
INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING
Int. J. Adapt. Control Signal Process. 2003; 00:1–15

Estimation and prediction with ARMMAX model:
a mixture of ARMAX models with common ARX part

Li He and Miroslav Kárný1
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SUMMARY

Bayesian parameter estimation and prediction of a linear-in-parameters model with colored noise
is addressed. It is based on a novel mixture model called ARMMAX.

ARMMAX is a finite mixture with its ARMAX components having a common ARX part. It assumes
that the common ARX part describes a fixed deterministic input-output relationship and allows for
varying characteristics of the driving colored noise. ARMMAX model with fixed MA parts is estimated
by a specific version of recursive Quasi-Bayes (ARMMAX-QB) algorithm. It rests on a classical Bayesian
solution that requires no restrictions on MA part allowing it to be even at stability boundary.

For on line use, ARMMAX model offers flexibility with respect to varying characteristics of the
model noise. The gained flexibility is paid by a slight increase of the computational burden comparing
to single ARMAX with known MA part, which is, in this respect, close to recursive least squares.

For off line use, ARMMAX model offers the possibility to estimate unknown MA parts in a novel
way. Exploiting the natural parallelism of ARMMAX model, robust, derivative free multi-directional
search (MDS) is selected to deal with extensive data sets for which universal optimization tools are
too cumbersome.

The paper motivates the model, describes algorithmic ingredients and illustrates the resulting
algorithm on a simple example. Copyright c© 2003 John Wiley & Sons, Ltd.

key words: Bayesian estimation, ARMAX model, finite mixtures, multi-directional search.

1. INTRODUCTION

ARMAX model – auto-regression (AR) with moving average noise (MA) and external input (X)
– is commonly adopted when describing linear-in-parameters stochastic systems driven by a
colored noise. It is equivalent to the linear state-space model that forms the corner stone of
modern estimation and control theory [1]. Estimation of its parameters is a hard, repeatedly
addressed, problem. The difficulty stems from the lack of sufficient statistic with its dimension
smaller than the number of data.
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Approximate minimization of sample variance of prediction error (PE) method has become
a golden standard among the multitude of estimation variants [1]. It is, however, oriented
to point estimation of all model parameters. Consequently, only asymptotic information on
precision of estimates is available. It implies that other tasks like structure estimation are
weakly supported. Moreover, PE is restricted on ARMAX models with strictly stable MA part
and faces a range of problems when this assumption is (almost) violated.

In 1981, Peterka [2] relaxed the stability restriction on MA part and provided real-time
Bayesian estimation of the ARX part when the MA part is fixed. Essentially, he shown that LD
factorization of the known correlation matrix acts as an optimal, time-varying, pre-whitening
filter on the observed data. The filtered data are then used in standard Bayesian estimation
of the ARX part. Consequently, its uncertainties are under the control, Bayesian structure
estimation of the ARX part can be used [3], etc.

Unfortunately, the assumption that MA part is known is rarely met in practice. A Bayesian
comparison of hypothesis was proposed for relaxing it in [4]. It evaluates posterior probabilities
on hypotheses that a specific MA part is the best one in a finite set of candidates. No guide
is, however, given how to select this set. Moreover, the posterior probabilities converge to a
zero-one vector in generic case, see Proposition 3.2 below. Consequently, quality of the original
choice of candidates is out of objective control.

The present paper prolongs this line and addresses Bayesian parameter estimation of
the ARMAX model with an unknown MA term. It uses a novel finite mixture of ARMAX

models with a common ARX part but different fixed MA parts. Quasi-Bayes estimation [5]
is tailored to the introduced ARMMAX model. The resulting computational burden is well
comparable to that is needed for estimation of a single ARMAX model. The estimation provides
a quantitative measure of the descriptive quality of individual ARMAX models forming the
mixture components. Thus, several ARMAX models are estimated in parallel. This parallelism
offers a chance to employ derivative-free optimization procedures for generating new, hopefully
better, MA candidates. We have selected multi-directional search (MDS) method [6] as such a
generator. Its simplicity, robustness and guaranteed convergence properties have driven our
choice.

The introduced ARMMAX model is richer than ARMAX model as it admits temporal
variations of the stochastic MA part. Consequently, a valuable model is obtained even if the
search in the MA space is stopped before converging to a single ARMAX model. Stopping may
be enforced by a slow terminal convergence of the MDS method or by computational demands
implied by the extensive data set processed. The latter case restricts substantially suitability
of universal optimization algorithms to the addressed problem.

Bayesian estimation of ARMAX with a known MA part and the adopted multi-directional
search are recalled in Section 2. They are used throughout the paper and help us to formulate
the addressed problem in detail. In Section 3, ARMMAX model is introduced and studied. It
supports our claim that ARMMAX provides a parallel environment that makes the practical
use of the MDS procedure realistic on single processor machine. A special version of recursive
Quasi-Bayes estimation (ARMMAX-QB) tailored to ARMMAX model is presented in Section 4.
Coupling of Quasi-Bayes estimation with multi-directional search is described and discussed
in Section 5. The last two Sections provide illustrative example and conclusions, respectively.
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ESTIMATION AND PREDICTION WITH ARMMAX MODE 3

2. BACKGROUND AND PROBLEM DESCRIPTION

We assume that the relationships of a multi-variate external input ut to a scalar output yt can
be described by the ARMAX model [2]

yt = θ′ψt +
n∑

i=1

ciet−i + et

︸ ︷︷ ︸
vt

, (1)

where ′ denotes transposition. The data dt = [yt, ut] are observed at time instances t < ∞.
The nψ-dimensional regression vector ψt is a known function of ut and the past data
d(t − 1) = (d1, · · · , dt−1). The nψ-dimensional vector of unknown parameters θ describes
the deterministic part of the model. The n-dimensional vector of parameters C = [c1, · · · , cn]
characterizes the colored stationary noise vt. It is a moving average (MA) defined on a sequence
of mutually un-correlated, zero-mean, Gaussian noise {et} with an unknown but constant
variance r.

Throughout the paper, structure of this and other models are assumed to be known. Bayesian
structure estimation [3] can directly be used to relax this restriction.

Our estimation of the model (1) with an unknown MA term relies on the estimation results
obtained when the MA part is known. This makes us to recall them briefly.

2.1. Estimation and prediction of ARMAX model with a fixed MA part

For a given C, the covariance matrix G of the noise vt is Toeplitz matrix with rsi, si =∑n
k=i cick−i, c0 = 1 on i-th sub- and super-diagonals, i ≤ n.

Let us consider LD decomposition of the covariance G = rLDL′, where L is a band, lower
triangular matrix with unit diagonal and D = diag[D1, D2, . . . , Dt] is a diagonal matrix with
positive diagonal entries Dτ , τ = 1, . . . , t. The factors L, D are functions of the MA parameters
only. Their entries can be evaluated recursively as follows

D1 = s0, L1,2 = s1D
−1
1 , D2 = s0 − L2

1,2D1

and for τ = 3, 4, .., i = n, n− 1, ..., 1, with nτ = min(n, τ),

Li,τ =

(
si −

nτ∑

k=i+1

Lk,τDτ−kLk−i,τ−i

)
D−1

τ−i, Dτ = s0 −
nτ∑

k=i+1

Lk,τDτ−kLk,τ . (2)

The recursive evaluation requires to store n + 1 numbers.

Using this decomposition, Peterka [2] proved the following Proposition.

Proposition 2.1 (Relationship of ARMAX model with a known MA part to ARX model)
Using the filter (2), the probability density function (pdf) of the normal ARMAX model (1)
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equals to the pdf describing ARX model defined on filtered data, marked by ,̃

f(yt|ut, d(t− 1), Θa, C) = Nyt
(µt, rDt) = (2πrDt)

−0.5 exp
[
− (yt − µt)2

2rDt

]
(3)

µt = θ′ψ̃t +
nt∑

i=1

Lt,iỹt−i

︸ ︷︷ ︸
∆t

, nt = min(n, t)

ỹ1 = y1, ỹt +
nt∑

i=1

Lt,iỹt−i = yt, ψ̃t +
nt∑

i=1

Lt,iψ̃t−i = ψt, ψ̃1 = ψ1.

Where the filtered data vector Ψ̃ = [ỹ, ψ̃′]′ is obtained by passing the observed data vector
Ψ = [y, ψ′]′ through the pre-whitening filter (3) determined by the L, D entries (2). The ARX

model is parameterized by the pair Θa = [θ, r] and acts on Ψ̃.
The number of flops needed for filtering per single data sample is O (

nψ + n2
)
, where nψ is

dimension of the regression vector ψt and n is the order of the MA part.

The following properties of the Peterka’s filter are vital in the case of unknown C-parameters.
The pre-whitening by this filter does not require stability of the polynomial (in z−1)

1+C(z−1) = 1+c1z
−1+ · · ·+cnz−n. The time-evolution of the filter provides a sort of spectral

factorization of the MA part that is able to cope with both strictly unstable roots and roots at
stability boundary as well. Parameters of the filter are, however, time varying even when the
covariance matrix G of the noise vt is time-invariant. The variations are data independent and
driven only by the time-invariant C-parameters. The evaluation of the filter is computationally
cheap but the discussed variations hinder the attempts to estimate the unknown C-parameters
recursively. Moreover, they make evaluation of derivatives of the related likelihood function at
least impractical.

The transformation of the ARMAX model to ARX model allows us to use effectively Bayesian
estimation. It can be performed in real-time as the general functional recursion reduces to
updating of fixed dimensional sufficient statistics, [2].

In estimation, we assume that the generator of the external input ut meets natural conditions
of control [2]. They reflect the assumption that the sole knowledge of the value ut without the
knowledge of the value yt brings no information on the unknown parameters, say Θ, i.e.

f(Θ|ut, d(t− 1)) = f(Θ|d(t− 1)) ⇔ f(ut|d(t− 1), Θ) = f(ut|d(t− 1)). (4)

Proposition 2.2 (Bayesian estimation and prediction with ARX model) Consider the
ARX model parameterized by unknown parameters Θa = [θ, r]. Let (4) hold for Θ = Θa and
let us select a prior pdf on unknown parameters Θa of the ARX model (2) in the conjugate
Gauss-inverse-Wishart form

f(Θa) = GiWΘa(V0, ν0) ≡ r0.5(−ν0+nψ+2)

I(V0, ν0)
exp

{
− 1

2r
tr (V0[−1, θ′]′[−1, θ′])

}
(5)

V0 is positive definite symmetric matrix, ν0 > 0, nψ is dimension of θ and

I(V, ν) = Γ(0.5ν)Λ−0.5ν |Vψ|−0.520.5ν(2π)0.5nψ , V =
[

Vy V ′
ψy

Vψy Vψ

]
, Λ = Vy − V ′

ψyV −1
ψ Vψy,

where Vy is scalar.
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Then, the posterior pdf of Θa, conditioned on the observations d(t) and known parameters
C, is GiWΘa

(Vt, νt) pdf with the extended information matrix Vt and the number of degrees
of freedom νt updated according to the recursions

Vt = Vt−1 + Ψ̃tΨ̃′t, νt = νt−1 + 1, V0, ν0 are a priori chosen. (6)

The predictive pdf of yt, given by ut, d(t− 1), is the Student pdf fulfilling

f(yt|ut, d(t− 1)) ∝ I
(
Vt−1 + Ψ̃tΨ̃′t, νt−1 + 1

)
, (7)

where ∝ means that the right hand side has to be normalized to have unit integral.
The number of flops needed per single estimation and prediction step is O (

n2
a

)
, na = nψ +1.

Note that the extended information matrix Vt together with the degrees of freedom νt form
sufficient statistics for estimation of Θa. Their evolution is equivalent to well-known recursive
least squares. The updating is often poorly conditioned and its L′DL decomposition has to be
propagated in order to avoid the induced numerical troubles [2].

Let us assign to candidates {C} of a ”true” MA part a prior pdf f(C). Observations d(t)
correct it to the posterior pdf f(C|d(t)) through the Bayes rule. Under the natural conditions
of control (4), with Θ = C, it reads

f(C|d(t)) ∝
t∏

τ=1

f(yτ |uτ , d(τ − 1), C)f(C) ≡ L(d(t), C)f(C). (8)

For any fixed C, the value of the introduced likelihood function L(d(t), C) is simply a product
of values of the predictive pdfs (7). Although the posterior pdf formally can be used for
estimating the unknown C, the complex nature of L(d(t), C) makes its general analytical
treatment difficult. Restricting the competing C’s to a finite set, Peterka[4] made the formula
(8) applicable where the posterior pdf f(C|d(t)) serves for selecting the most promising
candidates among them. No rule is, however, given how to select a suitable finite set of
competitors. Numerical maximization procedures offer themselves for generating the most
interesting competitors around the maximum of the posterior pdf.

2.2. Possibilities of generating MA candidates

For presentation simplicity, we restrict ourselves to uniform prior pdf on C and search for the
candidates in a neighborhood of

Arg max
{C}

f(C|d(t)) = Arg max
{C}

L(d(t), C). (9)

The maximization problem (9) amounts to nonlinear programming and numerical analysis.
The adopted Peterka’s filter allows us to consider it as unconstrained problem.

Since an efficient evaluation of the gradient is inhibited by the complex nature of the correctly
evaluated likelihood L(d(t), C), we have to restrict ourselves to derivative-free search methods.
Meanwhile, the optimized likelihood function is multi-modal in generic case. It exhibits both
flat and sharp modes. Thus, we can rely at most on continuous differentiability of L(d(t), C)
with respect to C. Moreover, the available supply of ready methods are further narrowed
down to respect the fact that each evaluation of the objective function L(d(t), C) is relatively
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costly, especially for extensive data sets. The evaluation corresponds with a run of least-squares
estimation.

These considerations have reduced the set of options more or less to direct search methods.
Despite of their wide use in practice, the direct search methods have been often perceived as
completely ”heuristic”, since they are often plagued with a weak convergence analysis and some
other troubles [7]. Nelder-Mead (NM simplex) algorithm has been the most popular among
them. Recently, a progress has been reported in [8] that proves convergence and robustness of
NM in one-dimensional case, some general properties can also be proven in higher dimensions
but convergence is not guaranteed there.

A variant of the simplex method, multi-directional search (MDS) [6], has brought a new
interest in direct search methods since 1989. The following favorable properties [9] are offered
by MDS:

• the method is derivative-free;
• strong convergence properties are guaranteed;
• ”noisy” evaluations of function values do not spoil the search: the method is robust;
• method can be executed with a high degree of parallelism.

They turned our attention to the MDS algorithm as generator of candidates of the MA part. It
is expected to be efficient in high dimensions of the search space even for extensive data sets.

2.3. MDS Algorithm

Here, we outline the basic MDS algorithm searching for minx g(x), where g(·) is continuously
differentiable function of the real n-vector x. It helps us to formulate the tackled problem and
to understand the specific features of its variant called MDS-ARMMAX-QB, see Section 5.

As any simplex-based method, MDS evolves n+1 points in n-dimensional real space forming
the vertices of a simplex. A non-degenerate simplex requires the set of edges adjacent to any
of its vertex forms a basis of the space so that the simplex spans the space. Although the size
of the simplex is modified all the time, the shape (angle) always remains the same as that of
the original one.

In each iteration, MDS searches a point strictly improving over the best vertex, but the simple
decrease is used as the acceptance criteria. There are three possible operations–reflection,
expansion, contraction–in the procedure, and they involve the n edges of the simplex emanating
from the best vertex so that the entire simplex is reflected, expanded, contracted. The function
values of the generated trial points are then compared with the function’s values at the vertices
of the current simplex. After each operation, if at least one trial vertices has a better function
value than the current best vertex, the operation is called successful. To accept one operation,
we replace the vertices of current simplex by the trial points after the operation.

Low demands of on prior knowledge of the maximized function and guaranteed convergence
are paid by a rather slow convergence, especially, in the terminal phase of the optimization
when MDS behaves like a gradient method.

Algorithm 2.1 (MDS algorithm)
Initial phase

• Select an initial guess x0
1 and generate a non-degenerate initial simplex formed by n+1 vertices〈

x0
1, · · · , x0

n+1

〉
.

Copyright c© 2003 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2003; 00:1–15
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• Select expansion χ ∈ (1,∞) and contraction ξ ∈ (0, 1) factors as well as the stopping rule with
its parameters.

• Evaluate g(x0
i ), for i = 1, · · · , n + 1 and swap labels so that g(x0

1) = arg mini g(x0
i ).

Iterative phase
Do while the stopping rule is not met
Set j := j + 1

1. Reflection

• Define n reflected vertices xr
i = 2xj−1

1 − xj−1
i , for i = 2, · · · , n + 1.

• Evaluate g (xr
i ), for i = 2, · · · , n + 1.

• Go to the step 2, if min g (xr
i ) < g

(
xj−1

1

)
. Otherwise, go to the step 3.

2. Expansion

• Define n expanded vertices xe
i = xj−1

1 + χ
(
xj−1

1 − xj−1
i

)
, for i = 2, · · · , n + 1.

• Evaluate g (xe
i ), for i = 2, · · · , n + 1.

• Accept the expanded simplex, if min g (xe
i ) < min g (xr

i ), i.e. replace xj
i by xe

i , for
i = 2, · · · , n + 1. Otherwise, accept the reflected simplex, i.e. replace xj

i by xr
i , for

i = 2, · · · , n + 1.
• Go to step 4.

3. Contraction

• Define n contracted vertices xc
i = xj−1

1 + ξ
(
xj−1

1 − xj−1
i

)
, for i = 2, · · · , n + 1.

• Evaluate g (xc
i ), for i = 2, · · · , n + 1.

• Accept the expanded simplex, replace xj
i by xe

i , for i = 2, · · · , n + 1.

4. Swap

Swap the labels so that g
(
xj

1

)
= arg mini g

(
xj

i

)
, i = 1, · · · , n + 1.

2.4. Addressed problem

Generally, we want to overcome practical restriction of the Bayesian comparison of hypotheses
[4] while preserving its ability to use full Bayesian solution with respect to ARX part.

Practically, we search for an efficient use of the multi-directional search method to generate
suitable candidates of the MA part around maximizing arguments of the likelihood L(d(t), C).
The solution is required to be implementable even for high dimensional cases.

2.5. Idea of the solution

We introduce a special mixture called ARMMAX model. Its components are ARMAX models
having a common ARX part while the different fixed MA parts, given by different Cp’s,
p = 1, . . . , n + 1, that create vertices of the simplex propagated by the MDS method.

Besides to be an interesting model itself, ARMMAX provides an ”algorithmic” parallel
environment for MDS. We show that likelihood values assigned to individual components can be
interpreted as the approximated values of the likelihood L(d(t), Cp) corresponding to individual
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ARMAX’s with its MA part defined by respective Cp’s. Thus, MDS can perform a parallel search
while being implemented on a single-processor machine.

Consequently, MDS in the ”algorithmic” ARMMAX parallel environment generates a
convergent sequence, which ideally converges to the C-parameters of the ”true” MA part.
The explored points define the best vertices of the simplex and the components having the
highest component log-likelihood in the corresponding ARMMAX as well.

The MDS-driven evolution of simplex corresponds with the specification of C-parameters of
ARMMAX’s. With them, the evaluation of the likelihood values coincides with estimation of
the resulting ARMMAX model. The estimation is based on tailored Quasi-Bayes estimation [5]
called ARMMAX-QB algorithm. In particular, the estimation of the common ARX part consists
of a run of least squares fed by the weighted outputs of several Peterka’s filters running in
parallel.

It has to be stressed that the presented idea can immediately be extended to ARMMAX model
with more components than the number of vertices in simplex. For time being, we prefer to
rely on the guaranteed properties of the MDS method.

The details of the solution are introduced step-wise in subsequent sections.

3. ARMMAX MODEL

A finite mixture model [10] describes the observed
data by a convex combination of a finite number of pdfs, called
components. Mixture can be interpreted as a universal
approximation of the pdfs describing observations, often, of a
radial-basis-functions type.
ARMMAX model is a finite mixture with the common ARX

part and different MA parts in all ARMAX components.
At each time instance t, the probability
density function (pdf) of ARMMAX model is thus given as

f (yt|ut, d(t− 1),Θa, α, Θc) =
k∑

p=1

αpf(yt|ut, d(t− 1), Θa, Cp), k < ∞ (10)

with the component weights α = [α1, · · · , αk] satisfying αp ≥ 0, p = 1, · · · , k,
∑k

p=1 αp = 1.
All ARMAX components have the same parameters Θa describing the AR part and different C-
parameters Θc = {Cp}k

p=1 characterizing the MA parts. Thus, ARMMAX model is parameterized
by the compound parameter

Θ ≡ (
Θa ≡ (θ, r), α ≡ [α1, · · · , αk],Θc ≡ {Cp}k

p=1

)

With the assumed normality and applying (3) for the known C = Cp, the p-th ARMAX

component is described as f(yt|d(t− 1), Θa, Cp) = Nỹp;t(θ
′ψ̃p;t, rDt).

The ARMMAX describes well the cases when the common ARX

part has a physical meaning of interest. It provides more freedom
in describing stochastic part of the input-output relationship. It
is more flexible and richer for modeling of non-measured
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disturbances compared to a single ARMAX model. It is
intuitively obvious but it can be shown also formally.

Proposition 3.1 (Moments of ARMMAX model) For an ARMMAX model with a given
selection of C-parameters Θc = {Cp}p∈p∗ , an equivalent single ARMAX model exists in terms
of the first moment. The equivalence does not hold with respect to variance.

Proof: Results are implied by the mixture definition, the linearity of the expectation and the identity
E

[
y2

]
= var[y] + E2[y].

For simplicity, the proof is presented with k = 2, when a pair Θc = (C1, C2) generates the
filtered data ψ̃p;t, ∆p;t, p ∈ {1, 2}, c.f. Proposition 2.1. The mixing weights are α = [α, 1 − α].
The corresponding conditional expectation E[·|·] and variance var[·|·] of the output yt are

E [yt|ut, d(t− 1),Θa, α, Θc] = α
(
θ′ψ̃1;t + ∆1;t

)
+ (1− α)

(
θ′ψ̃2;t + ∆2;t

)
(11)

= θ′
(
αψ̃1;t + (1− α)ψ̃2;t

)
+ α∆1;t + (1− α)∆2;t

var [yt|ut, d(t− 1),Θa, α, Θc] = α(1− α)
(
θ′

(
ψ̃1;t − ψ̃2;t

)
+ ∆1;t −∆2;t

)2

+

+ r (αD1;t + (1− α)D2;t) .

Smooth dependence of the filtered data vectors on Θc

implies that a single equivalent C can be found generating a
single filtered data vector equivalent to the convex combination
in the first moment. Obviously, the dependence of the conditional
variance on data cannot be neglected.

The possibility to estimate in parallel k ARMAX models is the key property of ARMMAX we
exploit. ARMMAX model can be interpreted as a

parallel realization of several ARMAX models. It suits to the
MDS procedure we intend to use for selecting adequate values
of Θc = {Cp}p∈p∗ , for an adequate filtering of
the raw data vectors. The following propositions help us to
support this claim.

Proposition 3.2 (Asymptotic of estimation) Let natural conditions of control (4) hold
and 0 < CΘ ≤ CΘ ≤ c < ∞, t̄Θ ∈ {1, 2, . . .} exist, for almost all Θ ∈ Θ∗, such that

CΘf(yt|ut, d(t− 1),Θ) ≤ [o]f(yt|ut, d(t− 1)) ≤ CΘf(yt|ut, d(t− 1),Θ), ∀t > t̄Θ, ∀d(t), (12)

where [o]f(yt|ut, d(t− 1)) denotes the “true” generator of data.
Then, the posterior pdf f(Θ|d(t)) converges almost surely (a.s.) to a pdf f(Θ|d(∞)). The

asymptotic posterior pdf f(Θ|d(∞)) has the support supp [ f(Θ|u∞)] = {Θ : f(Θ|u∞) > 0}
coinciding with the following set of minimizing arguments

supp [ f(Θ|u∞)] = Arg inf
Θ∈supp[ f(Θ)]∩Θ∗

H∞
(

[o]f ||Θ
)

, where H∞
(

[o]f ||Θ
)

(13)

= lim
t→∞

Ht

(
[o]f ||Θ

)
= lim

t→∞
1
t

∑

τ≤t

∫
[o]f(yτ |uτ , d(τ − 1)) ln

[
[o]f(yτ |uτ , d(τ − 1))
f(yτ |uτ , d(τ − 1, Θ)

]
dyτ .

Thus, if there is a unique consistent estimate of Θ then the Bayesian estimation provides it.
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Proof: Under the natural conditions of control, the posterior pdf can be written in the form

f(Θ|d(t)) ∝ f(Θ) exp [−tH(d(t)||Θ)] with (14)

H (d(t)||Θ) =
1
t

∑

τ≤t

ln
[

[o]f(yτ |uτ , d(τ − 1))
f(yτ |uτ , d(τ − 1,Θ)

]
. (15)

This form exploits the fact that the non-normalized posterior pdf can be multiplied by any factor
independent of Θ.

Let us fix the argument Θ ∈ Θ∗ and define the deviations eΘ;τ of values

ln
[

[o]f(yτ |uτ , d(τ − 1))
f(yτ |uτ , d(τ − 1),Θ)

]

from their conditional expectations [o]E [·|uτ , d(τ − 1)] with respected to [o]f(yτ |uτ , d(τ − 1)),

eΘ;τ ≡ ln
[

[o]f(yτ |uτ , d(τ − 1))
f(yτ |uτ , d(τ − 1), Θ)

]
− [o]E

[
ln

[
[o]f(yτ |uτ , d(τ − 1))
f(yτ |uτ , d(τ − 1), Θ)

]
|uτ , d(τ − 1)

]

≡ ln
[

[o]f(yτ |uτ , d(τ − 1))
f(yτ |uτ , d(τ − 1), Θ)

]
−

∫
[o]f(yτ |uτ , d(τ − 1)) ln

[
[o]f(yτ |uτ , d(τ − 1))
f(yτ |uτ , d(τ − 1), Θ)

]
dyτ .

A direct check reveals that the introduced deviations eΘ;τ are zero mean and mutually non-
correlated. With them,

H(d(t), Θ) = Ht

(
[o]f ||Θ

)
+

1
t

∑

τ≤t

eΘ;τ .

The assumption (12) implies that the variance of eΘ;τ is bounded. Consequently, the last
term in the above expression converges to zero almost surely (a.s.), see [11], page 417. The
first term on the right hand side of the last equality is non-negative as it can be viewed as
a sum of Kullback-Leibler distances, [12]. Due to (12), it is also finite. Thus, (15) converges
almost surely to the non-negative value H (

[o]f ||Θ)
. The posterior pdf remains unchanged if we

subtract infΘ∈supp[ f(Θ)]∩Θ∗ H∞
(

[o]f ||Θ)
from the exponent of its non-normalized version (14).

Then, the exponent contains (−t× an asymptotically non-negative factor). Thus, the posterior pdf
f(Θ|d(∞)) may be asymptotically non-zero on minimizing arguments (13) only.

If the unique [o]Θ0 exists such that [o]f(yτ |uτ , d(τ − 1) = f
(
yτ |uτ , d(τ − 1), [o]Θ

)
, then it is

the unique minimizing argument due to the elementary properties of the Kullback-Leibler distance.

The following Proposition exploits the results of Proposition 3.2 to justify our claim on the
parallel nature of the ARMMAX model.

Proposition 3.3 (Parallelism of ARMMAX model) Under the natural conditions of
control (4), the predictor, generated by an ARMMAX model parameterized by the collection
Θc ≡ {Cp}p∈p∗ , has the form

f(yt|ut, d(t− 1), Θc) ∝
k∑

p=1

α̂p;t−1(Θc)I
(
Vt−1(Θc) + Ψ̃(Cp)tΨ̃′(Cp)t, νt−1 + 1

)
,
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ESTIMATION AND PREDICTION WITH ARMMAX MODE 11

where α̂t−1(Θc) = E [α|d(t− 1),Θc]. The following inequality holds

0 ≤ H
(

[o]f ||Θc

)
≤

∑
p∈p∗

α̂p;∞(Θc)Hp

(
[o]f ||Θc

)
, with a.s. existing (16)

α̂p;∞(Θc) = lim
t→∞

α̂p;t(Θc), 0 ≤ Hp

(
[o]f ||Θc

)
= lim

t→∞
1
t

t∑
τ=1

ln
(

f(yτ |uτ , d(τ − 1))
f(yτ |uτ , d(τ − 1), Cp)

)
.

Let the ”true” system be described by a single ARMAX model with MA part defined by some
[o]C, let the vectors {Cp} forming Θc have the same order n as [o]C and create a non-degenerate
simplex in n-dimensional real space.

Then Θc may belong to the support of the posterior pdf f(Θc|d(t)) only if the weighted
component entropy rates α̂p;∞(Θc)Hp(Θc) are simultaneously minimized. In other words, Θc

may belong to the support of the posterior pdf if the vectors {Cp} maximize asymptotic values
of the weighted component log-likelihood

lp(d(t), Θc) ≡ α̂p;t(Θc)
t∑

τ=1

ln[f(yτ |uτ , d(τ − 1), Cp)], (17)

with predictors f(yτ |uτ , d(τ − 1), Cp) ∝ I
(
Vt−1(Θc) + Ψ̃(Cp)tΨ̃′(Cp)t, νt−1 + 1

)
, p ∈ p∗.

Proof: The form of the mixture predictor is simply obtained by taking conditional expectation with
respect to unknown α and ARX part.

Jensen inequality implies the inequality between finite sums defining asymptotically the involved
entropy rates. Almost sure convergence of α̂p;t follows from the fact that, as conditional expectation
of bounded variable, is a bounded martingale, [11]. Properties of a specific component entropy rate
can be shown exactly as in the proof of Proposition 3.2.

The minimum can be reached if either the (asymptotic) estimate of components weights
α̂t−1(Θc) is zero-one probabilistic vector or all components with non-zero weights coincide. The
former possibility is excluded by the use of Cp’s defining a non-degenerate simplex.

The form of component predictors is implied by Proposition 2.2.

In summary, by estimating a single mixture whose C-parameters form simplex recommended
by the MDS method, we evaluate

quality of the competitive ARMAX model in parallel.
This gives us a chance to exploit the relatively slow MDS

procedure for practical estimation of the underlying ARMAX model.
The above propositions justify also the parallelism of general
mixture estimation with ARMAX components, i.e. without the
assumption on the common ARX part. We do not exploit this
possibility in order to keep the computational burden low. Assuming the common ARX

part, ARMMAX has the computational complexity that is slightly larger than that needed for
estimation of a single ARMAX model, see Section 4.

It is worth of stressing that finite data samples are always at
disposal and approximate mixture estimation is applied,
see section 4. Thus, only approximate component likelihood
values instead of their asymptotic values are available.
This makes robustness of the MDS procedure very important.
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The parallelism can be used in an extended setting. Let us assume
that the true description of the system is an ARMMAX model
with m components distinguished by n-dimensional C-parameters [m]C = {C1, . . . , Cm}.

The joint dimension of the involved MA parts then equals to
mn. Thus, we should use the MDS procedure with mn + 1
vertices in order to search for all involved MA parts. The
same logic as above implies that the sub-mixture with m

components having the highest weighted likelihood is the best
approximation of the unknown ”true” pdf. Especially in this case,
the mild increase of the computational load, connected with the
increase of the number of considered components, is invaluable.

4. ARMMAX-QB ESTIMATION

The possibility to use the ARMMAX model is supported by a recent
progress in estimation of finite mixtures. The Quasi-Bayes
(QB) estimation of mixtures with ARX components,
[5], hints how to estimate the ARMMAX model. QB
algorithm is a slight extension of classical mixture-estimation
algorithms [10]. It has good properties, Bayesian
motivation as well as predictable and feasible computational
complexity. The following proposition modifies it for estimation
of the Gaussian ARMMAX model with known C-parameters.

Proposition 4.1 (Quasi-Bayes estimation of ARMMAX model) Let the modelled sys-
tem be described by the ARMMAX model

(10) with fixed MA parts Θc = {Cp}k
p=1 of individual components.

Let us introduce the unobserved random pointer pt ∈ {1, . . . , k} = p∗ to the active component
that takes the value p ∈ p∗ with the probability αp. Let us define

f(yt, pt|ut, d(t− 1), Θa, α, Θc)

= f(yt|pt, ut, d(t− 1), Θa, α, Θc)f(pt|ut, d(t− 1), Θa, α, Θc) = Nỹp;t

(
θ′ψ̃p;t, rDp;t

)
αpt .

Then, the marginal pdf f(yt|ut, d(t− 1), Θa, α, Θc) is the ARMMAX model.
Let natural condition of control (4) hold and, at the time t−1, the posterior pdf on Θa = [θ, r]

and α have the form

f (Θa, α|d(t− 1), Θc) = GiWΘa(Vt−1, νt−1)Diα(κt−1),

where the used Dirichlet pdf on the probabilistic vector α is defined as

Diα(κt−1) ≡ Γ

(
k∑

p=1

κp;t−1

)
k∏

p=1

α
κp;t−1−1
p

Γ(κp;t−1)
, κp;t−1 > 0, Γ(x) =

∫ ∞

0

zx−1 exp(−z) dz, x > 0.
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Then, f(Θa, α, pt|d(t), Θc) (18)

= GiWΘa

(
Vt−1 +

∑
p∈p∗

δp,ptΨ̃p;tΨ̃′p;t, νt−1 + 1

)
Diα


κt−1 +

∑
p∈p∗

δp,pt
[0, . . . , 0︸ ︷︷ ︸

p−1

, 1, 0, . . .]′


 ,

where The Kronecker symbol δp,pt =
{

1 if p = pt

0 otherwise has the expectation

wp;t ≡ E [δp,pt |d(t), Θc] ∝ I
(
Vt−1 + Ψ̃p;tΨ̃′p:t, νt−1 + 1

)
(κp;t−1 + 1).

The approximation δp,pt
≈ wp;t preserves the assumed form of the posterior pdf even at time

t

f(Θa, α|d(t), Θc) = GiWΘa
(Vt, νt)Diα(κt). (19)

The associated statistics are updated according to the recursions

Vt = Vt−1 +
∑
p∈p∗

wp;tΨ̃p;tΨ̃′p;t, νt = νt−1 + 1, κp;t = κp;t−1 + wp;t.

The last line describes the Quasi-Bayes estimation of the ARMMAX model. The estimation uses
the filtered data vectors Ψ̃p;t generated by the filters (3) determined by C = Cp, p ∈ p∗.

Proof: The first statement is directly implied by marginalization over pt.
The exact updating with the unknown value δp,pt uses the normal ARX version of the ARMAX

model (2), the form of the GiW pdf (5) and the Bayes rule, c.f. (6) applied under the natural
conditions of control (4).

Marginalization over Θa and α giving the weight wp;t exploits the predictive Student pdf (7)
and the elementary property of Dirichlet pdf Diα(κ) stating that E[αp|κ] ∝ κp.

The final updating is implied directly by the adopted approximation of δp,pt .

It is important that the above estimation requires O (
n2

a + kn2
)

flops. The computational
burden increases linearly with the number of components k. Due to the presence of external
input (often multi-variate), the dimension na = nψ + 1 of the ARX part is usually much larger
than the order n of MA. Since a single common ARX part is estimated, the computational
complexity connected with estimation of ARMMAX model is slightly larger than that needed
for estimation of a single ARMAX model.

5. MDS-ARMMAX-QB Estimation

Here, we combine the discussed essential ingredients – MDS

method, the parallelism of ARMMAX and its efficient
estimation algorithm ARMMAX-QB. It provides
MDS-ARMMAX-QB procedure to estimate the ARMAX model with
unknown C-parameters.
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Specifically, the Quasi-Bayes algorithm, Proposition 4.1, is used for estimation of the
ARMMAX model (10) defined by Θc = {Cp}p∈p∗ that is sitting on a simplex modified by
the MDS algorithm, section 2.3. The MDS-ARMMAX-QB parallel estimation is applied in the
”algorithmic” ARMMAX parallel environment.

• For a n-dimensional optimization problem, the number of vertices in the used simplex is
generally determined as n+1. In our estimation of ARMAX setting, the dimension of the
problem means the order of MA part. Notice that the structure estimation of the ARX

part and selection of the order n of MA parts are assumed to be known as prior and not
addressed here.

• The number of components in the corresponding ARMMAX is equal to the number of
vertices in the current simplex, so that there are k = n + 1 components in the ARMMAX

with the n-dimensional MA parts.
• The vertices of the evolving simplex and the trial points from each of three possible

operations in the iterations define a sequence of ARMMAX models correspondingly.

Recall that ARMMAX provides an ”algorithmic” parallel
environment in the sense that likelihood values assigned to
individual components can be interpreted as the approximated
values of the log-likelihood L(d(t), Cp) corresponding to respective ARMAX’s whose MA parts

defined by Cp, p = 1, . . . , k. Thus, the component log-likelihood (17), i.e.

lp(d(t), Θc) = α̂p;t(Θc)
t∑

τ=1

ln [f(yτ |uτ , d(τ − 1), Cp)]

are used to judge of the quality of individual Cp’s.
It is worth of stressing that they approximately reflect the global log-likelihood of interest

as it has the form

ln [L(d(t),Θc)] =
t∑

τ=1

ln

[ ∑
p∈p∗

α̂p;τ (Θc)f(yτ |uτ , d(τ − 1), Cp)

]
. (20)

The value (20) is obtained as a byproduct of the Quasi-Bayes estimation and may serve for
monitoring of success of the search made via the component log-likelihood values lp(d(t), Θc).

5.1. MDS-ARMMAX-QB algorithm

This subsection describes formally the basic MDS-ARMMAX-QB

algorithm. In Bayesian estimation context, we need to respect the
prior and flattening issues, they are discussed together with the
other implementation details in next subsection.

Algorithm 5.1 (MDS-ARMMAX-QB search)

Initial phase

• Select a suitable initial guess C0
1 of MA-part.
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• Generate the other vertices C0
p , p = 2, · · · , n + 1 of the

initial simplex based on C0
1 . The non-degenerate simplex is formed by

n + 1 vertices to span the n-dimensional space. The number n
is the common order of the C-polynomials defining MA parts of
n + 1-components of the ARMMAX model.

• Select expansion χ ∈ (1,∞) and contraction ξ ∈ (0, 1) factors.
• Select the stopping rule and define its parameters.
• Specify the GiWΘ(V0, ν0)Diα(κ0)

prior pdf on parameters of the ARMMAX model with the k = n + 1
components determined by the vertices of the initial simplex. It is
given by the extended information matrix V0 = L′0D0L0,
the scalar ν0 and the vector κ0.

• Perform the ARMMAX-QB estimation, Proposition 4.1, i.e.
update the statistics L0, D0, ν0, κ0

to Lt, Dt, νt, κt, where t is the length of
the available data sample d(t). Accumulate the vector l0 =

[
l01(d(t), Θc), . . . , l0n+1(d(t),Θc)

]
of component log-likelihood values (17), corresponding to the vertices C0

p defining respective
components p = 1, . . . , n + 1.

• Swap, the vertices according to the values of the entries of l0 so that the vertex with the highest
component likelihood l0p is labeled as C0

1 ,
• Set j, the counter of the total number of iterations, to zero.

Iterative phase

Do while the stopping rule is not met

Set j := j + 1

1. Reflection

• Define n reflected vertices Cr
p = 2Cj−1

1 − Cj−1
p , for p = 2, · · · , n + 1.

• Specify the MA parts of k = n + 1 components in ARMMAX by the
reflected vertices and the current best vertex Cj−1

1 .
Specify the corresponding prior pdf on the ARX part.

• Perform the ARMMAX-QB estimation. Accumulate the vector lr

of component log-likelihood values (17) corresponding to
the vertices Cr

p .
• Set maxr = arg maxp∈p∗ lrp.
• Go to the step 2, if maxr > 1. Otherwise, go to the

step 3.

2. Expansion

• Define n expanded vertices
Ce

p = Cj−1
1 + χ(Cj−1

1 − Cj−1
p ), for

p = 2, · · · , n + 1.
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16 L. HE AND M. KÁRNÝ

• Specify the MA parts of k = n + 1 components in ARMMAX by the
expanded vertices and the current best vertex Cj−1

1 .
Specify the corresponding prior pdf on the ARX part.

• Perform the ARMMAX-QB estimation. Accumulate the vector le

of component log-likelihood values (17) corresponding to
the vertices Ce

p.
• Set maxe = arg maxp∈p∗ lep.

• Accept the expansion to replace Cj
p by Ce

p, for
p = 2, · · · , n + 1, if lemaxe > lrmaxr. Otherwise
accept the reflection to replace Cj

p by Cr
p , for

p = 2, · · · , n + 1.
• Go to step 4.

3. Contraction

• Define n contracted vertices Cc
p = Cj−1

1 + ξ(Cj−1
1 − Cj−1

p ), replace Cj
p by Ce

p, for
p = 2, · · · , n + 1.

• Specify the MA parts of k = n + 1 components in ARMMAX by the
expanded vertices and the current best vertex Cj−1

1 .
Specify the corresponding prior pdf on the ARX part.

• Perform the ARMMAX-QB estimation. Accumulate the vector lc

of component log-likelihood values (17) corresponding to
the vertices Cc

p.
• Set maxc = arg maxp∈p∗ lcp.
• Go to the step 4 if maxc > 1, otherwise go to the step

1.

4. Swap

Swap the new best point as Cj
1 according to the components

likelihood values of the accepted mixture.

In all cases, l ≡ [l1(d(t), Θc), . . . , ln+1(d(t), Θc)] = [l1, . . . , ln+1] is the component log-
likelihood vector. The upper index distinguishes the operation, for instance, lrp means the
log-likelihood of the p-th component in reflection operation.

5.2. Implementation

Implementation follows predominantly the standard recommendations
of general MDS [6]. The following implementation
options are adopted.

• Prior pdf and flattening of the posterior ones: The
critical choice of the prior pdf for the ARMMAX model is solved
in the following way. The very initial prior pdf is chosen by
incorporating prior knowledge on the ARX part, see
[13]. In a generic iterative step, the latest
posterior pdf on ARX part is flattened so that the iterations
do not cause false over-confidence, see [14].
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• Initial simplex: The multi-directional search starts at
an externally supplied initial simplex

〈
C0

1 , · · · , C0
n+1

〉
. It is generated from an initial

point C0
1 and the simplex is chosen by deciding on:

Shape: Good spanning of the C-space is guaranteed

by selecting the initial simplex with right angle. The

remaining vertices are determined as follows

C0
p = C0

1 + βp1p, p = 2, · · · , n + 1, (21)

where 1p denotes the unit coordinate vector and βp’s is a length scaling coefficient.
It determines magnitude of the entry cp in C0

p relative to the corresponding entry of
C0

1 . It must be non-zero in order to get the needed non-degenerate initial simplex.

Size and orientation: Formally, arbitrary magnitude of

C0
1 and scaling factors βp can be chosen due to

the use of the filter (2) that enables us to work with

an unconstrained problem. We should, however, respect the fact that

influence of the C-parameters is indeed scaling dependent. The fact that C can be
chosen as asymptotic spectral factor

helps us to determine a rough scaling of the C-parameters. The

magnitude of the p-th entry element cp in C = (c1, · · · , cn) need not in exceed the

combination number |cp| ≤
(

n
p

)
, p = 1, · · · , n. This makes us to define

βp = ±h

(
n
p

)
, p = 1, · · · , n. (22)

Thus, its magnitude |βp| = h

(
n
p

)

determines the size of simplex. The scalar h ∈ (0, 1)

becomes the only scaling parameter as the order n is fixed.

The signs of βp determine the important orientation of the

initial simplex. There is no universal rule how to select them.

Thus, whenever possible, it makes sense to try several initial

options differing just in orientation.

• Scaling factors in algorithm (2.1): We stick to
the usual choices: unit reflection factor, χ = 2, ξ = 1/2 for expansion and contraction
factors, respectively.

• Stopping criteria: Standard stopping criteria are
adopted and enriched by a specific one:
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The relative size of simplex is inspected. It is

measured by the length of longest edge adjacent to the best vertex

Cj
1

1
∆

max
1≤i≤n

∣∣∣
∣∣∣Cj

i − Cj
1

∣∣∣
∣∣∣ ≤ ε, ε ∈ (0, 1), (23)

where ∆ = max
(
1,

∣∣∣
∣∣∣Cj

1

∣∣∣
∣∣∣
)

and ε is a pre-selected tolerance.

This rule is used in the illustrative example, see section 6.

The number of search iterations is limited.

Such a number usually can be determined by the affordable

computational time. Here, we benefit from the fact that the

Quasi-Bayes estimation has fixed a priori known computational

demands.

Increments of the global log-likelihood of the mixture

L = L(d(t),Θc) (20) are checked.

The evaluations are stopped if the increment among iteration steps

∣∣∣∣
Lj − Lj−1

Lj

∣∣∣∣ ≤ η, η ∈ (0, 1) (24)

is smaller than a pre-specified threshold η.

6. ILLUSTRATIVE EXAMPLE

Here, the simple simulated example illustrates the performance of
the proposed estimation procedure that is implemented using the
algorithmic basis of the toolbox Mixtools [15].
The data d(t) of the length t = 2000 were generated by the
following single-output ARMA, i.e. by ARMAX with no
external input present,

yt = 1.5yt−1 − 0.7yt−2 + et − 0.8et−1 + 0.6et−2. (25)

The variance r = 0.1 of the driving white Gaussian noise et was chosen.
The same structure as the simulated system is used for the ARMA models forming the

components of the estimated ARMMA model.

yt = a1yt−1 − a2yt−2 + et + c1et−1 + c2et−2

Since the order of the MA term
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is n = 2, there are k = n + 1 = 3 vertices in the used simplex.
Correspondingly, 3-component ARMMA are estimated by
ARMMAX-QB algorithm.
Just for an informal comparison, the AR model

yt = a1yt−1 − a2yt−2 + et

was estimated using Proposition 2.2 with Ψ̃t = Ψt = [yt, yt−1, yt−2]′.
The following implementation options, section 5.2, of the
MDS-ARMMAX-QB algorithm 5.1, were made.

• Three different representative starting points were chosen

C0
I = (−1/2 1/2), C0

II = (1/3 − 1/3), C0
III = (−1/3 − 1/3)

• The corresponding three right-angle initial simplex generated,
according to (21). The relation (22) gives β = [±0.2 ± 0.1] for the chosen h = 1/10.

• Stopping according to the relative size of simplex
(23) was chosen with tolerance ε = 10−4.
No limit on the number of iterations and likelihood of mixture
were imposed in order to illustrate convergence properties of the
algorithm.

The estimation results for considered starts are reflected in
Table 1 where the estimates with the AR model are added.

Initial C0 θ̂ = E[θ|d(t)] r̂ = E[r|d(t)] Final best vertex C No. j
True values – 1.5 -0.7 0.1 -0.8 0.6 –

AR – 0.8428 -0.0154 0.1382 0 0 -
ARMMA -1/2 1/2 1.4642 -0.6543 0.1056 -0.7000 0.5000 13
ARMMA 1/3 -1/3 1.4737 -0.6795 0.1044 -0.7708 0.6021 24
ARMMA -1/3 -1/3 1.4889 -0.7059 0.1053 -0.8333 0.6667 18

Table 1: Point estimates for AR and ARMMA models obtained for different starting points
C0.

Bad estimation results obtained by least-square corresponding to
the estimation of AR model are not surprising. It indicates
that the influence of the chosen MA part is not negligible.
The proposed MDS-ARMMAX-QB method behaves well. And even this simple example

demonstrates that the quality of
results depends on the choice of the initial simplex. For instance,
C0

I = (−1/2 1/2) is the closest to the true C and required
the fewest iterations, 13. It is also fair to report that other
experiments indicate that the size and orientation of the initial
simplex may have significant, sometimes rather adverse, influence
on the quality of results.
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7. CONCLUSIONS

A finite mixture of ARMAX components with the common
ARX part is introdueced in the paper. The resulting
ARMMAX model is an interesting model capturing deterministic
input-output relationships while allowing temporal variations of
colored noise part. Here, ARMMAX model has served us as a
generator of numerically-quantified candidates of the MA parts of
competitive ARMAX models. In combination with a Quasi-Bayes
estimation and multi-directional search method, it leads to a
novel MDS-ARMMAX-QB estimation algorithm. The algorithm is
able cope with an unknown MA part of the ARMAX model while
preserving Bayesian processing of its ARX part. The
respective design steps are mostly supported theoretically.
Preliminary experimental results are promising. Still a lot of
work remains to be done to make MDS-ARMMAX-QB algorithm fully ready for
routine real applications. Use of mixtures with more components
than the number of vertices in simplex and standardization of
tuning knobs are the main directions to be addressed.
Richer modeling power of ARMMAX and the gained algorithmic
parallelism are the main features to be exploited further on. For
instance, completely different filters than the Peterka’s one can
be used within the current framework [16]. It
opens a way to a wide set of novel adaptive filters dealing with
outliers, with temporarily varying measurement noise etc.
Practical impact of such possibilities can hardly be
over-stressed.
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