31
——
b

It is given by positive scalars %, ¢, 7. Such a PDF expresses
the common knowledge that the parameters are finite and,
importantly, this knowledge is preserved for all nested
structures.

Using proposition 4.1 for the preprior PDF (31), the
optimised Kullback—Leibler distance is (the subscript 7y is
also suppressed whenever possible)
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D(fI1 f) = w(v) + etr|C]|

+ ryz)? [sé’é +d5] (32)

—1In|C| + #In(?)

where w(v) includes all terms depending on v only. The
optimisation of this function with respect to v is rather
involved and, importantly, its results do not have an
intuitive support. This leads us to minimise the function
(32) with respect to the remaining arguments only and
interpret the results as updating of V by rank-one *V matrix
defined by a fictitious data vector W. Then, the restrictions
(30) determine even “v uniquely.

Proposition 4.3 (Optimal fictitious data vector): The LS
quantities 6, C, 7 minimising the function (32) under the
restrictions (30) are obtained by the least-squares-type
updating of the preprior statistics (31) using the fictitious
data vector

¥ = (e vE)au| o= )

The weight x > 0 is determined by the following formulas:
d* e

2(%’“‘5) a_d_,’ ﬂ—d—r>0

b=p+1—q+17, c=p(=7+q) +4q,

x=05 (—b VB 4c) (34)

The corresponding v, is specified by the implicit formula

q:

B ap
=241 — 35
=2 (o) (S92
(34) and (35) have a unique solution in the meaningful
domain x > 0 v, > 2.

Proof: The minimisation of the function (32) with respect to
0 gives directly

dy
Y
irrespective of other variables. Inserting this 6 into the
optimised function (32) and using the second restriction in

(30) for expressing 7= /(14 (), gives the following
function minimised with respect to C

é:

(36)

2D(f||f)’ =w(v) +etr[C] —In[C] — 7In(1 + ) + (1 + {)g
v 42 de €
(v K R I R
>

Taking its derivatives with respect to C and using the
identity d1n |C|/0C = C~!, gives the necessary condition
for minimum

C™' = el + xy) with x = _%C tq (37
This implicit definition C W/ C1p is resolved using
the formula (el +xy)) ™' =& 1[I — Ef;jf, . It gives
the equation x = _p”ff:f) +¢g, which converts to
the following quadratic equation in X,
¥+ p+1—g+x—[p(~7+¢q)+q] =0. v sufficiently

Y M
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close to 2 (from the right) gives ¢ >0 and the equation
has the wunique positive (meaningful) solution
x=0.5(—b+Vb* +4c).

The form of updating of the preprior covariance factor
C = &I (37) implies that the fictitious regression vector
corresponding to the 7i-th path of the knowledge item is
simply ¢, = \/x1). The derived formula for 6 (36) is
obtained if the fictitious output d,. = T 4 (p+x) is taken.

The least-squares remainder, proposulon 4, 1 that corre-
sponds to this updating has the value dp —dz 4 & "(/’”)

At the same time, the estimate of the noise Varlance meetmg

the given restrictions has the form # = ~2 = 249 Thyg,
v—2 T+p+x°

the results can be interpreted as updating by the fictitious
data vector ¥, = [d, , ¢/, |' IFF

g ap
—2=( S
Vi (1+p+x) <p+x+ .

is taken. Inserting the relationship between x and ¢ from
(37), one can express v, — 2 term in the equation as a
function of x. It gives a third-order algebraic equation for x
with a real solution guaranteed. Standard but lengthy
analysis establishes the uniqueness of the solution in the
meaningful domain. ]

4.4 Practical examples of prior knowledge

Here, we list common prior pieces of available knowledge
and ways to construct the data vectors ¥} = [d;, ] (fixed
subscripts 7y, S associated are again suppressed). Multi-
variate data items d, and the common case where the state is

in phase form [;,1,...,d;_5,1] of the order § are

considered. The structure of the data vector is described
by the index i, pointing to the ith output channel, and by the
list [; of indices (j, &) with je {l,...,d} and
6 €{0,...,6}. The indices express the fact that the data
in the jth channel dj,_s are in the constructed regression
vector ;.

In all the following cases discussed, the entries of ¢); that

are not explicitly mentioned are set to zero.

e Knowledge of the static gain d; = g of the ith channel
on a stimulus from the jth channel is expressed by
setting d;,,_s = g and d,,_s = 1 for all delays & in the
list li'

e It is shown in [23] that the knowledge of a point of the
frequency response stimulated by a periodic signal on
the jth channel, given by the magnitude a(w) and phase
shift ¢(w) at frequency ' is determined by a pair of
data vectors with d;s = a(w) sin(¢(w) + dw),d;.s =
sin(éw) and d;,s = a(w) cos(p(w) + dw), d;.s = sin(éw)
. The range of a(w) = [a(w), a(w)] can often be well
specified. The uncertainty in the phase ¢(w) is simply
reflected by considering a relatively coarse grid within
the uncertainty range and processing each case as an
individual data item. The subsequent merging (16)
deals with the proper weighting.

e Knowledge of cut-off frequency is a special case of
frequency knowledge with practically zero amplitude,
i.e. the amplitude range is given by the point estimate
of the standard deviation of the noise. Introduction of
this knowledge for several frequencies higher than the
cut-off excludes an isolated pass through the zero level.
Again, it generates several competitive knowledge
items balanced by the merging procedure.

e Knowledge of the range of the dominant time constant
is implemented by modelling the lower and upper
envelope of the impulse response generated by the
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first-order models with time constants equal to the
specified bounds on the time constant. Data are filled
from the average trajectory into '¥; while the difference
of envelopes determines the variance d,..

The envelope of measured data, obtained from a
periodic measurement, is handled in the same way as
dominant time constant.

The smoothness of the step response [24] can be
respected by enforcing its second-order difference to be
close to zero.

Note that the lengths of the samples in ‘simulated’ responses
have to be limited so that stationary values are not repeated
too much. Otherwise, the assumption on internal consist-
ency, i.e. applicability of Bayes’ rule, would be violated.

4.5 Overall algorithm for normal ARX model

Here, we put together the algorithmic elements for the
normal ARX model. The recommended options correspond
to preprocessed data d( t) with outliers and measurement
noise suppressed and with data scaled so that their means are
approximately zero and variances are about one. The
evaluations attempt to conserve computational resources
as much as possible.

Explicit reference is made here to the treated channel
(subscript;).

Algorithm 4.1 (Structure estimation with prior knowledge):
Initial phase
e Select grids on
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forgetting factors { A}, used for processing of internally
consistent data blocks,

phases {¢(w))} that complete definitions of the
frequency response, frequencies {w.} that guarantee
that frequency response is close to zero above the cut-
off frequency.

Select the number of repetitive starts in the nested
structure estimation algorithm 2.1.

Select the order §5 of the richest data vector W5, =

d,....d : ,1]" that includes all potential entries
1—og
when predicting all modelled entries d,,
i=1,... ,2, of the data item d,. .
. .. = = . W —
Specify statistics Lp = I, Dy = diag[e,e[l,...,1]]

and ¥ determining the flat preprior PDF on the richest
possible parameterisation. Requirements on finiteness
of the a priori assigned expectation of r, and the need
for a flat PDF f(r), lead to the use of 7 = 3, see (27).
For this choice, % is the variance of the unpredictable
part of the modelled data. It is sufficient to consider a
few categories of noise-to-signal ratio. For instance, the
values (0.1%, 1%, 5%, 10%, 50%) correspond to de =
(107%,107*,0.0025,0.01,0.25). For stable systems,
that are predominantly treated, the autoregression
coefficients do not excess the value ~=
oR
056%
much smaller. Properties of the GiW PDF imply that
£~ 259 /4% is anoappropriate conservative option.

. The regression coefficients are, as a rule,

Select a number S, say several tens, of competitive
structures to be refined by using prior information.
Use the available real data d,, t = 1,. t to update the
L'DL decomposition of the increment of the extended
information matrix corresponding to the richest data
vectors W, see (14),

A

AL

Rit—1 A

X , VRy = Vgu—1+ 1,
Rt

with *Lp.g =1, Do =0, vgg =0

e Evaluate the L'DL decomposition of the extended

information matrix corresponding to the richest data
vectors W, i.e. add the statistics of the preprior PDF

Ay / A A
LR;? diag ?R;? LR
1 Dy 1

L DR zLRt

e Set the channel index i = 1.

Cycle over indices i of the modelled entries in data records
e Set the auxiliary description of the structure 5=,

E = —oo needed for the MAP estimation.

Structure estimation with nested prior statistics
e Select the factors of the preprior and posterior extended

information matrices, L;z, Dix, L'R;?’ DiR;;, as well as
of the increment ALIR[ ADZRN corresponding to the
ith predicted data entry d;, and the richest regression
vector w,R, They are nested in L, 2 D, L, D, and
AL .. The L'DL decomposmons destroyed by
thlS selectlon have to be recovered using rank-one
corrections [22].

Apply algorithm 2.1 giving L'DL factors of the preprior
extended information matnces L.s, D;s and their data-
dependent increments 2L et AD. s They correspond
to the most probable structures S € S* found when just

the nested preprior knowledge is used.

e Select S € S*.

Inclusion of prior knowledge for promising structure
e Select a knowledge item K in the list £ = {I,...,K;}

available for the ith channel.

e Set the normalisation factor needed in merging, i.e.

s =0.

Processing of knowledge items
e Do, if the individual knowledge item K has to be

converted into fictitious data vectors.
- Set LiS;O = LiSv ?iS;O = DiS? Vis,o = v.
—Forme=1,....,7¢
* Generate data reflecting 7i-th part of the knowl-
edge item K given by a?,»&m, dr,s;m and VYis.r,,
cf. (29).
* Bvaluate fictitious data vectors W;s.,, and its vs.;, ,

of. (33),
/ 5 Pis; T /
iSite — [diS;TK < + VAiS; T)C> y VXiSire 7vbiS;-r;C‘|

l ST

* Update

L " L

iS;te—1 . iS;mie—1 iSTc—1
LES;T;CDi;ST)cLiS;T;c: [ / h dlag|: l ;L ] [ /K ]
iS:Tic iS¢

Visin. = ISTK71+ ViS:irc -

Run the estimation with stabilised forgetting for the
selected forgetting f_actors A and with the alternative
PDF given by L;s, D;s, 7 if the knowledge item /C is
formed by an internally C0n51stent data block. Store the

A
results in LST)C7 D and 2 Vst

iS;T
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e Evaluate the partial likelihood
£:(d(1),5.K)

o A —
z (ViS/C;; Ly Vl'S;%c + ViS)

T (A L' . *Dyge *Lige +LiDisLis,v;s2 +7; 5)

iS;‘?,C

_Agr
ViS/c;?— Lfs;}’
oL
+LisD;sLis

s=s+L;(d(1),8,K)

A A Arr A A
D,'S;? Lis;?Jr LiS;?—,C DiS;?,C Lis;ﬁf

. Apr A
Notice that Li 570 Dis;?’
on the structural indices i, S and not on .

Lis, D;s and ;s depend only

e Take a new knowledge item /C, if the list SK; is not
exhausted, and go to Processing of knowledge items.

Otherwise continue.

eSetL . =1I1,D__ .
iSK(K) iSK(K)

e Select K € K.

=Djs, V.. _ o =TVs.
iS» iSK(K) iS

Evaluation of the merger within the structure S
e Update

[ d(1),8) = === Lg oD oo Lo i

. 2
=Ly i Do Lty K 1d(D.S)

s iSK(K)

iSK(K) iSK(K)

<AL . *D... °L
iS5 Ty

iSi7 iSi T
0 A
V.. o =U__ o : d Vieo .
iSK(K) iSIC(/C)+f’(’C‘ (1),S) STk
0.12
Fookeo X *
0.11 ; : -
010} @ rO-0-0i6-0 0000
0.09 L
0.08L—*
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Fig. 1 Structure estimation with prior knowledge

e Select a new K if their list {1,. .., IOC,} is not exhausted

and go to Evaluation of the merger within the structure
S. Otherwise continue.

e Evaluate the partial likelihood assigned to the
structure S

o

Li(d(1),S)

Ayt A I
I< Lis;?ADis;? LfSi?+Lf5}C(/%)D

iS/C(fC)LiSK(/%) L Visn(/%))

(! . D L. - .v_ .
iSK(R)iSK(K) TiSK(K) T iSK(K)

e Set S=38, £, =L;(d(7),S) and store the statistics
corresponding to the posterior PDF AL; Py ADi o ALig_;

+L;$K<;%)Di§1c (i’c)LiS;c @ and 7 +vgif £;(d(1),S) > L;.

e Select a new structure S if the list S* of most probable
cases is not exhausted and go to the Inclusion of prior
knowledge for promising structure. Otherwise
continue. A

e Offer the structure S as the recommended one for the
ith channel with the corresponding stored posterior
statistics.

e Increment i and go to Cycle over indices i of modelled

data entries if i < d. Otherwise stop.

The algorithm provides also, until unavailable, estimate of
the best order in factorisation (2). It must, however,
be complemented by a check for incorrect dependence loops.

0.102
&\
il ¥ -0l *
: 9o _
e go o
b
0.102
&\
*9
Me-a
0.1 ~ot
o)k
d
0.102
&\
SN
T
v elal .
0.1 %
-9 8- o
0 2 2 6 8 10
f

Number S on x-axis coincide with those in Table 1. O probabilities obtained with weak nested prior knowledge. s probabilities resulted from use of prior

knowledge described in title of subplot as follows:
a Gain

b Data

¢ Data envelope

d Time constants

e Gain + data

f Gain + data envelope
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Itis il;nportant that the algorithm can cope with problems
having d of the order of several tens.

5 Example

The contribution of prior knowledge to structure estimation
results is illustrated on a single-input single-output simu-
lated system. It corresponds to two-dimensional d; =
[, u,]'. The system input u, is white normal noise with
variance 0.3. The modelled system output y, is simulated by
the ARX model determined by the ‘objective parameter’
°@ =[°0,°r]. It is usually written in the form of the
difference equation driven by the normalised white normal
noise e, ~ N, (0, 1)

Vi =@y, 1 +0azy, o + bou, +°byu,_y +Vre,
— [1.81,0.8187,0.0438, 0.00468] [y, 1, s 2, ts, tty_,]'

oy W,

+ v0.0001 ¢,
———
or
<:>f(yt | ”nd(t - 1)7 0®) :f(yt | Yy, 0®)
=N, (0, 1),

The ‘real’ data d(7) = d(300) were ‘measured’ on this
system.

Algorithm 2.1 was applied with the richest structure of
the phase form given by the order (OSR:6 and the
recommended nested preprior PDF was used. The number
of restarts was 10 and S = 10 of the best structures were
stored giving the significant entries marked by * and the
related posterior PFs.

The following internally consistent knowledge items
were considered.

The influence of the knowledge items and their
combinations described in Table 2 on the posterior
probabilities within the set of structures given in Table 1
were inspected. They are shown in Figs. 1 and 2.

Observe that

e the correct structure is in fourth position with weak

prior knowledge

0.12
¥k * *
0.11
0.10 G;'—G—e—e—e_—_"e-’..@__g__e_o
0.09 :':
0.08 *
a
0.102
G\\
"Qx\ .‘*A
|l SN *
0.1 ?ﬂ\

0 2 4 6 8 10
c

Fig. 2 Structure estimation with prior knowledge

Table 1: Most probable structures for weak nested prior
knowledge

other

significant
S Yie1  Yee2  Ves U Uz, regressors f(S|d(300))
1 * * 0.828000
2 * * * 0.154000
3 * * * 0.006850
4 % % * * 0.006560
5 * * * 0.001840
6 * * Urg 0.001710
7 * * Vi-a 0.000422
8 * * Yis 0.000290
9 * * Vie 0.000218
10 * * ® * 0.000204

Significant regressors are marked by .

Table 2: Description of tested prior knowledge items

Figure
XK Meaning Specified by title
static gain gain in [0.99,1.01] gain
2 time constant constant in [0.82,0.84] time
sampling period 0.1 [s] constants
3 data 100 samples of the model data
that arises from the “true”
system by setting by =0
4 data envelope  envelope of 20 step fictitious
responses data

e static gain, data envelope and data increase probability
of the true structure significantly (not necessarily
sufficiently)

e time constant offers no benefit in this case

0.102
<3\\
¥ Cglal *
0.1 SQ__Q\
b
0.102
G\\
§ *
E N -
* \®—€\ *
01 hcha S
e—®-w_ o
0 2 4 6 8 10
d

Number S on x-axis coincide with those in Table 1. O probabilities obtained with weak nested prior knowledge, sk probabilities resulted from use of prior

knowledge described in title of subplot as follows;

a Gain + time constant  d Time constants

b Data + data envelope e Gain + data

¢ Data + time constant f Gain + data envelope
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e combinations of knowledge items do not guarantee
significant improvement

e the combination of good and bad knowledge items does
not rescue the result

These observations are typical. Prior knowledge is not a
fail-safe means of overcoming the lack of information in
real data but it helps. Quantification of individual knowl-
edge pieces and their merging seem to perform well.

6 Concluding remarks

The significance of including prior knowledge in black-box
models is still underestimated. The theory and algorithms
presented treat this problem under circumstances met
regularly in technological applications, cf. Section 2.4.
Available practical experience supports the view that the
use of even vague knowledge may decide the success or
failure of structure estimation, and consequently the quality
of the controller design.

A wider and more precise use of prior knowledge is
especially important in the context of prior design of an
advanced controller with incomplete knowledge [16].

The theory and algorithms have been elaborated for the
LQG-type design set-up. The same problems are met
beyond this class, and the adopted methodology can be
applied there also.

The problem of joint processing of prior knowledge
alongside structure estimation is solved here for the
exponential family but elaborated for ARX models only.
This encourages a direction for further development, i.e. the
controlled-Markov-chain case should be elaborated too.
This would strengthen the dynamic modelling of systems
with dynamic discrete data.
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