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ÚTIA AV ČR, POBox 18, 18208 Prague, Czech Republic
tel. +420-266062274, fax. +420-266052068

http://utia.cas.cz/AS, E-mail: school@utia.cas.cz

Abstract. Multiple-participant (MP) dynamic decision making (DDM) is encountered both in societal and
technical systems. Unlike in single-participant (SP) DDM, no commonly accepted normative theory exists.
The paper contributes to numerous attempts to overcome this state by classifying possible MP scenarios and
connecting them with the normative SP DDM. This classification helps us to formulate open problems whose
solutions will lead to feasible MP DDM.
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1 Introduction

In SP scenario, Bayesian paradigm represents a normative theory of DDM that has – probably conceptually –
no internally consistent competitors as it guarantees that its strategies are not dominated (DeGroot 1970, Berger
1985). This implies that a normative theory of MP DDM should be searched as an extension of the Bayesian
DDM.

Participant’s environment E is a limited sphere of its interests that the participant can influence. The envi-
ronment is characterized by its possible behaviors defined on the considered data and action spaces as well as
on the space of considered but directly unobservable quantities.

Fully probabilistic version of DDM (Kárný 1996, Kárný, et al. 2003), we focus on, models environment E
of the participant P as well as its aims in probabilistic terms. Essentially, in SP DDM scenario, P’s strategy
is chosen so that its interconnection with environment model is as close as possible to the ideal distribution of
environment behavior reflecting these aims. The paper inspects an extension of this methodology to MP DDM.
The corresponding normative MP DDM requires specification of admissible strategies of participants, models
of their environments E and relevant ideal distributions.

The paper starts with preliminaries containing a generalized version of the fully probabilistic design of de-
cision strategies and a classification of its ingredients and cooperation stages. Then, a relevant part of Bayesian
estimation is recalled. Conjugate prior distributions and the choice of the ideal probability density function,
(pdf), forming set-point in the fully probabilistic design, are also briefly discussed. Then, the following MP
DDM scenarios are presented: selfish participants, participants cooperating at design stage with and without a
priori given hierarchy. Concluding remarks point to the important open problems.

2 Preliminaries

The section defines basic notions adopted; recalls the fully probabilistic SP DDM, introduces basic ingredients
of DM and classifies possible cooperation stages.

2.1 Notation

The following agreements are used throughout the paper: ≡ is equality by definition; x∗ denotes a set of
x-values; x̊ means cardinality of a finite set x∗; f(·|·) is reserved for pdfs; E denotes expectation; t is discrete-
time; d = (∆, a) is data record consisting of (observable) innovation ∆ and action a; dt is data item at
time t; d(t) denotes sequence (d1, . . . , dt); ∝ is equality up to a normalizing factor; left-upper superscript
distinguishes object categories, e.g. Pf means pdf related to the participant P .

The pdfs are distinguished by the identifiers in their arguments. No formal distinction is made between
random variable, its realization and an argument of a pdf.

The SP DDM exploits Kullback-Leibler (KL) divergenceD
(
f ||f̃

)
that measures of the proximity of a pair



of pdfs f, f̃ acting on a common set x∗. It is defined

D
(
f ||f̃

)
≡

∫
f(x) ln

(
f(x)
f̃(x)

)
dx. (1)

The basic property of the KL divergence (Kullback & Leibler 1951)

D(f ||f̃) ≥ 0, D(f ||f̃) = 0 iff f = f̃ almost everywhere, (2)

is used.

2.2 Fully probabilistic SP DDM

To make a decision, a participant P operates with considered behaviors Q of its environment E . A behavior
consists of time sequences of potential participant’s actions a(̊t) and of observed innovations ∆(̊t), informing
about environment’s state, as well as of considered but directly unobserved x(̊t) quantities. Thus,

Q ≡ (a(̊t), ∆(̊t), x(̊t)) ≡ (d(̊t), x(̊t)),

where t̊ < ∞ is decision-making horizon and d(̊t) denotes observable data. The joint pdf

Pf(Q) = Pf(X|d(̊t))
∏
t∈t∗

Pf(∆t|at, d(t− 1))

︸ ︷︷ ︸
M≡ model of environment

×
∏
t∈t∗

Pf(at|d(t− 1))

︸ ︷︷ ︸
R≡ decision strategy

(3)

describes possible behaviors of the closed loop formed by interconnection of P with its E . It is product of
the Bayesian estimate Pf(X|d(̊t)) of the unobservable quantity X ≡ x(̊t), the model M of participant’s
environment E (more precisely outer model) and the decision strategy R, selected by the participant. The
Bayesian estimate of X ≡ x(̊t) and the model of E are gained via Bayesian filtering (Jazwinski 1970, Peterka
1981) and are fixed when strategy is designed. The decision strategy R is to be chosen so that aims of P are
met. In the fully probabilistic setting, aims are expressed by the ideal counterpart of the joint pdf (3)

If(Q) = If(X|d(̊t))
∏
t∈t∗

If(∆t|at, d(t− 1)) If(at|d(t− 1)). (4)

Ideally, the optimized strategy R should move the influenced behavior Q to a desirable area. The ideal pdf
If(Q) expresses this wish. The fully probabilistic design simply searches for the strategy oPR that minimizes
the KL divergence of the joint pdf Pf(Q) to its ideal counterpart If(Q).

Proposition 1 (Fully probabilistic design) The optimal decision strategy oPR minimizing D (Pf || If)
has

the form
oPf(at|d(t− 1)) ∝ If(at|d(t− 1)) exp[−ω(at, d(t− 1))]. (5)

The functions ω(at, d(t− 1)) are generated recursively in backward manner for t = t̊, t̊− 1, . . . , 1

ω(at, d(t− 1)) =
∫

Pf(∆t|at, d(t− 1)) ln
[ Pf(∆t|at, d(t− 1))
γ(d(t)) If(∆t|at, d(t− 1))

]
d∆t

γ(d(t− 1)) =
∫

If(at|d(t− 1)) exp[ω(at, d(t− 1))] dat. (6)

The recursion starts with

ln(γ(d(̊t))) = −
∫

Pf(X|d(̊t)) ln
[ Pf(X|d(̊t))

If(X|d(̊t))

]
dX. (7)

Proof: Definition of the KL divergence and Fubini theorem on multiple integration imply the following iden-
tity

D (Pf || If)
=

∫
Pf(d(̊t))





ln
( Pf(d(̊t))

If(d(̊t))

)
+

∫
Pf(X|d(̊t)) ln

( Pf(X|d(̊t))
If(X|d(̊t))

)
dX

︸ ︷︷ ︸
≡− ln[γ(d(̊t))]





dd(̊t).



Using the chain rule for pdfs (Peterka 1981), we can write the part of the KL divergence that depends on
Pf(åt|d(̊t− 1)) in the form

E

{∫
Pf(åt|d(̊t− 1))

[
ln

( Pf(åt|d(̊t− 1))
If(at̊|d(̊t− 1))

)
+ ω(at̊, d(̊t− 1))

]
dat̊

}

with ω(at̊, d(̊t− 1)) ≡
∫

Pf(∆t̊|åt, d(̊t− 1)) ln
( Pf(∆t̊|åt, d(̊t− 1))

γ(d(̊t)) If(∆t̊|åt, d(̊t− 1))

)
d∆t̊.

The above expected value can be re-written as follows

E

{∫
Pf(åt|d(̊t− 1)) ln

( Pf(åt|d(̊t− 1))
oPf(åt|d(̊t− 1))

)
dåt − ln(γ(d(̊t− 1)))

}
, where

oPf(at̊|d(̊t− 1)) =
If(åt|d(̊t− 1)) exp[−ω(åt, d(̊t− 1))]

γ(d(̊t− 1))

γ(d(̊t− 1)) ≡
∫

If(at̊|d(̊t− 1)) exp[−ω(åt, d(̊t− 1))] dat̊.

The last optimized pdf Pf(at̊|d(̊t − 1)) enters the first term having the form of (conditional) KL divergence.
Due to (2), it is minimized by the claimed pdf (5). The normalizing factor γ(d(̊t− 1)) represents remainder to
be influenced by pdfs Pf(at|d(t− 1)) with t < t̊. Their optimization is, however, formally identical with the
demonstrated last step.

Remarks

1. The explicit solution depends on evaluation of respective integrals. Monte Carlo evaluation can be used in
low dimensional case, whenever it is possible to store functions ω, γ.

2. The optimal strategy (5) respects constraints on actions expressed by the support of the ideal pdf
If(at|d(t− 1)) due to the inclusion of supports

supp
[

oPf(at|d(t− 1))
] ⊂ supp

[
If(at|d(t− 1))

]
.

3. The above version of the fully probabilistic design considers the unobservable quantity X , which is ex-
pressed in the initial condition (7). This extends the previous solution (Kárný et al. 2003). The extension
reduces to it if the quantity X need not or cannot be influenced by the optimized strategy. In these cases, it
sufficient to leave X to its fate and to choose If(X|d(̊t)) = Pf(X|d(̊t)). This reduces the initial condition
(7) to γ(d(̊t)) = 1. This start corresponds with the former design version in which f(X|d(̊t)) has no direct
influence on the design. The estimate enters the (outer) model M only, cf. (Peterka 1981) and Section
2.3.2.

4. The design, similarly as general stochastic dynamic programming, relies on the assumption that admissible
strategies work with non-decreasing information given by d(t) = (dt, d(t − 1)). This implies generally
permanent increase of complexity of the resulting strategy with increasing horizon t̊.

2.3 Ingredients of Dynamic Decision Making

Specific instances of DDM are determined by ingredients occurring in Proposition 1. They are briefly discussed
here.

2.3.1 Classification of ingredients and cooperation stages

Ingredients of the fully probabilistic design can be classified according to their origin. They can be internal
with respect to P or external, i.e. received from E of this P or both. Variants are listed in the following table.



Ingredient Source type Comment
action at internal no alternative source
innovation ∆t external no alternative source
inner quantity X internal P decides whether X will be included into its model of E
model Pf(Q) both types the model can be supplied externally in MP DDM
ideal If(Q) both types the ideal pdf can be modified externally in MP DDM; it reflects also

constraints

Cooperation stages with other Ps can be classified according to the interaction of P in the design of the
decision strategy (design stage) and during its application (acting stage).

External Classification Comment
ingredient
behavior Q cooperation at the acting stage data shared by Ps are specified
factors of
Pf(Q)

cooperation at the design stage strategies of other Ps and/or their models help in building
of the model of E for the considered P

ideal pdf
If(Q)

cooperation at the design and/or
acting stages

knowledge of aims and restrictions of other Ps help in mod-
ifying P ideal pdf

Generally, design and acting stages can intertwine and the cooperation extent may vary. Numerous variants
may arise in this way up to the powerful adaptive cooperation. These possibilities are too complex for this
introductory inspection of MP DDM and their discussion is left aside. Thus, in the rest of the paper, we take
the definition of the external supply of data and models to the inspected P as given and fixed. It leaves a few
basic ways of cooperation in the design stage.

In the acting stage, the cooperation possible via (partial) sharing of data and (or) the ideal pdf. In the design
stage, models, strategies and ideal pdfs can be (partially) shared.

Sharing of ingredients can be either compulsory or facultative. The former option introduces hierarchy into
MP DDM. The latter one uses just hierarchy implied by differing ”abilities” of individual Ps.

Before elaborating the corresponding scenarios, let us discuss freedom in feasible constructions of ingre-
dients.

2.3.2 Bayesian Estimate and Model of Environment

For presentation simplicity, an unknown parameter is assumed to be the only unobserved quantity X . Then, the
model Pf(∆t|at, d(t− 1)) of E and the Bayesian parameter estimate Pf(X|d(t)) are described by formulas
(Peterka 1981)

Pf(∆t|at, d(t− 1)) =
∫

Pf(∆t|at, d(t− 1), X)Pf(X|d(t− 1)) dX (8)

Pf(X|d(t)) ∝ Pf(∆t|at, d(t− 1), X)Pf(X|d(t− 1)).

P has to supply observation model Pf(∆t|at, d(t−1), X) relating the current innovation to the current action
at, observed data d(t − 1) and the unknown parameter X . Moreover, it has to provide prior pdf Pf(X) that
expresses its prior knowledge about the unknown X . The formulae (8) are valid when X cannot be used for
selecting at, i.e. when natural conditions of control (Peterka 1981) are met.

For DDM, pdfs as functions have to be available. Their dependence on data, whose amount is growing
with time, can be feasibly represented only through a finite dimensional statistic. For existence of such a
statistics, the observation model (8) has to depend at most on the finite-dimensional regression vector ψt =
[at, . . . , at−∂a , ∆t−1, . . . , ∆t−∂∆ ], ∂a, ∂∆ < ∞, via a time-invariant function M(Ψ, X) of the data vector
Ψ ≡ [∆, ψ] and the parameter X . Thus, feasible observation models have to have the form

Pf(∆t|at, d(t− 1), X) = Mt([∆t, ψt], X) ≡ M(Ψt, X)

with computationally feasible evaluation of M -values.
Existence of the finite-dimensional sufficient statistic Vt, that guarantees feasibility without information

loss, is (practically) guaranteed only if M(Ψ, X) belongs to the exponential family (Barndorff-Nielsen 1978)

M(Ψ, X) = exp 〈B(Ψ), C(X)〉 (9)

with 〈·, ·〉 being a scalar product of compatible, finite-dimensional, practically manageable, functions
B(·), C(·) of respective arguments.



A sort of approximation is needed whenever this family is not rich enough. Modelling by finite mixtures
with components in the exponential family and development of specialized estimation procedures (Kárný et al.
2003, Titterington, et al. 1985) is one of a few generic approaches to this problem.

2.3.3 Conjugate Prior Pdf

Form of the prior pdf Pf(X) is determined by the need to describe Bayesian estimate Pf(X|d(t)) and the
model Pf(∆t|at, d(t− 1)) of E by the finite-dimensional statistic Vt. For the exponential family (9), the prior
pdf has to be conjugate prior pdf

Pf(X) ≡ Pf(X|d(0)) ∝ exp 〈V0, C(X)〉ΞX∗(X), (10)

where ΞX∗(X) is indicator of the set X∗. The optional prior statistic V0 has to guarantee that right-hand side of
(10) can be normalized to pdf. The posterior pdf Pf(X|d(t)) preserves this form and the functional recursion
(8) reduces to the simple algebraic updating

Vt = Vt−1 + B(Ψt), V0 given. (11)

Specific prior knowledge is to be reflected in the statistic V0. In (Kárný, et al. 2001a), an algorithmic translation
of usual technical knowledge into V0 is presented. Essentially, Bayesian estimation is performed on simulated
or though-of data.

2.3.4 Ideal Pdf

The ideal pdf If(dt|d(t − 1)) = If(∆t|at, d(t − 1)) If(at|d(t − 1)) (4) can be constructed through a spec-
ification of desirable ranges of respective arguments and their changes. It is done by defining locations and
widths of pdfs taken from the exponential family. Restriction of the supports of these pdfs to desired ranges
respects hard constraints on the solved DDM.

Often, it happens that the P is interested only in a few entries dP;t of dt ≡ (dP;t, dE;t). Then, it leaves
other variables, dE;t, to their fate. It corresponds with the special choice of the ideal pdf

If(dt|d(t− 1)) = Pf(dE;t|dP;t, d(t− 1)) If(dP;t|d(t− 1)), (12)

where Pf(dE;t|dP;t, d(t − 1)) is conditional pdf derived from Pf(dt|d(t − 1)), describing the estimated
model of E connected with the designed decision strategy R. It is straightforward to modify Proposition 1 to
this special case.

It should be mentioned that the use of finite mixtures as ideal pdfs allows us to express multiple aims.

3 Decision-Making Scenarios with Multiple Participants

Participant’s location (level of hierarchy) and type of interrelation with other participants (selfish, cooperative,
hierarchic), determined by the communication structure, define its operation domain and type of information
shared. As it has been mentioned before, the acting stage realizes the DM strategy determined at the design
stage. From the cooperation viewpoint, the acting stages for different types of scenarios are distinguishes
by sharing the data about the common part of considered behaviors only. The highest cooperation level of
cooperation at this stage can be based on sharing the statistics on that part of the behavior space, which is not
”reachable” by another participant.

The more rich and influential is the cooperation in the design stage where the cooperation relies on sharing
the models and ideal pdfs, possibly creating a common group model and (or) ideal, etc.

This section describes cooperations for different scenarios, outlines possible technical solutions and em-
phasizes open problems to be solved.

The design stage of all types of scenarios consists of two phases: communication phase, when informa-
tion exchange takes place and updating phase, when particular participant updates its models and (or) ideals.
The strength of the mutual influence makes the main difference between individual variants. Otherwise, the
scenarios differ only by the order of alternating and by the frequency of repetitions of these stages.

Selfish scenario supposes that a communicating participant either send to or receive from another partici-
pant information in communication phase. Then, the facultative updating phase for the information-receiving
participant starts. The receiving participant may be selfish, it may respect the information provided partially



only. In extreme it does not make any change of its model or ideal pdf. The same sequence is repeated for an-
other participant of the communicating pair. Thus the whole design stage of selfish scenario results in exchange
of models and possible model updating. No common global model or ideal pdf for the both communicating
participants is expected to be chosen. It means that each participant will use its own model of E at the next
acting stage.

Even selfish scenario requires at least minimum cooperation during communication phase: participant
should provide its model or/and ideal at least partially. Providing correct models or real ideal is not however
compulsory, i.e. possibility to lie consciously has been preserved for participant.

In contrast to the selfish scenario, the cooperative scenario assumes that the mutual exchange of models
and ideals at communication phase is followed by obligatory updating phase. The result of the negotiations
at design stage must be common model and ideal of communicating participants concerning to their common
part of data space.

The last considered hierarchical scenario assumes existence of a participant coordinating whole group of
participants. Exceptional role of the coordinator is by its power to influence the members of the group either
via their models or ideals or even via data supplied in acting stage.

The following subsections describe technical details of different scenarios.

3.1 Selfish Scenario and Its Estimation Aspects

In a non-trivial MP DDM, the environment of an individual P overlaps at least partially with that of other Ps.
The simplest MP DDM scenario discussed here takes individuals as selfish (egoistic) Ps. They simply act

as if they were alone in their Es, i.e. they act according to the theory recalled in Section 2.2. When modelling
their environments, each of them relies on its observation model Pf(∆t|, at, d(t−1), X) and prior pdf Pf(X).
Presence of other acting participants makes the modelling and subsequent design are sensitive to modelling
errors. Thus, inspection of achievable quality of estimation and consequently of resulting strategy becomes
dominating aspect of this MP DDM scheme. The following proposition indicates how this problem can be
addressed. It represents a version of large-deviations theorems (Sanov 1957, Kulhavý 1994).

Proposition 2 (Asymptotic properties of Bayesian estimation) Let the observed data be generated by so
called ”objective” model (Berec & Kárný 1997) of(∆t|at, d(t − 1)), which is the best description of reality
for the inspected DDM. Let also the used strategy meet natural conditions of control and bounds B̄(X), B(X)
exist such that

∞ > B̄(X) ≥
of(∆t|at, d(t− 1))
Pf(∆t|ψt, X)

≥ B(X) > 0 (13)

for almost all X ∈ supp
[ Pf(X)

]
and d(̊t) ∈ d∗(̊t).

Then, for t̊ →∞,

supp
[ Pf(X|d(̊t))

] ≡ Arg inf
X∈supp[ Pf(X)]

1
t̊

∑
t∈t∗

ln
(

of(∆t|at, d(t− 1))
M(Ψt, X)

)
almost surely. (14)

Proof: Using the Bayes rule and the definition of proportionality sign ∝, the posterior pdf can be given the
form

Pf(X|d(̊t)) ∝ Pf(X) exp





−t̊




1
t̊

∑
t∈t∗

ln
(

of(∆t|at, d(t− 1))
M(Ψt, X)

)

︸ ︷︷ ︸
≡H(d(̊t),X)

− inf
X∈supp[ Pf(X)]

H(d(̊t), X)








Due to the factor −t̊, for t̊ →∞,

supp
[
f(X|d(̊t))

]
= Arg inf

X∈supp[ f(X)]
H(d(̊t), X)

if the infimum is finite. To verify the finiteness, let us introduce, for a fixed X and the considered strategy
fulfilling natural conditions of control, the deviations

e(d(t− 1), X) ≡ ln
(

of(∆t|at, d(t− 1))
M(Ψt, X)

)
− E

[
ln

(
of(∆t|at, d(t− 1))

M(Ψt, X)

)
|d(t− 1)

]
.



With them,

H(d(̊t), X) =
1
t̊

∑
t∈t∗

E

[
ln

(
of(∆t|at, d(t− 1))

M(Ψt, X)

)
|d(t− 1)

]
+

1
t̊

∑
t∈t∗

e(d(t− 1), X).

The first term is average of (conditional) KL divergences and as such it is non-negative. The second term is
average of uncorrelated zero-mean variables that are almost surely bounded due to (13). Consequently, (Loeve
1962), the second term converges almost surely to zero. Thus, H(d(̊t), X) is almost surely bounded from
below that guarantees finiteness of the infimum.

The fact that the posterior pdf concentrates on points in supp
[ Pf(X)

]
minimizing asymptotically entropy

rate H(d(∞), X) ≡

≡ lim sup
t→∞

1
t̊

∑
t∈t∗

ln
(

of(∆t|at, d(t− 1))
M(Ψt, X)

)
= lim sup

t→∞
1
t̊

∑
t∈t∗

E

[
ln

(
of(∆t|at, d(t− 1))

M(Ψt, X)

)
|d(t− 1)

]

is the known message of Proposition 2. For the inspected MP DDM, it is, however, important to notice that this
divergence may be so large that the obtained model is useless. To see it more clearly, let us discuss influence
of modelling error on DDM. The optimization has to deal with the estimated model and to minimize the KL
divergence D (Pf || If)

.
Let us consider the ideal situation that a unique model parameterized PX ∈ X∗ is asymptotically obtained,

i.e. Pf(∆t|at, d(t− 1)) =

=
∫

Pf(∆t|at, d(t− 1), X)Pf(X|d(t− 1)) dX →t→∞ Pf(∆t|at, d(t− 1), PX) = M
(
Ψt,

PX
)
.

Let also assume that, with this model M
(
Ψt,

PX
)
, the perfect matching of Pf(Q) with the ideal pdf If(Q) is

achieved, i.e. Pf(·) = If(·). The loss per time step, corresponding to the designed strategy oPf(at|d(t− 1))
connected to the objective model of(∆t|at, d(t− 1)), becomes

1
t̊
D (

of || If)
=

1
t̊
D (

of ||Pf
)

=
1
t̊
E

[
ln

(∏
t∈t∗

of(∆t|at, d(t− 1))∏
t∈t∗ M(Ψt, PX)

)]
→t̊→∞ E

[H (
d(∞), PX

)]
.(15)

Thus, the loss is the higher the greater is asymptotically achieved minimum of the entropy rate. Continuity
arguments extend this property to Pfs in neighborhood of If . A finer robustness analysis is generally needed
(Perez 1965, Martin, et al. 2003).

Remarks

1. The condition (13) given by bounds B(X), B(X) excludes significant differences in tails of the objective
of and Pf pdfs. It can be definitely modified and refined so that t̊−1

∑
t∈t∗ e(d(t− 1), X) still converges

to zero.
2. The infimum is taken over the support of the prior pdf Pf(X) that is included in X∗, cf. (10). The propo-

sition can be simply re-stated to other mutual relationships of supp [ f(X)] and X∗.

3.2 Cooperation at Design Stage of Selfish Scenario

Even in selfish scenario, the participant is given a chance to cooperate. In the communication phase of the
design stage, it gets information on knowledge aims and restrictions of its neighbors and it may exploit them
for updating of its model and ideal in accordance with its fidelity into the information obtained.

The exploitation of models of Es as well as of prior, ideal and strategy-describing pdfs have a common
formal structure as all these objects are pdfs. The common exploitation way is discussed here.

At abstract level, P deals with the pdf Pf
(PQ

)
and gets the pdf P̃f

(
P̃Q

)
from other participant P̃ . The

cooperation makes sense if the intersection of sets of possible behaviors ∩Q∗ ≡ PQ∗ ∩ P̃Q is non-empty. Let
us decompose behavior PQ ≡ (G,H) and P̃Q ≡ (H, I) with G ∈ PQ∗ \ ∩Q∗, H ∈ ∩Q∗, I ∈ P̃Q∗ \ ∩Q∗.
Thus, we deal with a pair of pdfs Pf(G,H), P̃f(H, I). Generally, there is a discrepancy between these pdfs,
i.e. the marginal pdfs Pf(H), P̃f(H) differ.

Let Pα ∈ [0, 1] be belief of the participant into correctness (relevance) of its pdf Pf(G,H) and 1− Pα to
that provided by the participant P̃ .



The addressed problem can be now formulated as a construction of estimate Pf̂(G,H) of the unknown
objective pdf (Berec & Kárný 1997) oPf(G,H) using the available knowledge Pf(G,H), P̃f(H, I).

The advocated solution is based on several assumptions formulated and justified now.
The conditional expectation Pf̂(G,H) ≡ E

[
of |Pf, P̃f

]
is the best estimate of oPf(G,H) minimizing

the expected KL divergence ED
(

of ||Pf̂
)

that should serve as the adequate expected loss of the problem, as
it follows from Proposition 2.

The expectation is taken over the set of unknown objective pdfs of∗. Its conditional version will be con-
structed using the observations listed further on.

The participant P is not aware of the space P̃Q∗ \ capQ∗ and thus it may exploit at most the marginal pdf
P̃f(H). Similarly, the participant P̃ is not aware of the space PQ∗ \ capQ∗ thus it brings no information on
oPf(G,H).

The only available information about relationship between G and H is in Pf(G|H) which should thus
coincide with the corresponding conditional expectation. These observations motivate assumptions

E
[

oPf(G, H)|Pf(G,H), P̃f(H, I)
]
≡ E

[
oPf(G,H)|Pf(G, H), P̃f(H)

]

E
[

oPf(G|H)|Pf(G, H), P̃f(H)
]
≡ E

[
oPf(G|H)|Pf(G|H), Pf(H)

] ≡ Pf(G|H). (16)

No information on correlation of oPf(G|H) and oPf(H) is available. Thus, we can assume furthermore that

E
[

oPf(G|H) oPf(H)|Pf(G|H), Pf(H), P̃f(H)
]

=︸︷︷︸
(16)

Pf(G|H)E
[

oPf(H)|Pf(G|H), Pf(H), P̃f(H)
]
.

(17)
Thus it remains to specify the expectation of oPf(H) given (essentially) by a pair of alternatives with given
degrees of belief. Thus, it makes sense to adopt the last assumption

E
[

oPf(H)|Pf(G|H), Pf(H), P̃f(H)
]
≡ E

[
oPf(H)|Pf(H), P̃f(H)

]
≡ Pα Pf(H)+

(
1− Pα

) P̃f(H).
(18)

This implies the final composition rule defining the new pdf P f̂ of the participant P corrected by information
provided by the participant P̃ . It is summarized in the following algorithmic form.

Algorithm 1 (Correction of pdf Pf by the pdf P̃f ) 1. Participant P selects belief Pα ∈ [0, 1] in correct-
ness of its pdf

2. Participant P gets marginal pdf P̃f(H) of its neighbor P̃ describing the common part H of behaviors
PQ ≡ (G,H), P̃Q ≡ (H, I) considered by the involved participants P , P̃

3. Participant P defines the corrected pdf Pf̂(G,H) by the formula

Pf̂(G,H) = Pf(G|H)
[
Pα Pf(H) +

(
1− Pα

) P̃f(H)
]
. (19)

Remarks

1. Application of Algorithm 1 to prior pdfs, models of environments as well as to ideal pdfs is generally
non-trivial as the recognition of the common variable H and evaluation of the marginal pdf need not be
straightforward. Examples of detailed evaluations are out of scope of this paper.

2. Section 3.4 that deals with hierarchical scenario combines individual aims indirectly via estimation. Even
in this case, Algorithm 1 is useful as it shows that the combined model should be searched as the mixture
model (19.

3. The improved model Pf̂ is supposed to serve to P . Thus, P has a freedom to assign belief Pα to itself. Ob-
viously, it is wise to make this probability proportional to its predictive ability on the common observable
part of H in comparison with this ability of information provider P .

4. Extension of the proposed combination to a larger number of cooperating participants is nontrivial. Often,
however, pair-wise comparison (possibly iterative) can be sufficient.

3.3 Cooperative Scenario

In the selfish scenario, communicating partners have right to decide on degree of exploitation of the informa-
tion provided by their neighbors. In the cooperative scenario, they are obliged to come to a common model



and ideal concerning to the common part of their behavior. It means that have to negotiate on the belief values
assigned to the partner. They have to reach the situation with Pα = 1− P̃α, they have to negotiate.

The fair negotiation requires to judge final loss on union of both considered behaviors, i.e. to define the
common model PP̃f(G, H, I) and common ideal IPP̃f(G,H.I) as a function of the common belief(s) α and
to minimize the smallest value of the KL divergence D

(
PP̃f || IPP̃f

)
with respect to these beliefs.

Practically, the minimization can be performed by comparing values on a relatively sparse grid in belief-
values space. Thus, the extension of the involved pdfs on the union of behaviors is the key problem to be
addressed. There are indicators that the pdf

PP̃f(G,H, I) = Pf(G|H) P̃f(I|H)
[
αPf(H) + (1− α) P̃f(H)

]
(20)

is the adequate extension. No rigorous justification is, however, available.

3.4 Hierarchical Scenario

Hierarchical scenario supposes that actions of individual participants in the group P∗ are coordinated by a
single member of the group, referred to as coordinator C ∈ P∗. The coordinator has the power to influence
other participants in the group by: i) enforcing ideal pdfs and models of their environments (at design stage);
ii) data supplied (at acting stage). Although individual participants may behave as selfish or cooperative, they
must accept some ingredients enforced to them by the coordinator C. The degree of obedience is predefined
by strength of hierarchy.

Type of coordination is determined by the way how C constructs its own ideal according to which it coordi-
nates the group P∗. A selfish coordinator respecting aims neither group nor particular participants behaves as
a dictator. The coordinator that constructs its ideal pdf so that group aim as well as aims of individual members
are respected as much as possible can be labelled as democrat. The construction of such a ”democratic ideal”
ICf(dt|d(t− 1)) is the major new task connected with the hierarchical scenario. The task solution is discussed
below. For a complementary information see (Kárný & Kracı́k 2004).

In the task formalization, the coordinator C is assumed:

• To have at disposal data that inform it about the particular participants behavior and behavior of the group
as a whole.

• To share a part of its data dt with all participants of the group. These data may include actions of the
coordinator as well as its innovations serving for coordination.

• To have information about externally supplied group aim (if any).
• To have at disposal information about aims of individual participants. It serves for harmonizing these

individual aims both mutually and with the group aim.
• To obtain regularly data with respect to which members of the group have expressed their aims.

The construction of the coordinator’s ideal ICf is straightforward if the coordinated group has P̊ members
with a small P̊ . It has to describe the common data available to each participant and thus it suffices to create
the ideal pdf from the corresponding marginal pdfs of respective ideals. Their convex combination solves
this problem. The weights, selected by the coordinator, reflects the significance it assigns to participants. The
constant weights P̊−1 can be taken as prototype of the fair weights. This simple weighting is possible due to
the common expression of losses in terms of the KL divergences.

Real problem arises when the number of coordinated participants is large. It this case, however, it can
be expected that participant aims can be clustered in relatively small amount P̊ < ∞ of clusters. A cluster
contains an Pα > 0 part of the group participants

(∑P̊
P=1

Pα = 1
)

. Each cluster has data Pdt on which

cluster participants express their aims through a cluster ideal IPf
(Pdt|Pd(t− 1)

)
.

The coordinator processes the provided cluster ideals by employing data P̄dt not available to the partici-
pants from this cluster. Actually, the extension (12) of the cluster ideal pdf with respect to the full data record
dt =

(
Pdt,

P̄dt

)
available to the coordinator, is defined as

IPf(dt|d(t− 1)) = ICf
(
P̄dt|dt, d(t− 1)

)
IPf

(Pdt|Pd(t− 1)
)

for any P = 1, . . . , P̊ (21)

where the marginal pdf of the constructed coordinator’s ideal ICf(dt|d(t − 1)) is used. With the extension
(21), the coordinator’s democratic ideal ICf(dt|d(t − 1)), respecting ideals of all clusters within a group,



is searched for. The pdf defined on the coordinator’s data dt and closest to the extended ideals of particular
clusters is selected, i.e.:

ICf(dt|d(t− 1)) = Arg min
f(dt|d(t−1))

∑

P∈P∗
PαD (

IPf(dt|d(t− 1)) || f(dt|d(t− 1))
)
. (22)

This formulation can be interpreted as minimization of the expected KL divergence of the objective but un-
known coordinator’s ideal oICf(dt|d(t−1)) and its approximation ICf(dt|d(t−1)). For it, we have to assume
that oICf(dt|d(t− 1)) ∈ oICf∗(dt|d(t− 1)) ≡ {

IPf(dt|d(t− 1))
}
P∈P∗ and

Probability
[

oICf(dt|d(t− 1)) = IPf(dt|d(t− 1))| oICf∗(dt|d(t− 1))
]

= Pα.

Unrestricted minimization gives implicit equation for the ideal search for

ICf(dt|d(t− 1)) =
∑

P∈P∗
Pα IPf(dt|d(t− 1)) =︸︷︷︸

(21)

∑

P∈P∗
Pα ICf

(
P̄dt|dt, d(t− 1)

)
IPf

(Pdt|Pd(t− 1)
)
.

(23)
Equation (23) has no analytic solution for generic cases with P . This problem can be practically avoided
by replacing the extension (21). Alternatively, the cluster ideal can be extended on the full data record d =(
Pd, P̄d

)
by multiplying the marginal pdf IPf

(Pdt|Pd(t− 1)
)

by a flat pdf IP̄f̄
(
P̄dt|d(t− 1)

)
defined

on the data P̄dt out of the interests of the Pth cluster. Then, the optimal joint ideal pdf of the whole group
equals

If(dt|d(t− 1)) =
∑

P∈P∗
Pα IPf

(Pdt|Pd(t− 1)
)

IP̄f̄
(
P̄dt|d(t− 1)

)
. (24)

The obtained explicit group ideal (24), representing compromise between ideals of all clusters entering the
group, can be taken as the coordinator’s ideal ICf(dt|d(t − 1)) ≡ If(dt|d(t − 1)). However even in this
simple case, the direct use of the explicit group ideal, driving the fully probabilistic design of coordinator’s
strategy, is inhibited by the difficulty to cluster the participants properly. For it, we have to define which ideal
pdfs are taken as practically identical and the results may be quite sensitive to this definition. Moreover, the
well-established clustering techniques are not elaborated for such objects as pdfs are. Thus, it makes sense to
search for an alternative way of constructing of the coordinator’s ideal.

Constructing of the group ideal, addressed as estimation problem, seems to offer a remedy of all men-
tioned troubles. The above considerations indicate the ideal should be search in the form of finite mixture. The
solution is described by the following algorithm.

Algorithm 2 (Data-based construction of the group ideal) 1. The coordinator’s ideal is supposed to have
a form of a finite mixture (Titterington et al. 1985) composed of P̊ components If

(
dt|d(t− 1), PΘ

)
parameterized by finite collection of unknown parameters PΘ and weighted by unknown probabilistic
weights Pα

If(dt|d(t− 1), Θ) =
P̊∑

P=1

Pα If
(
dt|d(t− 1), PΘ

)
.

2. Each participant is required to provide data records characterizing its ideal. The data format and number
of data records is previously defined and fixed for all participants of the group. All entries of the data
record available to the coordinator has to be filled in.

3. The data, provided by participants, are processed to estimate a group ideal in the form of mixture model
suggested. The standard Bayesian methodology, see e.g. (Kárný et al. 2003) and references there, is used
for estimation of unknown mixture parameters Θ = {αc, c̊, Θc}. Resulting mixture model approximates
the whole group data with particular components modelling individual clusters of the group.

Remarks

1. In all variants, the degree of compromise between contradictory ideals is defined by the cluster (component)
weights Pα.

2. As a rule, P expresses its wishes about sub-selection of data entries only, i.e. d =
(
Pd, P̄d

)
. This intro-

duces the hard problem of missing data into the mixture estimation. One possibility is to ask the participant



to provide lower and upper bound on entries of its interest and complement it by the lowest and highest
bounds on the variables it is not interested in.
Alternatively, the fact that often whole groups of entries are out of the participant interest can be exploited.
Considering for presentation simplicity the static parameterized ideal If(dt|d(t− 1), Θ) = If(dt|Θ), we
get

f(Θ|dP) ∝ f(Θ) IPf
(Pd|Θ)

= f(Θ)
∫

IPf(d|Θ) d P̄d.

To get a practical algorithmic solution of this formally correct treatment is, however, difficult and generally
un-elaborated problem.

3. The data-based presentation of ideals is ”natural” in societal problems (Kárný & Kracı́k 2004). It may be
advantageous even in technical problems. Let IPf(Pdt|Pd(t − 1)) be the ideal expressing the decision
aims and restrictions. As a rule, it is rather complex pdf and the fully probabilistic design with it or with
mixtures having it as a component is quite hard. Then, it makes sense to take samples from this pdf and use
it for estimation of a mixture with numerically tractable components. Then, the estimation-based fitting of
the ideal pdf performs simultaneously projection of the original ”wild” ideal onto a feasible set.

4. Standard mixture estimation procedures can be used (Titterington et al. 1985). An advanced initialization
(Kárný, et al. 2001b) combined with structure estimation becomes inevitable in high-dimensional cases. It
guarantees practically appropriate clustering of the group.

5. The participant may have at disposal data not available to the coordinator. Then, their existence does not
influence C who can assume that such surplus data (taken from its perspective) do not exist. Availability of
surplus data of C that are strongly related to aims of the coordinated Ps is the main source of its ability to
construct the proper ideal.

6. If power of enforcing of the ideal and models is weaken for the coordinator, the scenario of horizontally
cooperating group can be obtained. Practically it means that some participant (called probabilistic advisor)
is assumed to have enough modelling and evaluation power allowing to support other participants in their
environment (Kárný et al. 2003, Quinn, et al. 2003). Instead of enforcing, probabilistic advisor offers pro-
jections of the optimized models as advices to respective participants. Supported participants have freedom
to take the ideal pdfs optimized by advisor as the ideal pdfs for the data shared with advisor. In extreme
case, they can follow blindly up to copying the advised actions. They are, however, responsible for the
achieved quality and thus they should harmonize these advices with the information and actions related to
their surplus data that are not at disposal to advisor.

4 Concluding Remarks

MP DDM discussed in this paper has many facets and problems. Besides the problems unsolved for SP DDM
and thus transferred to MP DDM, new specific problems arise. Let us list some of them, we are aware of.

• It is not clear whether classification introduced within this paper is general enough and that no significant
aspect has been left aside.

• Communication ways are extremely important in MP DDM. The net of participants should be structured –
both in time and space – in order to get a high overall performance or even just stable behavior.

• Efficient storing of function of many variables (both pdfs and functions appearing in the fully probabilistic
design) becomes even more important in MP DDM than in SP DDM.

• Estimation with incomplete data becomes especially urgent in MP DDM.
• Sharing of probabilistic models leads directly to finite mixtures whose set is not closed with respect to

learning and conditioning. These general problems still wait for their solutions.
• Extension of pdfs (a solution of general marginal problems) is to be elaborated as the outlined solution is

neither unique nor sufficiently justified.

Each item of the above list represents difficult and fundamental research problems whose quick solution can
hardly be expected. In spite of this, partial results reflected in the paper improve understanding of MP DDM
and can be used in solution of particular problems like normative fair governing (Kárný & Kracı́k 2004),
advising to other Ps or sensor fusion.

Concerning to relationships of discussed scenarios, it is clear that

• The hierarchical scenario has a significant potential to provide the highest performance if the cooperating
group is small enough.

• The horizontal cooperation has potential to be better than selfish MP DDM. Comparing to groups manage-



able in hierarchical scenario, it is expected to be worse. It has, however, an extreme potential in scalability.
Horizontal cooperation of participants with a sufficiently dense subset of coordinators can be successfully
applied to extremely large MP DDM where hierarchical scenario cannot be applied.

• Combination of small-scale hierarchies with horizontal cooperations, enhanced potentially by the adaptive
shifting of boundaries between participant environments, seems to be the most powerful way of solving
large scale MP DDM. It also seems that Nature came to the same conclusion.
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(eds.), Computer-Intensive Methods in Control and Signal Processing: Curse of Dimensionality, pp. 181–
193. Birkhäuser.
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