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Abstract. Computational complexity hidden behind the apparent elegance of multi-input multi-

output (MIMO) ARX model description used for the adaptive control purposes is addressed. A
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rate sampling, and offer a new design algorithm of classical adaptive controllers.
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Introduction

This paper is a research report, openly mirroring
the zig-zag way between barriers of computational
complexity hidden behind the apparent elegance
of multi-input multi-output (MIMO) autoregressive-
regression (ARX) used for the adaptive control.

Linear quadratic Gaussian (LQG) adaptive control,
based on optimization of a multi-step criterion [2] has
nice theoretical and computational properties and its
power has been proved in practice. Its computer-aided
design (CAD) package called DESIGNER has been
developed [4]. DESIGNER prepares automatically the
optimal function including a safe start for the adaptive
control of the chosen type.

The package in its present state was finished in
1990. During the period of experimental tests several
improvements have been suggested (increased con-
vergence rate of iterative computations [5], absolute
terms in regression models respected, user-friendly di-
alogs proposed etc.). It was verified that every piece
of prior information used in the design can contribute
to the final controller specification and corresponding
performance improvement [7].

The package covers MIMO case; however, the over-
all CAD procedure becomes less transparent in this
case and computational aspects come into the fore-
ground. This paper addresses the achievements at-
tained when trying to respect MIMO nature of the
controlled system.

It has been suggested that substantial alleviation of
the “dimensionality curse” may be reached by using
a modified system parameterization [6]. When adopt-
ing this parameterization we have found unforeseen

consequences both for modelling and control design.
The paper summarizes shortly the present features

of the CAD package DESIGNER; disadvantages and
unused potential advantages are stressed. It is shown,
how the model modification can help the situation.
The impact of the model changes on the identification
and synthesis is then dealt with. In the conclusions
stimulating interplay between theory and computa-
tion is stressed, which has led to the present results.

Design of LQG adaptive controller

The controller uses the my-dimensional output y(k)
of the controlled system, its mu-dimensional input
u(k) and mv-dimensional external disturbance v(k) (if
available). The data are indexed by the discrete time
moments k = 1, 2, .. at which inputs can be changed.

Control quality optimized by the controller is quan-

tified by the expected (E [·]) value of the quadratic loss

K[Q] =
1

T
{Qψ[ψ(T )− ψ0(T − 1)]+ (1)

+

T∑
k=1

Qy[y(k)− y0(k − 1)] + Qu[u(k)− u0(k − 1)]}

on a long horizon T . For weighted squared norm of
the deviation of a vector x from its reference value x0,
a shorthand (slightly inconsistent) notation
Qx[x− x0] = (x− x0)

′Q′xQx(x− x0) is used (′ means
transposition). The distinction between the norm
Qx[·] and the corresponding matrix weight will be
clear from context. Q is a common name for the
weights. The regression vector ψ(k) is defined below.

Model describing the controlled system behavior is a
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MIMO linear (Gaussian) model

y(k) = Θ′ψ(k) + e(k) =

lu∑
i=0

Θuiu(k − i− nu) (2)

+

ly∑
i=1

Θyiy(k − i) +

lv∑
i=1

Θviv(k − i− nv) + e(k).

For x = y, u, v, Θxi denotes the matrix regression coef-
ficients at the x variables delayed by i steps. The num-
ber of these coefficients is determined by the ”orders”
lx and the delays nu, nv. The sequence {e(k)}t≥1

consists of mutually independent my-dimensional ran-
dom variables normally distributed with zero mean
and constant covariance matrix R.

Model of the disturbance v is an autoregressive
written similarly as the previous ARX model.

Admissible control strategies are restricted by in-

formational and input limitations. The input u(k)
is chosen from U(k) ≡ [ul(k), uu(k)] under the non-
anticipativity condition with the use of the data
d(1), d(2), .., d(k−1), where the data item d(k) means
d(k) = (y(k), v(k), u(k)).

The adaptive controller estimates recursively the

unknown coefficients of the system model (2) and of
the disturbance model. It exploits the estimates for an
approximate minimization of the expected value of the
quadratic loss (1) under the restriction u(k) ∈ U(k).

In the practical implementation of the adaptive con-
troller, the user has to choose in advance the quanti-
ties specifying the criterion (1) and process model (2).
The main task of the DESIGNER package is to sup-
port this choice.

DESIGNER – its disadvantages and
unexploited advantages

The preparation phase consists of three tasks:

Structure estimation means the choice of signals
and dimensions of fields necessary for controller func-
tion. The controlled outputs are usually defined by
technical requirements. Much more freedom is often
met in choosing controlling inputs, useful external dis-
turbances and in determining the regression (2).

The used probabilistic approach to structure esti-
mation [8] orders the regression elements according to
their significance. This powerful outcome is exploited
in the subsequent steps only partially. This shortcom-
ing is especially conspicuous in MIMO cases.

Let us illustrate the situation assuming two-input
single-output case. Starting from the upper limits on
field dimensions, the recommended structure is found
and coded as indicators of regression-entries signifi-
cance. The resulting regressor may look like

ψ′(k) = [u1(k), u1(k − 1), u2(k − 3), y(k − 1)].

The model (2) used for controller design, however,
assumes both common delay (nu) and common or-
der (lu) for all Θ entries. The information about fine
structure is not exploited (we have to set nu = 0, lu =
3).

The scheme brings very rich information about the
inner structure of significant elements inside the Θ ma-
trix (its sparseness). However, fine as the description

is, it is not fine enough. This statement is illustrated
using the schematic description with x marking sig-
nificant elements (2 by 2 system is assumed)

[
y1(k)
y2(k)

]
=

[
x 0 x 0
0 x 0 x

]



u1(k)
u2(k)

y1(k − 1)
y2(k − 1)


 .

The form of parameter matrix shows, that the sys-
tem is composed of two independent ones (under the
condition of diagonal covariance R). This fact is
overlooked if significance of regressor entries is con-
cerned, i.e. if a global significance of Θ-rows is de-
cided only, not the significance of particular entries.
Parameter estimation is the main source of the

controller adaptivity. Its on-line properties are de-
cisive in long run. However, the desirable bump-less
start requires well prepared estimator initialization.

For the model (2), the estimation reduces to updat-
ing of statistics which is formally equivalent to recur-
sive least squares (RLS) in matrix extension of single
output case. The updating of the estimates Θ̂ of the
parameter Θ has the structure

Θ̂new = Θ̂old +

[
column

gain

]
· [row prediction error]

which in a schematic example may have the form
[

x x
x x

]

new

=

[
0 x
x 0

]

old

+

[
x
x

] [
x x

]
.

It is clear, that the parameter estimate – updated by
an added dyad – cannot keep a finer inner structure.
This introduces unnecessary redundant parameters.

Moreover, sampling rates differing in various input-
output channels are not supported by the model (2).

Choice of penalization matrices Q specifying the

loss function (1) determines the attainable input range
and overall quality. Having some preliminary parame-
ter estimate and a penalization ensuring the desirable
input range, it is possible to compute the probable
range of outputs and so give the user a rough esti-
mate of the attainable control quality. He can judge
in advance the economy of the project.

The current solution can be viewed as Monte-Carlo
projection of the model uncertainty into closed loop
uncertainty. Obviously, any redundant parameter es-
timated in previous step increases prediction uncer-
tainty of closed-loop quantities.

Moreover, both on-line and off-line design is formu-
lated for common sampling and control rates.

Adopted MISO models

Surprisingly enough, all problems listed above can
be solved much easier if an alternative model param-
eterization is used. Essentially, separate regressions
for the particular outputs (with different regressors
including significant items only) are used. Their inter-
relations are respected by including the other present
outputs into the separate models – interrelated set of
MISO models is created as an equivalent for MIMO
description. Formally, for i = 1, . . . , my (number of
outputs), we predict ith output entry by

yi(k) = Θ̄′iψ̄i(k) + ēi(k) (3)



where Θ̄i is coefficient vector, ith re-defined regressor
ψ̄i(k) includes yj(k), j 6= i, and cov(ē) is diagonal.

Relation of the new model to the form (2) depends
on the noise properties. Writing its covariance in the
factorized form MDM ′ (with diagonal D and M pos-
sibly triangular), the model (2) can be mapped to

M−1y(k) = M−1Θ′ψ(k) + M−1e(k). (4)

This equation can be rearranged to the modified
model (3) with the noise ē = M−1e and properly ex-
tended regression vectors ψ̄. The transformation is
trivial for diagonal matrix M , but this case is rare
(though often misused as the simplest one).

Remark

1. The general way of overcoming the redundancy
problem (vectorial organization of Θ) is not used
as it is mostly non-acceptable due to dimension-
ality.

MISO structure estimation

Fine structure description of the optimal regression
resulting from the structure estimation algorithm can
reveal specific system properties: multivariate delays
and “orders”, decomposition into subsystems.

Especially, it can be estimated whether a signal
is an external disturbance: unrealistic requirement to
recognize v(·) a priori is relaxed. Consequently, it is
better to take the variable v(·) as a part of the output.

These new features are paid by a new task for struc-
ture estimation – the search for the optimal factor M
in (4), as the introduced model parameterization (3)
depends on its choice. It can be seen on the example

Θ̄1 = M−1
1 Θ =

[
x 0
x x

][
x 0 0 x
0 x x x

]
=

[
x 0 0 x
x x x x

]

Θ̄2 = M−1
2 Θ =

[
x x
0 x

][
x 0 0 x
0 x x x

]
=

[
x x x x
0 x x x

]
.

Hereafter, we omit bar sign above Θ, ψ etc., as we
deal with the model (3) only.

MISO parameter estimation

Full use of structure estimation results motivated us
to use the non-standard model parameterization (3).
We can deal with different regression length (and/or
transport delay) in the particular output models: this
property is preserved in estimation as the prediction
error is scalar.

The separated modelling of particular output re-
gressions opens new freedom for sequence of computa-
tions. It is quite natural to update regressor whenever
new value appears; the parameter estimate for a given
output model can be updated as soon as an appropri-
ate regressor-regressand pair becomes available. This
property opens the way for treatment of systems with
multiple sampling rates. Unified description of such
systems can be reached by continuous-time models or
by substantial restriction of sampling freedom. Thus,
the former case is preferable and we confine ourselves

to it. We exploit spline-based models [3] as they rep-
resent a direct extension of the ARX models.

Spline-based modelling starts from a convolution
model of the system and approximates both convo-
lution kernels and signals by splines. In this way, a
model similar to (3) is gained.

yi(t) = Θ′igi(t)ψi(t) + ei(t). (5)

The model (5) describes input-output relation for any
continuous time moment t. Time invariance of the
unknown vector Θ′i is preserved by incorporating a
“filtering” matrix gi(t) which is a simple deterministic
function of t. For details see [3].

In order to stay within discrete world of comput-
ers we shall deal with pseudo-continuous time t which
changes by integer multiples of elementary time quan-
tum, say h, smaller than any inter-sample distance of
a single signal.

Theoretical considerations

Surprising (at least for the authors) richness of the
consequences of the simple model change led us to a
revision of the standard adaptive control set-up. The
relevant considerations are presented here.

Definition 1[Past, future] Let s be a specific pre-

dicted (s = y) or designed (s = u) signal. The re-
lated past (P) consists of all data which have been
used for the signal prediction (s = y) or determina-
tion (s = u). The remaining data which are to be
predicted/determined are called future (F).

For descriptions of time relations on some interval,
we deal with a past Pb extending to Pa = (Pb,Pab):
Pa is the past Pb enriched by a past increment Pab

(by new data). Through this evolution, the future
(Fb) corresponding to Pb shrinks to a future (Fa) by
a decrement (Fba = Pab). 2

Control design

Adaptive controllers (approximately) solve:

Stochastic control task. A nonnegative loss func-

tion K(u,P,F) is used as closed loop performance in-
dex. An optimal strategy minimizing expected loss
(E [K]) is searched for among admissible strategies,
mapping (possibly in a random way) the past on in-
puts selected from a range U .

Proposition 1[Solution of control task] The deter-
ministic strategy is optimal, which assigns the past P
the minimizing arguments in minu∈U E [K(u,P, ·)|u,P]
Proof. See e.g. [1] 2

Multistage stochastic control task. A nonnega-

tive loss function K(ua,Pa,Fa) depending on the
extended past Pa = (Pb,Pab), the input ua =
(ub, uab) ∈ (Ub,Uab) and on the corresponding future
Fb = (Fa,Fba) measures closed loop performance. An
optimal strategy minimizing expected loss is searched
for among admissible strategies which map Pi → Ui,
i = b, ab.

Proposition 2[Solution of multistage task, dynamic

programming] The deterministic strategy assigning to



the relevant pasts Pi, i = a, ab the minimizing argu-
ments in the sequence

min
ub∈Ub

E
[

min
uab∈Uab

E [K(ub, uab,Pa, ·)|uab,Pa]|ub,Pb

]

(6)
is the optimal solution of the multistage control task.
(It is a version of dynamic programming.)
Proof. Direct consequence of Proposition 1 and of the
nesting of the pasts involved. 2

Modelling and estimation
The model of the controlled system needed for the
multistage design has to provide conditional expecta-
tions in (6). Generally, full distributional knowledge is
needed for this evaluation. Without restricting scope
of this paper, we assume it given by the conditional
probability density functions (p.d.f.) p(F|u,P) (iden-
tical symbols for a random variable, its realization and
the p.d.f. argument are used, as usual).

The p.d.f. p(F|u,P) is mostly too complex to be
directly available from a system modelling. For this
reason, it is gained through parameter estimation: Pa-
rameterized models

p(F|u,P, Θ) (7)

are constructed and an unknown (multivariate) pa-
rameter Θ is estimated (eliminated by observing data
on the particular system of interest). Bayesian identi-
fication we are exploiting eliminates Θ exactly for any
past according to the elementary probabilistic rule

p(F|u,P) = E [p(F|u,P, Θ)|u,P] (8)

for which the Bayesian parameter estimate p(Θ|u,P)
is needed. The required estimate is gained by ex-
ploiting the parameterized system model and observed
data for modification (updating) a prior p.d.f. of Θ.

Proposition 3 [Bayes rule: updating of parameter

estimates] Let the informational structure be as in
multistage stochastic control task and control strate-
gies be deterministic and admissible ones (ub is a
deterministic function of Pb). Then p(Θ|Pb) =
p(Θ|ub,Pb) and

p(Θ|Pa) ∝ p(Pab|ua,Pb, Θ)p(Θ|Pb) (9)

(∝ means proportionality by Θ-independent factor).
The formula (9) is called Bayes rule.
Proof. A statement of probability theory for nested
pasts and a simplified version of so called natural con-
ditions of control [9] are exploited. 2

For the models (3), the parameter Θ consists of
regression coefficients and noise dispersions.

Adaptive control
The adaptive controllers are optimal-control approxi-
mations, which use updated parameter estimates for
new control design in every period. Both estimation
and synthesis consist of action pairs:

identification

{
extending of past
parameter estimation

design

{
computing expectation E [·|·]
criterion minimization

The sequence of these actions is not fixed, the com-
putations can be performed separately; in order to use

any piece of information as soon as it is available, they
can be controlled by data flow. However, irregularity
of time intervals must be taken into account. The
spline based modelling in the form (5) enables us to
do so.

Time-scheduling

Definition 2 [Scheduling, dummy signal, spline

model] We shall call scheduling a one-to-one map-
ping t → ω(t) = (s(t), i(t), ∆(t)), s(t) ∈ {y, u},
i(t) ∈ {1, . . . , ms(t)}, ∆(t) > 0 which specifies the
newest signal (si) measured/decided and its time shift
(∆) from the preceding sample of the same signal.

Signal samples will be described using dummy
scalar signal S = Y for s = y and S = U for s = u:

S(t) = si(t)(ζi(t)(t)), with “individual” time (10)

ζi(t) =
∑

τ

Ind(τ ≤ t, s(τ) = s(t), i(τ) = i(t))∆(τ)

where Ind(·) denotes set indicator. The elements of
the spline model (5) are unified similarly

Θ(t) = Θi(t), G(t) = gi(t)(ζi(t))

Ψ(t) = ψi(t)(ζi(t)(t)), E(t) = ei(t)(t) (11)

Scheduling determines uniquely the associated past
P(t) = data sampled before S(t) and future F(t) =
data which may occur after S(t). 2

Proposition 4 [Scheduling for adaptive control] For
deterministic control strategies, the nontrivial past ex-
tensions are generated by the measured outputs: if
Y (t) 6= Y (t− h) then Pa = P(t) ⊃ P(t− h) = Pb.

The adaptive control can be used with a determin-
istic scheduling if for any non-trivial past extension
the model (7) with a constant parameter Θ exists.
Proof. By construction, the input generated by de-
terministic strategy brings no information about the
observed system until an output influenced by it is
measured. The constant Θ is prerequisite of the Bayes
rule validity (9). This rule generates the model (8)
needed for the control design. 2

Remarks

1. Uniqueness of the scheduling is achieved when no
pair of sampling moments coincide. Otherwise a
complementary ordering rule, say lexicographi-
cal, has to be added.

2. The need for invariance of Θ explains our choice
of continuous-time modelling: in a discrete-time
models the freedom in scheduling choice is sub-
stantially restricted.

3. The model (5, 11) violates the invariance condi-
tion only seemingly: the subscript points to var-
ious parts of a constant parameter Θ.

4. Deterministic scheduling is treated for simplicity,
avoiding Markov-time framework.

MISO control design:
reduction to SISO

Freedom in action timing leads immediately to reduc-
tion of MISO to SISO. If the strategies which select at



most single input after each past extension are admis-
sible, the optimization reduces to a sequence of single
input tasks.

Combined use of the models (5) with such strate-
gies leads to the reduction of MIMO design to a set of
interconnected SISO tasks.

Design of the controller revised

Control quality optimized by the controller is quan-
tified by the expected value of the quadratic loss

1

T
{Qψ[Ψ(T )−Ψ0(T )] + QX [X(T )]} (12)

with the vector X(T ) containing jumps of signal-
sample deviations from their reference values. (For
brevity, the argument T is omitted hereafter).

Model used for the prediction of the controlled sys-

tem behavior is a SISO linear (Gaussian) regression

Y (t) = Θ′(t)G(t)Ψ(t) + E(t) (13)

Admissible control strategies

are restricted by the domain P(t) and range U(t).

The adaptive controller estimates recursively the

unknown coefficients of the model (13) using them for

approximative minimization of the expected value of

the quadratic loss (12).

Algorithmic aspects

The above formulation is a bit academic until effi-
cient algorithmic solution is designed. Here, the solu-
tion is outlined for the main design steps.

Structure estimation
From algorithmic view point, the structure estimation
is slightly influenced by the changes made. In [8], an
efficient algorithm is sketched which searches for max-
imum within the space of posterior probabilities of all
hypotheses about regressor structures. The algorithm
is able to deal effectively with sub-regressors of the
regressor with about 100 entries. In the current for-
mulation, the algorithm is directly applicable in a loop
over the predicted outputs. As the output dimension
my is relatively small no problems are foreseen.

The new task of selecting the best factor M in
(4) adds some complexity to the structure estimation
which is well balanced by the richer outcomes. The
key computational tricks of the basic search [8] are
directly applicable.

Parameter estimation
Just my independent RLS are applied to MISO

models working on filtered regressors G(t)Ψ(t).
The gained freedom in time-scheduling can be sim-

ply illustrated on this subtask. C-language-type no-
tation is used for describing the action sequence

if(s(t)==s(t-h) && i(t)==i(t-h)) do nothing;

else if(s(t)==u) update relevant regressors;

else { identify i(t)th parameters;

update relevant regressors; }

The possibility to use channel-allocated forgetting
should be mentioned under this heading.

Control synthesis
The above theory shows that irregular sampling can
be managed. At the same time, it is an example of of-
ten met situation that the solution via formulae looks
awkward while the algorithm is simple.

As it is seen from Proposition 2 scheduling runs
against the course of real time

if(s(t+h)==s(t) && i(t+h)==i(t)) do nothing;

else if(s(t)==y) take expectation;

else minimize over i(t)th input;

For algorithmization of both steps, we adopt the
factorization-based optimization [2]. It suits both be-
cause of excellent numerical properties and because of
ease of coping with the faced generalized conditions.

The algorithmization is based on a pair of elemen-
tary Propositions. For presentation simplicity, termi-
nal penalty Qψ and reference values are set to zero.

Proposition 5[Conditional expectation of quadratic

form] Let the vector X̄ ′ = [y, X ′] consist of a (scalar)
output y and samples in its past P. Let a regression
model determine the expected value E [y|u,P, Θ] =
Θ′ψ. Let W̄ be factor of the weighting matrix in
the quadratic form W̄ [X̄] (cf. notation at (1)). Then,
E [W̄ [X̄]|u,P, Θ] = W [X] + const. The weight W is
determined by the equation

W̄ [X̃] = W [X] (14)

with X̃ = [Θ′ψ, X ′].
Proof. Elementary evaluation of moments. 2

The new factor W is by no means uniquely defined.
The freedom is used for minimization.

Proposition 6[Orthogonal-transformation-based

minimization] Let the vector X ′ = [u, X ′] consist of a
(scalar) input u and vector X of samples in its past
P. Then, a version of the factor W exists such that

W [X] =
(
w(u + L′X)

)2
+ W [X] (15)

where w is a scalar weight, and L a column vector
(control law). The input u = −L′X minimizes the
quadratic form W [X]. If W is any weight determining
W [X] (14), then there is an orthogonal matrix O such
that

OW =

[
w L′

0 W

]
. (16)

Proof. See elsewhere, e.g. [2]. 2

The re-computation of the weighting matrix W̄ to
W (equivalent to Riccati equation) starts from W̄ =
QX . Subsequent application of two steps described in
Prop. 3, 4 – controlled by the scheduling mapping –
forms the overall synthesis. The procedure is finished
when all minimizing inputs within the control horizon
are found.

Remarks

1. The adaptive controller approximates the opti-
mal solution by using newest point estimates in-
stead of unknown regression coefficients.



2. The procedure can be interpreted as sequential
removal of future samples from the vector X(T ).
Expectation substitutes an output by its regres-
sion and minimization removes corresponding in-

put by zeroing the product [1, L′]

[
u
X

]
.

3. The time instants of taking the expectation or
minimization can be quite arbitrary and models
used may have quite different structures.

4. The evaluations admit not only irregular switch-
ing between minimizations and expectations but
also irregular switching within the set of signals
treated: for instance, expectation can be applied
several times to a single signal.

5. Note, that scheduling points not only to the sig-
nal treated but also to the corresponding weight
assigned to a signal in QX : it determines whether
and to which extent the signal is penalized by the
original criterion.

6. It may seem that such a general structure would
make the computation very tedious and space
demanding as we formally deal with a huge
(T/h,T/h)-type matrix (cf. QX in (12)). The
penalization matrix is, however, band path with
elements specified by a few different entries: typ-
ically common scalar weights of squares of par-
ticular signals qsi, i = 1, . . . , ms; s ∈ y, u and the
operations at some row of W influence it to the
depth of the longest regressor. Moreover, during
full operation pair two “end” lines are cancelled.

Thus, the array where real evaluations are per-
formed is much smaller than (T/h, T/h) as both
the nonzero band of Qx and the longest regressor
are much shorter than this dimension.

Essentially we store a cluster of nonzero elements
which move from the left upper corner of the
array of QX -dimensionality to its right bottom
corner. This cluster has regular upper triangular
form in classical cases.

7. The weight transformation caused by taking ex-
pectation can be represented by a matrix mul-
tiplication when using appropriate state space
model. However, no explicit state space models
are necessary in reality. The column correspond-
ing to the variable is deleted and the weights are
modified by regression coefficients.

8. For minimization, the orthogonal transforma-
tions leading to the weight form (16) is suffi-
cient. Application of further orthogonal trans-
formations can restore the upper quasi triangu-
lar form (after adequate column exchange the left
part of the cluster would have the upper triangu-
lar form). This will keep the cluster more com-
pact.

Conclusions

A recently proposed description of a multi-input
multi-output regression [6] has been exploited for
broadening the applicability of the CAD package DE-
SIGNER to MIMO systems. The description is based
on separated models for the particular outputs. Such
a parameterization is in various forms a part of “mod-
elling folklore” but its exploitation has been mostly

neglected. This model modification leads to general-
ization in the scope of the described systems (e.g. dif-
ferent sampling rates allowed) and improves the possi-
bility of detecting and using special system structures.

Behind a usual research report, a story is revealed;
a story telling how slowly the progress proceeds, how
theory and computation actually stimulate each other:

Theory of multi-input multi-output linear quadratic
Gaussian adaptive control led to need of computer
aided design, its development resulted in probabilis-
tic structure estimation. Overcoming implementation
problems of this theory brought about powerful re-
sults, stimulating the introduction of a modified sys-
tem model. The model itself now opens the field of
multi-rate sampling and sequential control synthesis
and. . .
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