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Problem of parameterization of multi-output autoregressive regressive Gaussian
model (ARX) is studied in the context of prior design of adaptive controllers.

The substantial role of prior distribution of unknown parameters on the pa-
rameterization is demonstrated. Among several parameterizations a nontraditional
one is advocated which

• makes it possible to model the system output entry-wise, thus it is very
flexible;

• models relations among system outputs in a realistic way;

• is computationally cheap;

• adds an acceptable amount of redundant parameters comparing to the most
general but computationally most demanding parameterization which orga-
nizes the unknown regression coefficients in column vector.

1 Introduction

Autoregressive-regressive model with exogenous inputs (ARX) is often used
for modelling of controlled systems especially in self-tuning control [1]. Popu-
larity of ARX models stems mainly from plausibility of least squares (LS) for
estimating its parameters. If Bayesian setup is used, the statistics supplied
by LS serve for a simple evaluation of posterior probabilities on structures of
ARX models which compete for the best description of the modelled system
[2]. Thus, complete system identification can be performed within the LS
framework.

The cited results proved to be reliable and quite complex identification
tasks have been solved using them. In connection with preparation of the-
oretical tools for prior tuning of linear-quadratic-Gaussian selftuners [3] the
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problem of redundant parameters – which is of restricted importance in on
line phase – has emerged.

This paper brings a sequence of simple propositions which summarize
the relevant results on identification of ARX model for multi-output (MO)
systems and brings some arguments in favor of a nontraditional parameteri-
zation of ARX model called here separated parameterization.

2 Preliminaries

2.1 Manipulations with arrays

An inspection of multivariate systems requires handling multi-index arrays.
Readability of relations among them is much influenced by the notation. We
hope the following one to be a lucky choice:

• the arrays are mostly column-oriented, a row-oriented array is gained
by the transposition ′ of the column-oriented one;

• ith column of a matrix with entries xjk is denoted x∗i; xi∗ means ith
row, i.e. xi∗ = x′∗i;

• the arrays assumed have generally non-rectangular shape (e.g. num-
ber of entries in x∗i varies with i): the quotation marks above should
indicate this fact;

• the asterisk convention applies to tensors too: if a tensor S has the
entries Sijk then Sij∗ means the vector gained after fixing the indices
i, j and Si∗∗ is a matrix selected from Sijk when i is fixed.

3 Bayesian formalism

Bayesian estimation adopted needs a probabilistic form of the model. For
presenting it, we shall use the following notation and notions:

• p(A|B) denotes the probability density function (abbr. p.d.f.) or the
probability function (p.f.) of a random variable A conditioned on B (the
random variable, its realization and the corresponding p.d.f. argument
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are not distinguished as usual; a distinction of the p.d.f. and p.f. will
be clear from the context).

• N (y|ŷ, σ) denotes the Gaussian p.d.f. of a variable y determined by the
expected (E) value ŷ of y and by the covariance σ.

• Data are measured on the system at discrete time moments labelled
by t = 1, 2, . . . Those which can be directly manipulated are called the
(system) input and denoted u(t). The rest is called the (system) output,
y(t). The dimension of the output is denoted m.

• In conditioning, the following data collections are used

ti =
{
{y(τ), u(τ)}t−1

τ=1, {yj(t)}i
j=1, u(t)

}
for i = 0, 1, . . . , m

(by definition the set {·}0
1 is empty).

• The estimation task arises when a system model describing the output
probability for a given past is parameterized by an unknown (finite-
dimensional) parameter Θ, i.e. it is described by the p.d.f. p(y(t)|t0, Θ).
If the p.d.f. is viewed as function of Θ (data are fixed) then it is called
incremental likelihood function.

• The estimation is performed assuming that the estimated parameter Θ
is unknown to the input generator (it fulfils natural conditions of control
[4]), i.e. assuming u(t), Θ to be independent under the condition t0, i.e.
p(u(t)|t0, Θ) = p(u(t)|t0).

• The posterior p.d.f. p(Θ|tm) is Bayesian parameter estimate. Under
natural conditions of control, it is related to the prior p.d.f. p(Θ) by
the following version of Bayes rule: p(Θ|tm) ∝ M(Θ; tm)p(Θ), where
∝ means proportionality by a Θ-independent factor. The likelihood
function M(Θ; tm) is the product of the incremental likelihood function
M(Θ; tm) = p(y(t)|t0, Θ)M(Θ; (t− 1)m), M(Θ; 0m) ≡ 1.

4 Multi-output ARX model

Two parameterizations of the multi-output autoregressive-regressive model
of controlled systems (MO ARX) will be discussed.
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Fundamental parameterization: The outputs are related to the past
history by the equations

yi(t) =
l̄i∑

k=1

θ̄kiψ̄ki(t) + ēi(t) = θ̄i∗ψ̄∗i(t) + ēi(t), i = 1, . . . ,m(1)

where

θ̄ki are regression coefficients to be estimated;

l̄i denotes the number of coefficients related to the ith output;

ψ̄∗i(t) is the regression vector available for predicting yi(t), the regressor is
a known function of t0;

ēi(t) are zero mean Gaussian random variables with the covariance structure

E [ēi(t)ēj(τ)|t0, Θ̄] =

{
0 for t 6= τ

σ̄ij for t = τ

given by an unknown symmetric positive definite covariance matrix σ̄.

The unknown parameter Θ̄ of the fundamental parameterization is

Θ̄ ≡
(
θ̄ki, σ̄ij, i = 1, . . . , m, i ≥ j, k = 1, . . . , l̄i

)
.

Separated parameterization: The outputs are related to the past history
by the equations formally identical to (1)

yi(t) =
li∑

k=1

θkiψki(t) + ei(t) = θi∗ψ∗i(t) + ei(t), i = 1, . . . ,m(2)

with elements defined in a way which guarantees independency of e(t) entries

θki are regression coefficients to be estimated;

li denotes the number of coefficients related to the ith output;

ψ∗i(t) is the regression vector available for predicting yi(t), the regressor is
a known function of ti−1 (!);
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ei(t) are zero mean Gaussian random variables having independent also
entries (!)

E [ei(t)ej(τ)|tj, Θ] =

{
0 for t 6= τ or i 6= j
σi for t = τ and i = j

given by an unknown diagonal positive definite covariance matrix σ.

The unknown parameter Θ of the separated parameterization is

Θ ≡ (θki; σi, i = 1, . . . , m, k = 1, . . . , li) .

Let us stress the difference of the above definitions:

Fundamental parameterization has symmetrical noise covariance and
unit matrix at the predicted output;

Separated parameterization has diagonal noise covariance and a trian-
gular matrix at the predicted output.

5 Estimation of MO ARX

We shall write explicitly likelihood function as the key item needed in esti-
mation.

Proposition 1 [Incremental likelihood of MO ARX model] The incremental
likelihoods of Gaussian MO ARX model take the forms:
Fundamental parameterization

p(y(t)|t0, Θ̄) =(3)

= |2πσ̄|−0.5 exp



−0.5

m∑

i,j=1

[yi(t)− θ̄i∗ψ̄∗i(t)](σ̄−1)ij[yj(t)− θ̄∗jψ̄∗j(t)]



 =

= |2πσ̄|−0.5 exp



−0.5

m∑

i,j=1

(σ̄−1)ij

[
−1
θ̄∗i

]′
Ψ̄∗i(t)Ψ̄j∗(t)

[
−1
θ̄∗j

]



where the (regression) data vectors Ψ̄∗i(t) related to the time moment t and
the ith output are introduced

Ψ̄i∗(t) =
[
yi(t), ψ̄i∗(t)

]
.
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The dimension of the ith data vector is L̄i = l̄i + 1.
Separated parameterization

p(y(t)|t0, Θ) =
m∏

i=1

(2πσi)
−0.5 exp

{
−0.5

σi

[yi(t)− θi∗ψ∗i(t)]2
}

(4)

=
m∏

i=1

(2πσi)
−0.5 exp

{
−0.5

σi

[
−1
θ∗i

]′
Ψ∗i(t)Ψi∗(t)

[
−1
θ∗i

]}

where the (regression) data vectors Ψ∗i(t), i = 1, . . . , m, related to the time
moment t and the ith output are introduced

Ψi∗(t) = [yi(t), . . . , y1(t), ψi∗(t)] .(5)

The dimension of the ith data vector is Li = li + i.
Proof. By straightforward manipulations.

2

Proposition 2 [Likelihood of MO ARX model] The likelihoods of a Gaus-
sian MO ARX model take the forms:
Fundamental parameterization

M(Θ̄; tm) = |2πσ̄|−0.5ν(t) exp



−0.5

m∑

i,j=1

(σ̄−1)ij

[
−1
θ̄∗i

]′
V̄ ij(t)

[
−1
θ̄∗j

]

(6)

where the scalar ν(t) and (L̄i, L̄j) matrices V̄ ij(t), i, j = 1, . . . , m, are suf-
ficient statistics for estimating the parameter Θ̄. They are defined by the
formulae

ν̄(t) = ν̄(t− 1) + 1, ν̄(0) = 0

V̄ ij(t) = V̄ ij(t− 1) + Ψ̄∗i(t)Ψ̄j∗(t), V̄ ij(0) = 0, i, j = 1, . . . , m.

Generally, it is needed s̄t = 1 +
∑m

i=1

[
L̄i(L̄i+1)

2
+

∑i−1
j=1 L̄iL̄j

]
storage elements

for keeping the values of these statistics.
Separated parameterization

M(Θ; tm) =
m∏

i=1

(2πσi)
−0.5ν(t) exp

{
−0.5

σi

[
−1
θ∗i

]′
V i(t)

[
−1
θ∗i

]}
(7)
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where the scalar ν(t) and (Li, Li) matrices V i(t), i = 1, . . . , m, are sufficient
statistics for estimating the parameter Θ. They are defined by the formulae

ν(t) = ν(t− 1) + 1, ν(0) = 0

V i(t) = V i(t− 1) + Ψ∗i(t)Ψi∗(t), V i(0) = 0, i = 1, . . . ,m.

Generally, it is needed st = 1 +
∑m

i=1
Li(Li+1)

2
≈ s̄t/m storage elements for

keeping the values of these statistics.
Proof. Implied by the Bayes rule and previous proposition.

2

The exceptional position of Gaussian ARX model among practically used
system descriptions stems from the fact that it possesses finite dimensional
statistics and thus admits self-reproducing prior p.d.f.

Proposition 3 [Estimation of MO ARX model with self-reproducing prior]
Let us change the zero initial conditions in the recursions for sufficient statis-
tics to:
Fundamental parameterization

ν̄(0) = ν̄0, with a positive ν̄0

V̄ ij(0) = V̄ ij
0 giving a positive definite




V̄ 11
0 . . . V̄ 1m

0

. . . . . . . . .
V̄ m1

0 . . . V̄ mm
0


 .

Separated parameterization

ν(0) = ν0, with a positive ν0

V i(0) = V i
0 with a positive definite V i

0 .

Then the likelihood functions modified in this way are respectively propor-
tional to p(Θ̄|tm) and p(Θ|tm) with finite proportionality factors.
Proof: see [4].

2

Remark.

1. It can be shown [4] that collection of the sufficient statistics is alge-
braically equivalent to least squares. The prior p.d.f. adds non-trivial
initial conditions to recursive version of LS and regularize them.
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6 Computation and redundancy aspects

6.1 Relations of the parameterizations

The parameterizations assumed are generically equivalent.

Proposition 4 [Relations of the fundamental and separated parameteri-
zations] Let σ̄ be a positive definite matrix with the (necessarily unique)
factorization σ̄ = L−1S(L−1)′ where L is the lower triangular matrix with
unit diagonal and S is the diagonal matrix.

Then – with probability 1 specified by p(Θ̄) – there is one-to-one mapping
between both parameterizations which is given by the equalities

σ = S, li = l̄i + i− 1(8)

ψki(t) =

{
yk(t) for k < i
ψ̄(k−i+1)i for k ≥ i

, θki =

{ −Lik for k < i∑i
j=1 θ̄(k−i+1)jLij for k ≥ i

Proof: by straightforward algebraic manipulations.

2

Proposition 4 is seemingly in a contradiction with Propositions 2 as the
sufficient statistics of both models differ. The real difference, however, enters
through the self-reproducing priors.

Proposition 5 [Richness of self-reproducing priors] Let P̄ , P be sets of all
proper self-reproducing priors related to fundamental and separated models,
respectively. Let us denote T mapping of P̄ described by (8). Then P is
proper subset T P̄ .
Proof: The inclusion P ⊆ T P̄ is implied directly by the definition of T . The
strict inclusion is seen from the following example which will be used in the
further discussion too.

Let m = 2 and p(Θ̄) = p̄ assign nonzero probability to the following Θ̄

θ̄1∗ = [f̄ ′, ḡ′, 0′], number of zeros = dim(k̄) 6= 0

θ̄2∗ = [0′, h̄′, k̄′], number of zeros = dim(f̄) 6= 0, dim(h̄) = dim(ḡ)

L21 = α
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Then, there is no p ∈ P such that the corresponding image is p̄ because the
mapping

θ1∗ = [f̄ ′, ḡ′, 0′] = θ̄1∗
θ2∗ = [αf̄ ′, αḡ′ + h̄′, k̄′]

is non-invertible.

2

Remarks

1. Proposition 5 exemplifies that the prize we paid for smaller dimension
of sufficient statistics is the loss of modelling flexibility: we are not
able to assign fixed (zero) values to arbitrary entries of the estimated
regression coefficients.

2. The superfluous parameters introduced are called redundant. With
this notion, we can formulate the above statement in another way:
redundancy is the price paid for handling MO model as independent
single output models.

6.2 Special cases

Various special cases of the above parameterizations have been published.
This paragraph discusses mutual relations of the most often met cases.

• Matrix coefficients:
This is the case for which the fundamental parameterization fulfils l̄i =
l̄ and ψ̄∗i(t) = ψ̄(t) with some fixed l̄ and ψ̄(t). If we look on ψ̄∗i
as selections from a “maximal” ψ̄, the definition is equivalent to the
requirement: if indices k, i exist such that θ̄ki ≡ 0 then θ̄k∗ ≡ 0.

Separated-parameterization counterpart is gained through the mapping
(8).

• Independent parameterization:
This case is specified by diagonal noise covariance σ̄ in the fundamental
parameterization.
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Proposition 6 [Relations of special parameterizations]

• Matrix parameterization

M(Θ̄; tm) ∝ |σ̄|−0.5ν̄(t) exp

{
−0.5tr

[
−I

θ̄

]′
V̄ M(t)

[
−I

θ̄

]}
(9)

where I is unit matrix of an appropriate dimension, the matrix θ̄ con-
sists of columns θ̄∗i and

V̄ M(t) = V̄ M(t− 1) + Ψ̄(t)Ψ̄′(t), Ψ̄′(t) = [y′(t), ψ̄′(t)], V̄ M(0) = 0.

For separated parameterization, the likelihood M(θ; tm) coincides with
(7) for V i(t) = V̄ M , i = 1, . . . , m.

If P̄M is the set of prior p.d.f. in P̄ restricted to matrix models then
the mapping T restricted to it is always invertible.

• Independent parameterization
The separated parameterization coincides with the fundamental one,
thus likelihoods are given by (7): models related to the respective out-
puts are estimated independently.

Proof: by straightforward algebra.

2

Proposition 7 [Redundancy ordering of special parameterizations] Let
nF , nS, nM be minimal numbers of parameters of fundamental, separated
and matrix parameterizations of the ARX model for describing of the same
data, respectively. Then,

nF ≤ nS ≤ nM

Proof: The minimality of nF is implied by the construction. The second
inequality can be proved by induction (over m) starting from the case given
in the proof of Proposition 5.

2

Remarks
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1. The matrix version is rather often used in MO system modelling. When
some entry of ψ̄ influences some output then this entry has to be as-
sumed in the remaining channels too. This is the key drawback of this
model.

Separated model brings no advantages in this case.

2. Independent parameterization is plausible as it requires no redundant
parameters. As the noise models all unmeasurable influences, the in-
dependency of the noise entries might be quite poor model of reality in
MO cases.

6.3 Selection matrices in off-line estimation

The collection of statistics may be quite demanding task. In off-line identi-
fication, especially in connection with structure estimation, the collection of
maximal statistics combined with use of “selection” matrices may be advan-
tageous.

The maximal data vectors Φ(t) are defined as known functions of t0 which:
– have a fixed length L;
– the data vectors Ψ̄∗i (Ψ∗i(t)) can be constructed from them by fixed selec-
tion (L̄i, L) ((Li, L)) matrices S̄i∗∗ (Si∗∗)

Ψ̄∗i(t) = S̄i∗∗Φ(t), Ψ∗i(t) = Si∗∗Φ(t), t = 1, 2, . . . .

Typically, S̄i∗∗ and Si∗∗ consist of zero and units and they are of a row-
like shape. Some entries of the maximal data vector Φ(t) have to coincide
necessarily with y(t).

Proposition 8 [Likelihood functions with selection matrices] Using selec-
tion matrices, the statistics V̄ M(t) (see Proposition 6) with Ψ̄(t) = Φ(t) have
to be stored for determining likelihoods for both parameterization assumed:
Fundamental model

M(Θ̄; tm) = |2πσ̄|−0.5ν(t) exp



−0.5

m∑

i,j=1

(σ̄−1)ij

[
−1
θ̄∗i

]′
S̄i∗∗V̄ M(t)S̄∗∗j

[
−1
θ̄∗j

]

 .

Separated parameterization

M(Θ; tm) =
m∏

i=1

(2πσi)
−0.5ν(t) exp

{
−0.5

σi

[
−1
θ∗i

]′
Si∗∗V̄ M(t)S∗∗i

[
−1
θ∗i

]}
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The posterior p.d.f.’s are gained from the above likelihoods by choosing
a positive definite V̄ M(0) iff for
Fundamental parameterization

V̄ ij(0) = S̄i∗∗V̄ M(0)S̄∗∗j, i, j = 1, . . . , m.

Separated parameterization

V i(0) = Si∗∗V̄ M(0)S∗∗i, i = 1, . . . , m.

Proof: a simple consequence of the definitions of the elements involved.

2

Remark

1. The second part of Proposition 7 stresses again the influence of the prior
p.d.f. on the parameterization: the possibility to update the statistics
V̄ M(t) only depends on properties of V̄ M(0).

7 Conclusions

Parameterizations of multi-output ARX model have been discussed. They
are characterized as follows:

Fundamental parameterization has symmetrical noise covariance and
unit matrix at the predicted output;

Separated parameterization has diagonal noise covariance and a trian-
gular matrix at the predicted output.

Matrix parameterization coincides with the fundamental one when no
regressor entry can be omitted in predicting any output entry.

Independent parameterization coincides with the separated one with
triangular matrix reduced to unit matrix.

Methodological gain of the paper lies in the recognition of the key role of
prior probability density functions in defining a model structure.

From the practical view point, it has been shown that
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• the fundamental parameterization is the most flexible in exploiting a
priori known values of regression coefficients; the flexibility is, however,
paid by substantial increase of computational demands;

• the separated parameterization retains a lot of flexibility of the funda-
mental parameterization; it introduces some redundant parameters but
it spares a lot of computations;

• the matrix parameterization used up to now is uniformly worse that
the separated one and should be avoided;

• the independent parameterization often recommended and used is com-
putationally close to separated parameterization but rather often it can
be poor model of reality and should be avoided, too.
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