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Abstract. In this paper we consider the multisensory convergence problem, that is when signals from several
different sensors report on the same event, possible through the employment of different pieces and types of
information. A unified approach based on non-linear filtering is proposed here. Firstly, Kalman filtering is
applied to a simple linear state-space model. The filter takes input data from different sensors and produces
estimate of the physical state describing, for example, environment of a robot. This shows structure of optimal
sensor fusion. Then, a general version of such a filtering is presented with a careful account for computational
complexity. This leads to modelling through finite probabilistic mixtures: both sensors and global state esti-
mates are modelled by finite mixtures of uni-modal probability density functions (pdf). Bayesian non-linear
estimation is then used to mix together the different sensor responses to a single information driven estimate
of environment state. The proposed theory will be confronted with conditions offered by a prototype 5-sensory
robot head that has been set up as a test-bed platform for the multisensory fusion algorithms.

1 Introduction

In the biological world the ability of a creature to integrate information obtained from a number of sensory
mechanisms at its disposal in order to help it decide what action to take at any instant in time is paramount in
its whole being. Because of such input a creature is able to orient itself in space, in relation to its perception of
objects within a region of that space, respond to changes perceived in the environment, for such as nutrition,
and perhaps, important of all, preserve itself as a dependable life form. In any search for artificially alive
beings, autonomous devices that exist for long periods under their own adaptive control or even simply robots
that interact with humans, efficient and functional multisensory fusion is an area of primary concern. Yet it
is an area of research which has received relatively little attention to date, other than for a specific problem
solution for a robot faced with two pieces of information and a quick decision to make e.g. (Engels & Schoner
1995, Tyrrell 1994, Foresti & Regazzoni 2002, Jassemi-Zourgani & Necsulescu 2002).

In particular, in any one biological system, operative sensors can be extremely different in their character-
istics, they can operate for example with different time constants and even focus on different aspects of the
environment. As has been pointed out (Howard 1998) sensors can operate with respect to each other, in a series,
nested or parallel fashion, in particular with the possibility of being arranged in a ”multi-cue system” in order
to provide information regarding the same event. Such information may either be redundant (competitive) or
complementary. Combining such complementary information can then be employed as a necessary part of an
overall control mechanism, as indeed appears to be the case with retina stabilization in humans (Robinson
1977) in which high frequency components of head rotation, sensed by the vestibular system, are mixed with
low frequency optokinetic signals. Some attempts at multisensory integration (e.g. (Boss, et al. 2001)) have
fused multisensory signals, in a theoretical environment by quite simply taking a weighted average of the two
inputs involved. This has the advantage of dealing with redundancy when one input proves to be problematic
or even becomes dysfunctional however it is far removed from biological reality (van Beers, et al. 99) and
generally such occurrences can be dealt with by a straightforward hierarchical decision mechanism as that in
the human vision system (Wolfe 1994). Indeed it is acknowledge in (Boss et al. 2001) that a straightforward
averaging mechanism can only work if it is, as they put it, supported by a ”book keeping” stage, which has the
ability to reconfigure the averaging process accordingly! Clearly what is needed is a more firmly based theo-
retical approach of sensor fusion that exhibits biological plausibility whilst proving to be practically feasible
and operable in a robotic environment. It is, we believe, that which we are suggesting and striving for here.



Evidence suggests (Stein & Meredith 1993) that neurons in the superior colliculus of the brain form a sort
of sensory map of the surroundings based on a combination of auditory and visual information. An overlap
appears to exist between the neurons involved, i.e. a high proportion of them are truly multisensory. As a result
it is often the case, when stimuli of different modality are complementary, that the overall neural response is
larger than the sum of the uni-modal responses. Conversely where competitive instances occur overall neu-
ral activity can even decrease. One interesting feature is that the response enhancement is strongest when
complementary signals are weak and is less apparent as such signals become uni-modally stronger.

It is with regard to the biological observations discussed that we wish to aim for a more plausible and
practically operable overall sensor fusion approach. Whilst taking inspiration from the biological world to
some extent, it is not felt to be a sensible approach, at this time, simply to throw further biologically inspired
techniques at the problem and hope that it all ”comes out in the wash”, such would be the case with neural
networks. What we need to gain, given the problem in hand, is a deeper understanding of what possibilities
there are and to technically assess what is possible.

1.1 Framework, Layout and Presentation Way

In this paper we consider non-linear-filtering framework (Jazwinski 1970, Anderson & Moore 1979) with
which to tackle the multisensory convergence problem. Applicability of this conceptually plausible approach
depends strongly on availability of such observation and time-evolution models that can efficiently processed.
Finite mixtures of uni-modal probability density functions (pdfs) (Titterington, et al. 1985, McLachlan & Peel
2001) seem to be adequate. It seems to be both biologically plausible (Berthouse & Kunniyoshi 1998) and has
been successfully applied in audiovisual object tracking (Beal & Jojic 2003). Still the presented results depend
too much on the specific problem and give a weak guide how to solve other types of sensor convergence.

The advocated approach is a relatively straightforward elaboration of stochastic filtering theory. Two seem-
ingly different ways were originally inspected (i) joint state modelling of sensors and (ii) global modelling of
the observed environment. At the end we found that the second option results in a specific version of the first
one. It is demonstrated on intentionally simplified case in section 2. It shows that the state-space formulation
has the added advantage of mathematically taking into account the correlations that exist between different
sensors, directly in the formation of the state vector. Subsequently it is the separate state vector elements that
we wish to fuse, rather than highly correlated, noise ridden, inaccurate measured sensor values.

The general discussion is in section 3. It is shown that computational obstacles caused by complexity
of general stochastic filtering – that performs formally optimal sensor fusion – can be to significant extent
suppressed. The key step is modelling of local sensors by probabilistic mixtures with local components and
a flat background component. It leads naturally to the use of finite mixtures (Titterington et al. 1985, Quinn,
et al. 2003) for description of global estimate, too. Feasible treatment of both data updating and time updating
of estimates of high-dimensional field of physical states of the environment state are proposed.

The proposed theory will be tested on 5 sensory robot head that is described in section 4. The head can be
goal directed, based on its multisensory input and can be given simple task, for instance, the head is to remain
a fixed distance away from a (potentially moving) object which it can track through the variety of sensors at
its disposal. The foreseen tests with it are briefly commented in section 5

1.2 Notation

In the exposition, the following notation is used: ≡ definition by equality; a∗ set of values of variable a; aC

complement of the set a∗, f(a|b) probability density function (pdf) of a conditioned on b; ∝ proportionality;
t ∈ t∗ ≡ {1, 2, . . . , t̊} discrete time, always placed as the last subscript; q position in (possibly phase) space
q∗; s ∈ s∗ sensor indices; q∗s;t observation range of the sth sensor at time t; xq;t physical state of the observed
environment at position q and time t (a finite dimensional vector); xt(q∗) collection of values xq;t, q ∈ q∗, at
time t; x(t, q∗) collection of values xq;τ , q ∈ q∗, at time moments τ ≤ t; ys;t (vector) output of the sensor
s ∈ s∗, at time t; us;t (vector) exogenous input to the sensor s ∈ s∗, at time t.

2 State-Space Description of Sensing

This section introduces gently into the problem and outlines the structure of the solution. Multiple sensors
operating in high dimensions and their application within a robotics environment are discussed subsequently.

We consider two separate and potentially different sensors, labelled by s ∈ s∗ ≡ {1, s̊ ≡ 2} reporting



on the same scalar physical quantity xt at discrete time t ∈ t∗ ≡ {1, . . . , t̊} at the same spatial position
q ∈ q∗. Outputs of sensors y(̊s, t) ≡ [y1;1, . . . , y1;t, y2;1, . . . , y2;t] observed till time t should be converted into
estimate x̂t|t of the physical state xt. Design of the estimator processing outputs of several sensors is referred
to as the multisensory convergence problem (Meredith 2002) or sensor fusion.

Models of sensors relate their outputs yt(̊s) to the physical state xt. Here, linear static models are assumed:

ys;t = hsxt + eys;t, s ∈ s∗ ⇔ yt(̊s) = [h1, h2]xt + ey;t(̊s), (1)

where the known coefficient hs characterize sensors and unobserved ey;t is white measurement noise.
Time evolution of the physical quantity is modelled by linear model:

xt = axt−1 + ex;t (2)

with a known coefficient a (degenerate version of state matrix) and white process noise ey;t.
The estimate x̂t|t is gained through a filter that fusses all available measurements into the posterior pdf

f(xt|Pt), Pt ≡ y(̊s, t). This pdf describes belief into possible values of the estimated xt. Its mean or mode
serves as the point estimate x̂t|t usually searched for and variance determines confidence of this estimate.

Under appropriate conditions, the conditional pdf has a fixed functional form determined by a finite-
dimensional information state Vt that evolves according to the state equation of the fussing filter, (Jazwinski
1970):

Vt|t = V1(Vt|t−1, yt(̊s)), Vt+1|t = V2(Vt|t) (3)

and generates the desired estimate through output equation of the filter:

x̂t|t = X (Vt|t). (4)

The functions determining the state evolution V(·) ≡ [V1(·),V2(·)] and output of the filter X (·) are determined
by models of sensors (1), by the model of the physical state evolution (2) and by the definition of the state
estimate required. Considering whiteness and normality of the involved noises, the conditional pdfs preserves
normal form. Its moments evolves according to the celebrated Kalman filter, (Jazwinski 1970):

Data updating

V1(·) : x̂t|t = x̂t|t−1 +
(
yt(̊s)− hx̂t|t−1

)
h′

(
h′hPt|t−1 + cov[ey;t(̊s)]

)−1

︸ ︷︷ ︸
Kalman gain≡gt|t

(5)

Pt|t = (1− gt|th′)Pt|t−1

Time updating
V2(·) : x̂t+1|t = ax̂t|t

Pt+1|t = a2Pt|t + var(ex;t).

The function X just selects x̂t|t as the required estimate. The sufficient statistics are the conditional mean x̂t|τ
and variance Pt|τ of f(xt|Pτ ), Pτ ≡ y(̊s, τ)), τ ∈ {t − 1, t} and ′ is transposition. The two-dimensional
Kalman gain gt|t is deterministic function of noise characteristics and takes into account possible correlations
between involved noises. The second term in the first equation of (5) shows how the sensors outputs are fused
in this case. It is worth stressing that the evolved information state Vt|τ ≡ [x̂t|τ , Pt|τ ] describes uni-modal
pdf that can be interpreted as activity distribution of the fused sensors. Such a uni-modal pdf has biological
interpretation as a target object being mapped by means of a retinotopical projection (Boss et al. 2001).

In our case however the pdf results from operational characteristics of sensors and considered evolution of
the observed physical state. A similar view point can be found in biologically inspired neural representations
of sensing stimuli. They exhibit extended receptive fields, effectively blurring the physical state on the sensor
input. In essence it is assumed that an activity at a location q in a sensory input drives the state vector through
a bell shaped distribution.

The above filtering structure can be also described in terms of observers (Warwick 1987) and extended
to non-linear sensor and time-evolution models and multi-dimensional case (Jazwinski 1970). Computational
feasibility of the resulting filter is decisive for applicability of any such extension. The subsequent section
provide a relatively general solution while preserving the simple reasoning structure outlined above.



3 Probabilistic Mixing Sensory Data

References and results of section 2 indicate the expected structure of fusing sensory data. This section tries to
embed the problem into a probabilistic framework that allows us to see the problem structure, to specify more
precisely the involved elements and operations and propose a general solution.

At each q ∈ q∗ ≡ position (possibly phase) space and at each time instant t, the inspected environment
is characterized by a finite-dimensional state vector xq;t of physical quantities. They are observed by several
sensors. Their data serve for estimation of the state field xt(q∗) over whole space q∗. The estimation is formu-
lated and solved as stochastic filtering recalled in section 3.1. Sensor models are discussed in subsection 3.2.
Data updating of the physical-state-vector estimates by single sensor is discussed in subsection 3.3. Joint data
updating that fuses data of several sensors into a common estimate of physical state is presented in subsection
3.4. Then, models of sensors belonging to tractable dynamic exponential family (DEF) (Barndorff-Nielsen
1978) are discussed with their use for data updating of conjugate prior pdf, subsection 3.5. Dimensionality
problem present even in this nice family of models is addressed through mixture-based re-parameterization
presented in subsection 3.6. Global estimate of the physical states x(q∗) over whole considered environment
is discussed in subsection 3.7 where its data updating is also discussed. Time evolution of these estimates is
resolved in subsection 3.8 under simplifying assumption of slow temporal changes of physical state of the
environment. This assumption is justified by a relatively high rate with which the sensors can inform us on
the current state of the environment. The section is concluded by summarizing the overall fusion (filtering)
algorithm, subsection 3.9. Questionable steps are discussed here, too.

3.1 Stochastic filtering

Let Xt ≡ xt(q∗) be a state to be estimated using measurement data Dt ≡ dt(̊s) ≡ [d1;t, . . . , ds̊;t], where data
ds;t related to s-th sensor consist of the measured sensor output ys;t and possibly of external sensor inputs us;t.

Let us assume that observation model f(Dt|Pt−1, Xt) and time evolution model f(Xt+1|Pt, Xt) are at
disposal. The symbols Pt−1, Pt used in these conditional pdfs, denote the information processed up to and
including time moments t− 1, t, respectively.

Stochastic filtering updates posterior pdf f(Xt|Pt) of the unknown state Xt. It is described by the coupled
formulas, (Jazwinski 1970, Peterka 1981) (Kalman filter discussed in section 2 is its special version):

Data updating f(Xt|Pt) ∝ f(Dt|Pt−1, Xt)f(Xt|Pt−1) (6)

Time updating f(Xt+1|Pt) =
∫

f(Xt+1|Pt, Xt)f(Xt|Pt) dXt. (7)

The recursion starts with the externally supplied prior pdf f(X1|P0).

Remarks

1. Filtering processes optimally outputs of all sensors, i.e. fusses them optimally. Optimality means that all
available information about the estimated state is exploited.

2. Specific models and approximations used in the functional recursion (6), (7) decide on the applicability.
3. Any reasonable characteristic of f(Xt|Pt), e.g. mean or mode, can be selected as a point estimate of Xt.
4. A pair of time indices occur in (6), (7). One refers to the estimated variable Xt, the other one to the

information Pt−1 or Pt included into the condition. In order to stress it, we shall use the subscript t|t− 1
or t|t at time positions whenever needed.

5. Recursive form of filtering implies that the posterior pdf f(Xt|Pt−1) serves as a prior one for the time t.

3.2 Models of Sensors

Sensors are man-made imprecise devices of a known structure. Output ys;t of the sensor s ∈ s∗ ≡ {1, . . . , s̊}
at time t is corrupted by sensor dynamics, its non-linearity and measurement noise. General description of the
sensor at a specific position is given by the conditional pdf f(ys;t|ys(t− 1), x(t, q∗)).

Sensing is always to some extent local. It reflects some entries of physical state x of the environment
distributed only on a subset q∗s;t ⊂ q∗ of the space q∗. The subset varies with variations of sensor positions.

Sensing dynamics can be modelled by a dependence of the current sensor output ys;t on regression vector
ψs;t consisting of several delayed sensor outputs ys;τ , τ = t−1, t−2, . . . , t−∂y and (possibly) on current and
delayed exogenous sensor input us;τ , τ = t, t−1, . . . , t−∂u. The exogenous sensor input is supposed to meet



natural conditions of control, NCC, (Peterka 1981), i.e. it uses at most the information about the environment
state contained in the measured data. Thus, the sensor approximately exhibits the Markov property:

f(ys;t|us(t), ys(t− 1), x(t, q∗)) = f(ys;t|ψs;t, xt(q∗s;t)). (8)

The pdf (8) is either implied directly by the construction of the sensor or can be gained through the Bayesian
estimation of its parameters (Peterka 1981).

3.3 Exploitation of Sensor Reading

Given a prior pdf on the environment state f(xt(q∗)|Pt−1), the measurement of s-th sensor refreshes it to:

f(xt(q∗)|Ps;t) ∝ f(ys;t|ψs;t, xt(q∗s;t))f(xt(q∗)|Pt−1) (9)

where Ps;t ≡ (ds;t,Pt−1) ≡ (ys;t, us;t,Pt−1) is the information Pt−1, acquired up to time t − 1 from all
sensors, updated by s-th sensor data only. The relation (9), performing a version of data updating (6), is just a
plain Bayes rule valid under NCC.

Decomposing q∗ = q∗s;t ∪ qCs;t, with the complement of q∗s;t defined qCs;t ≡ q∗ \ q∗s;t, and using chain rule,
we can re-write (9) into the form:

f
(
xt

(
qCs;t

) |xt(q∗s;t),Ps;t

)
f(xt(q∗s;t)|Ps;t) ∝ (10)

∝ f(ys;t|ψs;t, xt(q∗s;t))f
(
xt

(
qCs;t

) |xt(q∗s;t),Pt−1

)
f(xt(q∗s;t)|Pt−1).

Integrating (10) over xt

(
qCs;t

)
, we get:

f(xt(q∗s;t)|Ps;t) ∝ f(ys;t|ψs;t, xt(q∗s;t))f(xt(q∗s;t)|Pt−1), (11)

i.e. the information about state in the neighborhood q∗s;t is updated by the Bayes rule irrespectively of the
information on the state on its complement qCs;t. By inserting this result into (10), we see that:

f
(
xt

(
qCs;t

) |xt(q∗s;t),Ps;t

)
= f

(
xt

(
qCs;t

) |xt(q∗s;t),Pt−1

)
, (12)

i.e. this conditional pdf of xt on the complement qCs;t of the set q∗s;t is unchanged by the sensor output ys;t.
This intuitively appealing result is practically important as the information change caused by the local

sensor measurement causes a local change of f(x(q∗)|Pt−1), which is extremely high-dimensional pdf defined
over the environment states in all positions q ∈ q∗.

3.4 Fusion of Sensor Readings

Probabilistic fusion of several sensor reading is conceptually straightforward if their common model
f(yt(̊s)|y(̊s, t − 1), u(̊s, t), x(t, q∗)) is available. Sensors are, however, independently constructed devices
whose outputs are correlated just due the overlapping observations of the environment physical state, see Fig-
ure 1. Thus, without loss of generality, their outputs can be assumed to be conditionally independent, i.e.:

f(yt(̊s)|y(̊s, t− 1), u(̊s; t), x(t, q∗)) =
∏
s∈s∗

f(ys;t|ys(t− 1), us(t), x(t, q∗)) ≡︸︷︷︸
(8)

(13)

≡
∏
s∈s∗

f(ys;t|ψs;t, xt(q∗s;t)).

With this joint description of sensors, the fusion of their readings reduces simply to a straightforward applica-
tion of the Bayes rule:

f(xt(q∗)|Pt) ∝ f(yt(̊s)|y(̊s, t− 1), u(̊s, t), xt(q∗))f(xt(q∗)|Pt−1) =

=
∏
s∈s∗

f(ys;t|ψs;t, xt(q∗s;t))f(xt(q∗)|Pt−1).

Arguments similar to that for (12) imply that the high-dimensional prior pdf f(xt(q∗)|Pt−1) is modified on:

x (q∗t (̊s)) ≡ x
(∪s∈s∗q

∗
s;t

)
(14)



Figure 1. Multi-sensors with overlapping observed positions.

Remarks

1. The marginalization of the global pdf f(xt(q∗)|Pt−1) is the most time consuming operation. It need not
be done unless sensor positions are changed. The remaining operations are computationally cheap as they
work on – always very localized – position sets q∗s defined by the used sensors.

2. The outlined data updating maps f(xt(q∗)|Pt−1) on f(xt(q∗)|Pt). It is necessary to specify the time-
updating mapping

f(xt(q∗)|Pt) → f(xt+1(q∗)|Pt)

in order to complete the learning recursion. Generally, it needs the model of time evaluation
f(xt+1(q∗)|xt(q∗),Pt), see (7). It is hard to get it even in much simpler situations and the non-linear
stochastic filtering, subsection 3.1, is solvable in rare cases (Daum 1988). Thus, at the considered level of
generality, we have to restrict ourselves to them or to the case slowly varying values of xt(q∗) and apply a
version of forgetting (Kulhavý & Zarrop 1993). The latter version is adopted and discussed below.

3.5 Sensor Models in Dynamic Exponential Family

Inherent problem dimensionality forces us to approximate sensor models by pdfs in dynamic exponential
family (DEF). The parameterized model of a sensor (8) belongs to DEF iff it is described by the formula:

f(ys;t|ψs;t, xt(q∗s;t)) = exp
〈
Bs(Ψs;t),HsC(xt(q∗s;t))

〉
, s ∈ s∗, where (15)

data vector Ψs;t ≡ [ys;t, ψs;t] = [sensor output,regression vector];
the data vector Ψs;t can be updated recursively, i.e. there is a function Ψ̃s such that Ψs;t = Ψ̃s(ds;t, Ψs;t−1)

with the data item ds;t ≡ [ys;t, us;t] =[sensor output, exogenous sensor input];
Hs is a fixed linear selector of xq entries that are reflected in outputs of s-th sensor;〈
Bs(Ψs;t),HsC(xt(q∗s;t))

〉
is a scalar product (a bilinear functional) of arrays Bs(·), HsC(·), for which

there is a conjugated linear selector H̄s such that
〈
Bs(Ψs;t)H̄s, C(xt(q∗s;t)

〉
=

〈
Bs(Ψs;t),HsC(x(q∗s;t))

〉
,



finite-dimensional functions Bs(·),HsC(·) of respective arguments are arranged into arrays of compatible
dimensions,

the array C(x(q∗s;t)) has always a constant (unit) entry: this allows us to include normalizing factor of the
pdf as an entry of B.

Existence of self-reproducing prior pdf, conjugated with the model of the sensor in DEF, determined by a
finite-dimensional sufficient statistics, explains its practical significance. DEF allows, moreover, to update the
statistics recursively.

Under the assumption (15), the conjugated prior pdf has the form, see. (14):

f(xt(q∗t (̊s))|Pt−1) ∝
∏
s∈s∗

exp
〈
Vs;t|t−1,HsC(xt(q∗s;t))

〉
f

(
x

(
qCt (̊s)

) |x (q∗t (̊s)) ,Pt−1

)
, (16)

where Vs;t|t−1 are individual sufficient statistics defining this prior pdf. The non-updated pdf on the com-
plement qCt (̊s) ≡ q∗ \ q∗t (̊s) can be formally arbitrary. Practically, it has to be carefully chosen to allow
practical implementation of the full learning cycle consisting of data and time updating of the global estimate
f(xt(q∗)|Pt−1). In any case, the updating by data from given sensors reduces to algebraic recursions:

Vs;t|t = Vs;t|t−1 + Bs(Ψs;t)H̄s, s ∈ s∗ (17)

and the posterior pdf f(xt(q∗)|Pt) has the form (16) with Vs;t|t replacing Vs;t|t−1.

3.6 Re-Parameterization of Sensor Models

The presented straightforward extension of the known data updating in DEF has significant drawback in the
sensor convergence problem: the union of the spaces q∗t (̊s) observed by sensors evolves with time. A correct
determination of the conjugated prior pdf on this set requires computer intensive manipulations with the joint
pdf f(xt+1(q∗)|Pt). Its even approximate description has to be very detailed and consequently extremely high-
dimensional. Otherwise, it is impossible to store fine ”traces” of sensing made in past. The re-parameterization
of the sensor models, proposed here, avoids this problem to a substantial degree. At the same time, the proposed
solution seems to be both general and flexible enough.

Essentially, we re-parameterize sensor models so that they work formally on whole time-invariant space
q∗. An individual sensor is modelled by a mixture of the sharp component fs(ys;t|ψs;t, xt(q∗)) in DEF, that
has practical support on x(q∗s;t), and of a flat U(x(q∗)) component (uniform when q∗ is finite):

f(ys;t|ψs;t, x(q∗)) = αsfs(ys;t|ψs;t, xt(q∗)) + (1− αs)U(x(q∗)) ≡ (18)

≡ αs

∏
q∈q∗

exp 〈Bs(Ψs;t),HsC(xq;t)〉+ (1− αs)U(x(q∗)).

The function C(xq;t) of the local state xq;t is chosen as sensor independent. The sensor specificity is assumed
to be concentrated into the selector Hs. The probabilistic weight αs ∈ (0, 1) is known (estimated) character-
istics of the sensor chosen so that on the set q∗s;t the contribution of αsfs(ys;t|ψs;t, xt(q∗)) is higher than that
of (1− αs)U(x(q∗)) and vice versa on the complement qCs;t.

Remarks

1. The mixture models of sensors (18) are considered further on. Of course, specific physical knowledge may
lead to other, often simpler, types of models.

2. Construction of the sensors often guarantees that the locality of sensing, reflected in data updating (11),
(12), is approximately met when using the model (18) in Bayes rule.

3. Physical states xq;t considered on the whole space q∗ are assumed to enter the model through∑
q∈q∗ C(xq;t). This assumption can be generalized to

∑
q∈q∗ βqC(xq;t), with fixed weights βq . These

weights are supposed to reflect dependence of physical properties on sensor position q. The states xq;t

enter the model with weights respecting physical properties of the observed environment. Presentation
simplicity makes us to consider the version without weighting.

3.7 Global Estimate and its Data Updating

The overall state space x(q∗) is extremely large and cannot be efficiently described in an exact point-wise
manner. At the same time, the dimensionality implies that the number of areas with interesting configurations



of physical states is very limited. Moreover, these areas represent as a rule ”objects” with a physical meaning
and occupy connected parts of the geometrical space. These parts can be further split into a finite amount of
subsets on which physical states have very similar values at the inspected time moment.

Let us suppose, that each region with similar physical states is described by so called component. It implies
that the joint prior pdf can be approximated by a finite mixture with (relatively sharp) components formed by
pdfs conjugated to DEF and by a flat (uniform) pdf:

f(xt(q∗)|Pt−1) =
c̊t|t−1∑
c=1

αc;t|t−1

∏
q∈q∗

exp
〈
Vc;t|t−1, C(xq;t)

〉
+ α0;t|t−1U(x(q∗)). (19)

The finite number of components c̊t|t−1 + 1 may vary with time. The probabilistic weights αc;t|t−1 sum to
unity. The values of statistics Vc;t|t−1 characterize individual components and specify their practical domain
on which they are higher than the flat pdf describing unlearnt background of physical states.

Application of the Bayes rule to this prior pdf with the mixture models of sensors (18) gives, see. (6):

f(x(q∗)|Pt) ∝
∏
s∈s∗

[
αs

∏
q∈q∗

exp 〈Bs(Ψs;t),HsC(xq;t)〉+ (1− αs)U(x(q∗))

]
× (20)

×



c̊t|t−1∑
c=1

αc;t|t−1

∏
q∈q∗

exp
〈
Vc;t|t−1, C(xq;t)

〉
+ α0;t|t−1U(x(q∗))


 ≡

≡
˜̊ct|t∑
c=1

α̃c;t|t
∏
q∈q∗

exp
〈
Ṽc;t|t, C(xq;t)

〉
+ α̃0;t|tU(x(q∗)). (21)

Thus, for the uniform background, the mixture form (19) ) reproduces. The algebraic updating of statistics:

{
αc;t|t−1, Vc;t|t−1

}c̊t|t−1

c=1
→︸︷︷︸

{Bs(Ψs;t,Hs,αs}s∈s∗}

{
α̃c;t|t, Ṽc;t|t

}˜̊ct|t

c=1

is just needed to perform the exact data updating of the global estimate. However, the number of terms ˜̊ct|t is
much higher than c̊t|t−1 and the growth of the number of components must be limited by a suitable projection:

α̃0;t|t,
{

α̃c;t|t, Ṽc;t|t
}˜̊ct|t

c=1
→ α0;t|t,

{
αc;t|t, Vc;t|t

}c̊t|t
c=1

with c̊t|t = c̊t|t−1.

There is a range of ways how to construct such a projection. The following one seems to be adequate.
Let us denote f̃t|t(x(q∗)) the exact posterior pdf and ft|t(x(q∗)) the constructed projection. We would

like to select this projection as the minimizer of the Kullback-Leibler (KL) divergence D(f̃t|t||ft|t) ≡∫
f̃t|t(•) ln

(
f̃t|t(•)/ft|t(•)

)
d• (Kullback & Leibler 1951) that is known to be a good measure of proximity

of pdfs. The choice is motivated by the specific role of this divergence in the considered Bayesian framework
(Berec & Kárný 1997). The mixture forms of , f̃t|t, ft|t imply that this projection cannot be practically found.
Instead of it, we use the upper bound on the KL divergence implied by Jensen inequality. Its minimizer is,
however, a model with a single component. In order to prevent this degeneracy, we also require proximity of
the weights αt|t−1 and αt|t. Thus, we construct α0;t|t,

{
αc;t|t, Vc;t|t

}c̊t|t
c=1

as minimizing argument of:

−
c̊t|t∑
c=1

[
αc;t|t

〈
Vc;t|t,

∫
f̃(x(q∗))

∑
q∈q∗

C(xq) dx(q∗)

〉
− Λαc;t|t−1 ln(αc;t|t)

]
+α0;t|t−Λα0;t|t−1 ln(α0;t|t).

(22)
The optional weight Λ > 0 defines the degree of conservatism with respect to similarity of αt|t−1 and αt|t.

3.8 Time Updating of the Global Estimate

As recalled above, the time updating of the global pdf f(xt(q∗)|Pt) → f(xt+1(q∗)|Pt) requires unavailable
time evolution model f(xt+1(q∗)|Pt, xt(q∗)). This, in conjunction with the expected intensive informational
flow from sensors, makes us to apply stabilized forgetting (Kulhavý & Zarrop 1993) on ft|t(·). Again, mixture



form of the model prevent us to use it directly. Instead of it, we apply this forgetting component-wise. It gives
the final correction of statistics

Vc;t+1|t = λVc;t|t + (1− λ)VA.

The optional λ ∈ (0, 1) can be interpreted as the probability of the hypothesis that xt(q∗) remained constant
between two consecutive measurements. The externally supplied statistic VA describes our belief into moves
of the xt(q∗) expected in the same time interval. Typically, VA is recommended to coincide with the statistics
describing the flat pdf. For bounded q∗, the flat pdf can be uniform and VA = 0.

3.9 Overall Algorithm

Initial phase

• Specify the statistic VA describing flat prior pdf U(x(q∗)).
• Set the number of component c̊1|0 = 1 in mixture describing prior global estimate of physical state

f(x1(q∗)|P0) ∝ 1 and initialize the corresponding statistic V1;1|0 = VA.
• Specify structure of models of used sensors (18), i.e. their forms including selectors Hs, regression vectors

ψs;t and weights αs defining mixture form of sensor models.
• Fill initial values into regression vectors of respective sensors.
• Choose the optional scalar Λ > 0 driving the mixture projection.
• Specify the upper bound c̊ on the number of components c̊t|t of the mixture describing the global estimate

f(xt(q∗)|Pt−1).
• Choose the forgetting factor λ ∈ (0, 1) reflecting the expected rate of changes of physical states xt(q∗).

On line phase running for t ∈ t∗

• Apply external inputs us;t to respective sensors (if present) demanding, for instance, to turn direction of
sensing to the hottest point in space found up to now.

• Fix positions of sensors.
• Complete specification of those sensor-model characteristics that depend on their current position.
• Measure sensors outputs ys;t and complete data vectors Ψs;t = [ys;t, ψs;t].

Data updating % Fusion of Sensor Readings

• Update statistics Vc;t|t−1, c = 1, . . . , c̊t|t−1 to Ṽc;t|t, c = 1, . . . , ˜̊ct|t using values of functions
Bs(Ψs;t), Hs.

• Update weights αc;t|t−1, c = 0, 1, . . . , c̊t|t−1 to α̃c;t|t, c = 0, 1, . . . , ˜̊ct|t using values of functions
Bs(Ψs;t), Hs, αs and normalization to their unit sum.

Projection

• Set Vc;t|t = Ṽc;t|t, αc;t|t = α̃c;t|t, c̊t|t = ˜̊ct|t if ˜̊ct|t ≤ c̊ and go to Time updating by forgetting.
• Project Ṽc;t|t, α̃c;t|t on Vc;t|t, αc;t|t by minimization of (22) if ˜̊ct|t > c̊ and continue.

Time updating by forgetting

• Forget by defining Vc;t+1|t = λVc;t|t + (1− λ)VA.
• Evaluate point estimates of state, if need be, and go to the beginning of On line phase.

Remarks

1. Extent of prior options determines to significant extent usefulness of algorithm. Let us discuss them
(a) The choice of statistics VA describing flat background and prior pdf is inevitable and relatively simple.

Properties of the algorithm are expected to be reasonably insensitive to this choice.
(b) Forgetting factor is relatively easy to choose and the algorithm will be robust to its choice.
(c) The weighting factor Λ > 0 is introduced in heuristic way and there is no experience with its choice

and influence. Its choice can be almost surely avoided by approximating joint pdf of data and pointers
to components. Such a pdf is known as an extension that has the mixture model as its marginal. Similar
”trick” can be applied when introducing forgetting.

(d) The upper bound on the number of components c̊ should be chosen as high as computationally accept-
able. Its value is determined by computation resources available and by desired sampling rate.

2. Computational demands of the algorithm depend on dimensionality of the problem (length of xt, number
of sensors and dimensions of their outputs and number of components in the global estimate). Preliminary



considerations and the particular case reported in (Beal & Jojic 2003) indicate that the computational load
can be acceptable in a wide range of applications.

3. Updating of statistic Vc;t|t−1 → Ṽc;t|t in the dominant case of normal components is equivalent to single
step of recursive least squares (Peterka 1981). As such it is computationally relatively cheap.

4. The considered projection performs merging and cancelling components at one shot. Its computational
complexity is expected to be around that needed for data updating. Simpler versions of projections are at
disposal if this load will be found to high.

4 Robot Platform Considered for Tests

A special robot head has been constructed as a test bed for multi-sensor integration and convergence. The head
has been positioned as a hand on the end of a 6 Degrees of Freedom Industrial Robot Manipulator Arm. As a
result the head can take up any position and attitude in respect to an object in 3 dimensional space.

The robot head for experimentation (see Figure 2) has been named MORGUI, which is Mandarin Chinese
for Magic (mor) Ghost (gui). It consists of a rapid action head containing 5-senses. Two of these, vision and
audio, are human equivalents, whilst the remainder radar, infrared and ultrasonics are extrasensory as far as
humans are concerned.

Morgui’s camera vision can be either fixed stereo (i.e. the eyes cannot be separately rotated) or mono, with
one camera being employed for sensory purposes within the robot, whilst the other is used for monitoring,
observation and recording of (possibly human) object responses. Audio meanwhile consists of two receivers
positioned on either side of Morgui’s head, positioned a little forward from the possibly expected (human ear)
location in order to reduce noise effects at central positions.

Ultrasonic sensors located in Morgui’s forehead give a broad object appearance signal at a fairly accurate
range, i.e. the sensor output give a reasonably accurate (± 2%) indication of the distance to the nearest object
of a reasonable size. In Morgui’s nose is a Doppler radar system, which gives an accurate indication of the
speed of movement of an object, to or from the robot head. Finally, positioned just above Morgui’s top lip
is a dual infrared sensory system, which can give a reasonable thermionic read out from a specified distance
away or, more likely, can be used to give an alternative distance measure from the robot head to the hottest
nearby object. In the sense of a distance measure the ultrasonic and infrared sensors can be deemed to be
mutually corresponding in that they are indicating different views on the same measurement – distance from
the robot head. Further views on the same measure can also be obtained through a depth calculation using
the stereovision system, if the magnification of object audio output is known and if the object moves, through
radar. For our own studies we will initially consider input on distance from the robot head through signals
taken in via the ultrasonic and infrared sensors.

The Control problem with Morgui is one that with the robot being given a straightforward single goal, it is
this goal only that it aims to achieve at all times. Decision making between multiple goals through competing
actors for control of the robot (as in (Breazeal 2000)) is not the subject of study here. The critical factor in
our case is multisensory correspondence, enabling the robot to achieve its single goal with the aid of diverse
sensory information.

A general directive for Morgui could be to retain its head position in uniform 3 dimensional space with
regard to a distant object, i.e. to always retain a specified distant object in the center of the robot’s sensory
system, with the object remaining a set, pre-chosen, distance away. The aim being that Morgui focuses on, and
tracks in real-time, a distant, specific moving objects. To restrict the goal, in the first instance to something a
little simpler – we can merely give Morgui the task of keeping the distance, in the z-direction, between itself
and an object, constant with respect to time. The aim is therefore for Morgui’s head position to remain a set
distance from an object as it moves in z-space only.

It is worth noting that the control algorithm employed with Morgui, for target tracking, is not of major
concern here, in fact a PI control will invariably suffice. The only requirement is for the algorithm to ensure
that the robot responds in a reasonable time frame (with regard to the object’s speed) and with reasonable
accuracy. Our concern in foreseen tests is in essence not about the type of control to be employed, but rather
that whichever controller it is, the accuracy of the information it has at its disposal is improved through the use
of multisensory convergence.



Figure 2. Morgui – Multisensory Robot Head in Action

5 Concluding Remarks

This preliminary inspection of the general but applicable framework of sensor fusion has been started from
two distinctly different schools of research, namely state-space analysis of sensors as dynamic system and
stochastic filtering reduced to Bayesian estimation of mixtures combined with advanced forgetting techniques.
The paper presents a promising but still preliminary synthesis of this attempt to tackle the general sensor fusion
problem. The current state of the research outlines further steps:

• Modelling of Morgui’s sensors in the form described in section 3.5.
• Elaboration of algorithmic details of global fusion algorithm summarized in section 3.9.
• Implementation of the algorithm and extensive tests on the robot head test bed that should help to refine

and if need be to modify the described approach.
• Modification and possible adaptation of the theory behind to the discussed area.

This is an ambitious plan but the framework presented in the paper promises that it is feasible. The generic
nature of the solution indicates that it will be applicable not only to Murgui’s head.
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(eds.), Computer-Intensive Methods in Control and Signal Processing: Curse of Dimensionality, pp. 181–
193. Birkhäuser.
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